

الكميان الفينيا Lateal linas

Stulabicu		mballexay	j joll	astujatl asosl
1	m	(0) , M	1	Jghil
M	1.8		II	alis.
1	\checkmark	(i) 4it	1	20111
$1 T^{1}$	mis	Δ / c	v	aremil
IT:	$\mathrm{ms}{ }^{2}$	' 3	a	àlal
$\mathrm{MLT}{ }^{-1}$	$\mathrm{kg} . \mathrm{m} / \mathrm{s}$	كجم.م/*	P	كمية الندرك
MLT ${ }^{\text {- }}$	$\begin{gathered} \mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}^{2} \\ \mathrm{~N} \end{gathered}$	كجم.م/ڤ٪ أو نيوتن	F	المّوة
$M^{-1} L^{3} \mathrm{~T}^{-2}$	$\begin{aligned} & \mathrm{N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2} \\ & \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2} \end{aligned}$	نيوتن.م أو	G	ثابِ الجذب العار
$\mathrm{ML}^{2} \mathrm{~T}^{-2}$	$\begin{gathered} \mathrm{kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2} \\ \mathrm{~N} \cdot \mathrm{~m} \\ \mathrm{~J} \end{gathered}$	نيوتن b	W	الشغل

困

- فى المثt القائم إذا كان B ، A هما ضلعى القائمة، C هو الوتر فيكن :

$$
\begin{aligned}
C^{2} & =A^{2}+B^{2} \\
C & =\sqrt{A^{2}+B^{2}}
\end{aligned}
$$

ه فى المتث القانم الزاوية يمكن تعيِن النسب المثثية للزاوية θ من العالقات الاتية :

$$
\begin{aligned}
& \tan \theta=\frac{\sin \theta}{\cos \theta} \quad \text {. } \frac{\text { ظل الزاوية }}{}
\end{aligned}
$$

متوازى المستطيلات

$\ell_{1} \times \ell_{2} \times \ell_{3}=$ الحجم

$\frac{4}{3} \pi r^{3}=$ apal
الاسططوانة

$\pi r^{2} \times h=a \neq \sim$

المستطيــل

$\ell_{1} \times l_{2}=$ المحاحـي

المثـــث

$$
\frac{1}{2} \ell_{1} \times \mathrm{h}=\text { artaما } \ell_{1}+\ell_{2}+\ell_{3}=\text { h.al }
$$

الدائــرة

$\pi^{2}=$ arwall $\quad 2 \pi r=$ beal
$(-4)^{1}=-4$
$(3)^{-2}=\frac{1}{(3)^{2}}=\frac{1}{9}$

$$
\left(2^{2}\right)^{3}=(2)^{2 \times 3}=(2)^{6}=64
$$

$$
(2 \times 3)^{2}=(2)^{2} \times(3)^{2}=36
$$

$$
\left(\frac{1}{3}\right)^{2}=\frac{(1)^{2}}{(3)^{2}}=\frac{1}{9}
$$

$$
(2)^{3} \times(2)^{-2}=(2)^{3+(-2)}=(2)^{1}=2
$$

$$
\frac{(3)^{4}}{(3)^{-2}}=(3)^{4-(-2)}=(3)^{6}=729
$$

$$
(8)^{\frac{1}{3}}=\sqrt[3]{8}=2
$$

$$
\begin{aligned}
\left(\frac{x}{y}\right)^{m} & =\frac{x^{m}}{y^{m}} \\
x^{m} x^{n} & =x^{m+n} \\
\frac{x^{m}}{x^{n}} & =x^{m-n} \\
x^{\frac{m}{n}} & =\sqrt[n]{x^{m}}
\end{aligned}
$$

الدالــة الثابتـــة

إذا كانـت y = تشثل بيانيًا بخط مستییم موانى المحود الأفقى (المحو X) ميلك يساوى صفر.

Gtoxinl
متعامدان

$C=\sqrt{A^{2}+B^{2}}$
$\tan \theta=\frac{A}{B}$
في اتجاهين متضاديـن
$\longrightarrow \overrightarrow{\mathrm{B}} \longrightarrow \overrightarrow{\mathrm{A}}$
$\longrightarrow \overrightarrow{\mathrm{C}}$

$$
\begin{aligned}
\vec{C} & =\vec{A}+(-\vec{B}) \\
\vec{C} & =\vec{A}-\vec{B}
\end{aligned}
$$

* [ذا كان الملجهان ؛

لهمـــانــس الاتجاه

$$
\vec{C}=\vec{A}+\vec{B}
$$

* عندما يصنع متجه

$$
\begin{array}{ll}
A_{x}=A \cos \theta & \text { مركبته الأفقية الرأسية } \\
\text { A }=A \sin \theta &
\end{array}
$$

. dgyl cumbsl datll ce blguls a

a anal < 4

$$
\mathrm{a}=\frac{\mathrm{Av}}{\mathrm{At}}
$$

$$
\mathrm{v}=\frac{\Delta \mathrm{d}}{\Delta \mathrm{t}}
$$

$$
\vec{F}_{1}=-\vec{F}_{2}
$$

$$
\Sigma \overrightarrow{\mathrm{F}}=0
$$

سلسلة كتب

هدفنا...
تفوق و ليس مجرد نجاح

الحـر.

با t. गเช

القـــــــوة والحركــــــة.

3 g

(كمية التحرك - قانون نيوتن الثانى).

مـقـدمـة

- من المهم فى حياتنا اليومية ونحن نتابع الأجسام المتحركة بدءا من الدراجات والسيارات والطائرات.... ان نفهم كيف تتحرك ؟ وما الذى يسبب هذه الحركة ؟ لذلك سنركز على دراسة حركة الأجسام نتيجة تاثير قوة عليها.

اللفُصـل

(7. Sj-vilg
 (ज) (thlo

بعد دراسة هذا الفصل يجب أن يكون الطالب قادرًا على أن : - يستنتج العلاقةبين كمية تصرك جسمrوكتلة الجسمروسرعته. - يفسر قانون نيوتنالثانى.

- يغسربعض الظواهر الحياتيةباستخدامז قانون نيوتن الثانی.
- يغرقبينن مغهومح الكتلة والوزن.
- يصممرتجررة لاستنتاج العلاقةبينالقوةة والعجلة.

فى هذا الفصل سوف نتعرف :

هـ قانـون نيوتـن الثانى.
ه الكتلــــــة والــــوزن.
(قانون الفعل ورد الغعل) ، رأِيما بـلى سغدرم :

قالون ليوتن الثالى

كمية التحرك

كمـيــة التخـرل

* * لملك تلاهظ أن إمكانية إيغاف الاجسام التى تتمرك تحت تآتير الفصر اللانى' تتومقف على

(السرعــة

كلما زادت سرعة الجسم زاد قصوره الاذثى

لذلك يمع ب إيةـاف ســيارة تَحـرك بسـرعة
 بسرعة صميرة.

(11) الكتلــة

كلما زادت كتلة الجسم زاد قصوره الذاتى

لذلـك يمع بـ إيقـاف شـاحنة كبيـرة بينمـا يســمل إيقاف ســيارة عcيــرة اذا كان لهمــا تفس السرعة.

P=mv : من العلاقة :

$\mathbf{M L T}^{\mathbf{1}}$

جـ الطرِق التعليمس

(R-7)

$09-6$
بسرعـة منتظة

بعجلـــة منتظمة موجبــة

بعجلـة منتظمة سالبــة

بعجلة غير منتظمــــة سـالـبــــة

 ($/$ / $)-1$ -

البطض كما يلى :

(1) गL
 $5 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$ ©
$2 \times 10^{3} \mathrm{~kg} . \mathrm{m} / \mathrm{s}()$ $0.2 \mathrm{~kg} . \mathrm{m} / \mathrm{s}(1)$ $10^{3} \mathrm{~kg} . \mathrm{m} / \mathrm{s} \odot$

$\mathrm{m}=100 \mathrm{~kg}$	$\mathrm{~V}=20 \mathrm{~m} / \mathrm{s}$	$\mathrm{P}=?$

$P=m v=100 \times 20=2 \times 10^{3} \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
(1)

ماذا -(1) गए

$\pi=07 \mathrm{~kg} \quad \mathrm{y}_{3}=0 \quad \mathrm{~d}=50 \mathrm{~m} \quad \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{P}=?$
$v_{1}^{2}=s^{2}+2 \mathrm{~g} 3$
$v_{1}=\sqrt{0+(2 \times 10 \times 50)}=10 \sqrt{10} \mathrm{~m} / \mathrm{s}$
$P=m v_{9}=0.7 \times 10 \sqrt{10}=7 \sqrt{10} \mathrm{kgm} / \mathrm{s}$

(د) كانـ

يقوم شـــضص بتسديد رمية بكرة السلة كها
 عندها كهية تحرن الكرة أكبر ؟

A النقطة
B () النقطة
C ()

- كـة الكرة ثابتة.

$\therefore \mathrm{P} \propto \mathrm{v}$

$\because \mathrm{P}=\mathrm{mv}$

> " سرعة الكرة تقل كما ارتفعنا لاعلى لتاترها بجاذبية الارض. A سرعة الكرة تكن أكبر عند النقطة A كمية تحرك الكرة تككن أكبر عند النقطة A
(1) الاختيار الصحيع هر
 تسابع صفر ؟

共
 ':
 تتيجة التصادم يسارىى $0.22 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$ (1)
$0.14 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$ (e) $0.08 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \Theta$
$0.06 \mathrm{~kg} . \mathrm{m} / \mathrm{s}(\mathrm{S})$

- إ القترضنــا الماتوـاه حوكة الكرة قبل التصادم هـو الاتجاه الموجب للحركة، فإهاتجـاه حركة الكرة بعد

التصادم هو الاتجاه السالب للحركة.

- التغير فى كمية تحرك الكرة يحسب مه العلاقة ،

$$
\Delta P=P_{(\text {(تبل التصادم) }} \text { (بع التمادم) }{ }^{\text {(الم }}
$$

$$
\mathrm{m}=200 \mathrm{~g} \quad \mathrm{v}_{1}=0.7 \mathrm{~m} / \mathrm{s} \quad \mathrm{v}_{2}=-0.4 \mathrm{~m} / \mathrm{s} \quad \Delta \mathrm{P}=?
$$

$P_{1}=m v_{1}=200 \times 10^{-3} \times 0.7=0.14 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
$P_{2}=m v_{2}=200 \times 10^{-3} \times(-0.4)=-0.08 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
التتير نى كيةَ تحرك الكرة نتيجة التصادم :
$\Delta P=P_{2}-P_{1}=-0.08-0.14=-0.22 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
(1) الاختيار الصحيح هو
 معدار التنير فى كية تحرن الكرة ؟

ا. أبإذا

 $\frac{1}{2} P$ (i)

2 P(J)

$$
\begin{equation*}
\frac{3}{2} \mathrm{P} \Theta \tag{P}
\end{equation*}
$$

السيارة بالحمولة

السيارة دون حمولة

$$
\begin{aligned}
& \mathrm{m}_{1}=\mathrm{m} \\
& \mathrm{v}_{1}=\mathrm{v} \\
& \mathrm{P}_{1}=\mathrm{P}
\end{aligned}
$$

* كتة السيارة بالحمولة :

$$
\mathrm{m}_{\text {(اللسبارة بالحـول) }}=\mathrm{m}_{1}+\mathrm{m}_{2}=\mathrm{m}+2 \mathrm{~m}=3 \mathrm{~m}
$$

$$
\because \mathrm{P}=\mathrm{mv}
$$

يمكنك مراجعة التناسب الطردى بند (7) صفحة (10).
$\frac{P}{P_{2}}=\frac{m v}{3 m \times \frac{1}{2} v}=\frac{2}{3}$
$P_{2}=\frac{3}{2} P$
: الاختيار الصحيح هو

كانت كمية تحرك السيارة فى الحالتين متساوية، ما النسبة بين سرعتى السيارة في هذه الحالة ؟ (bib

$$
\begin{aligned}
& \mathrm{m}_{(\mathrm{d} \ldots \mathrm{C})}=\mathrm{m}_{2}=2 \mathrm{~m} \\
& v_{\text {(الـبارة بالحموال) }}=v_{2}=\frac{1}{2} \mathrm{v} \\
& P_{(ا ل س ي ا ر ة ~ ب ا ل ح م ل ة) ~}^{\text {(الم }}=P_{2}=\text { ? }
\end{aligned}
$$

U-
. . العلاقة البيانية بين الإزاحة (d) والزمن (t) للجسم ممثلة بخط مستقيم يميل على الأفقى. . ك كية تحرك الجسم ثابتة خلال هذه الفترة أى تمثل بخط مستقيم موازى لمحو الزمن.
$\because=\mathrm{Amge}=\frac{\$ 1}{4}=\frac{20-20}{4.0}=10 \mathrm{mss}$
$\therefore P=\pi=2 \times 10=20 \mathrm{kgm} / \mathrm{s}$
 (IV) ís.ص (y) (y)

المقابل, فما مقدار كمية تحرك الجسم
خلال الفترة المبثة بيانيٌا

> بץ العجلة فى اتجاه

(P) يمثل الشـكل البيانى المقابل العاقة بـين كمية التحرك (والسـرعة (v) لسيارتين B ، A تتحركان فى خط مستقيم، أى من الاختيارات التالية صحيع ؟ B تساوى كتة السيارة A (i) B B (ـ) لا يمكن تحديد الإجابة

Newton's Second Law जifl jig̣ jojb

: - قانون نيوتن الثانى

- القوة المحصلة المؤثرة على جسم ما تساوى المعدل الزمنى للتغير فن كمبة تحرك هذا الجسم.
- الثا الثرت قوه محصلة على حسم فانها تكسبه عجلة تناسب طردِّا مو القوة المحصلةالمؤثرة عليه وعكسيًا مي كتلته.
* شرع قانون نيوتن الثانى :

عند دراستل لقانون نيوتن الأول للحركة علمت أنه إذا أثرت على جسم قوتان متساويتان فى المقدار ومتضادتان فى الاتجاه تككن محملتهـا مساوية للمفر (इ $\overrightarrow{\text { (}}$ (

يتحرك الجسم بعجلة منتظهة

$$
\begin{aligned}
& \text {, بانثا فى نفس اتجاه القوة المحملة، ثإذا : }
\end{aligned}
$$

|| الرن قوتان محمالتان مختلفتان على كتلتين متساويتين
الكتة الكبر تتحرك بعجلة أقل

الكتة التى تتأثر بقوة أكبر تتحرك بعجلة أكبر

$$
\left(a \propto \frac{1}{m}\right)
$$

العجلة تناسب طرديًا مع الققة المحملة عند ثبوت الككة $(a \propto F)$
$\because F=\frac{\Delta P}{\Delta t}=\frac{\Delta(m v)}{\Delta t}=\frac{m v_{f}-m v_{i}}{\Delta t}=m \frac{\left(v_{f}-v_{i}\right)}{\Delta t}=m \frac{\Delta v}{\Delta t}$
$\therefore \quad \mathbf{F}=\mathrm{ma}$

$$
a=\frac{F}{m}
$$

F-1). (P-t) ($)$

من بعضهما البعض كما يلى

 الجسم تحسب من العاقة :

$F_{(C)}$
(قوة احنكالى إطارات السيارة مع الطريون)
(V) إذا تُثّر جســم بقوة محصلة ثابتة (F) فإنه يتحرك بجبلة منتظمة (a) وبذلك تنطبق على حركته معادلاه الحركة الثارث التى درستها من قبل، وهى :
$v_{f}=v_{i}+a t$
$d=v_{i} t+\frac{1}{2} a t^{2}$
$v_{f}^{2}=v_{i}^{2}+2$ ad

 يثوث ار يتاتر 44 الجسم

 المحصلة المؤرة على السيارة تساوى 4000 N 250 N (3)
$\mathrm{m}=1000 \mathrm{~kg} \quad \mathrm{v}_{\mathrm{i}}=0$
$v_{f}=20 \mathrm{~m} / \mathrm{s}$
$t=5 s \quad F=?$
$z=\frac{v_{f}-v_{i}}{t}=\frac{20-0}{5}=4 \mathrm{~m} / \mathrm{s}^{2}$
$F=m a=1000 \times 4=4000 \mathrm{~N}$
(: الاختيار الصحيح هو

أثرت قوة أفقية مقدارها 30 kg.m/s 20 على جسم كتلته 3 kg منتظمة مقدارها 3 m/s 4 ، فابن مقدار قوة الاحتكاك بين الجسم والسطع يساوى 8 N (i)
$20 \mathrm{~N} \Theta$
12 N +
32 N (1)

い اله

$$
\mathrm{a}=4 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{~F}_{(\mathrm{d} / \mathrm{Kil})}=?
$$

病

 تساوى
$\frac{1}{9}$ (2)
$\frac{1}{1} \fallingdotseq$
$\frac{3}{1}$ (1)
$\mathrm{F}=1 \mathrm{~N} \quad \mathrm{a}_{2}=3 \mathrm{a}_{1} \quad \frac{\mathrm{~m}_{1}}{\mathrm{~m}_{2}}=?$
$\because m=\frac{F}{a}$
$\therefore \frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=\frac{\mathrm{a}_{2}}{\mathrm{a}_{1}}=\frac{3}{1}$
ثابتة. F \because

+品

يمكنك مراجعة التناسب العكسى
بند (1) صفحة (10).
(1) الاختيار الصحيح هو

 الكـرة بسـرعة 55 m/s فإن متوســط القوة المؤثرة على كرة التنس بواســطة المضــرب خلال فترة التلامس يساوىا

1320 N(3)
$825 \mathrm{~N} \Theta$
$13.2 \mathrm{~N}(+$
0.825 N (i)

$$
\begin{aligned}
& m=0.06 \mathrm{~kg} \Delta t=4 \mathrm{~ms} \Delta v=55 \mathrm{~m} / \mathrm{s} \quad \mathrm{~F}=? \\
& =\frac{\Delta P}{\Delta t}=\frac{\mathrm{m} \Delta \mathrm{v}}{\Delta \mathrm{t}} \\
& =\frac{0.06 \times \frac{55}{4 \times 10^{-3}}=825 \mathrm{~N}}{}
\end{aligned}
$$

©

بسرعة أكبر ؟

(F) الشكل البيانى المقابل يمئل العلاقة بين القوة المحصلة (F)
 والزهـن (t)، فئى الاثــــالـال البيانية الآتيـة يمكن أن يمثل العلاقة بين السـرعة (v) والزمن (t) لهذه السـيارة الـيارة خلال نفس الفترة الزمنية ؟

(1)

Θ

(-)

(i)
$\Sigma \mathrm{F}=\mathrm{ma}$
: t= t إلى t=0 فى الفترة من t
? السيارة تتأثر بقوة محصلة ثابتة موجبة.
.
: تمثل العلاقة بين السرعة (v) والزمن (t) للسيارة بخط مستقيم ميله موجب.
: إلى t = t = t فی الفترة من : فی :
? السيارة تتأثر بقوة محصلة ثابتة سالبة.
. السيارة تتحرك بعجلة منتظمة سالبة (تتناقص سرعتها بانتظام). : والزمثل العلاقة بين السرعة (v) والسيارة بخط مستقيم ميله سالب.
€
 والزمن (t)، ما إجابتل ؟ لـ

فـى الشـسكل التالم ثلاثلة مكعبات متصلـة معا بحبلين ههملى الكتلة وهوضرعة على سـسطلح أفقى املس فباذا
 L, T_{2}, T_{1}

$m_{1}=4 \mathrm{~kg}$
$\mathrm{m}_{2}=6 \mathrm{~kg}$
$\mathrm{m}_{3}=10 \mathrm{~kg}$
$F=40 \mathrm{~N}$
$T_{1}=$?
$\mathrm{T}_{2}=?$

واسيلة صـساعتة
تؤثر القوة F على المكعب m ${ }^{\text {F }}$ فقط ولكنها تتسبب فى سحب الثلانة مكعبات.
$\because \Sigma \mathrm{F}=\mathrm{ma}$
$\therefore \mathrm{a}=\frac{\mathrm{F}}{\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}}=\frac{40}{4+6+10}=2 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{T}_{1}=\mathrm{m}_{1} \mathrm{a}=4 \times 2=8 \mathrm{~N}$
$T_{2}=\left(m_{1}+m_{2}\right) \mathrm{a}=(4+6) \times 2=20 \mathrm{~N}$
(د) الاخختيار الصحيع هو

النــكـل المقابل يوضت كتلتين (30 kg ، 10) هتصـلتين هنـا بخـــط مهمل الكتلة يمر على بكرة هلســا ،، فإن مقدار العجلة التى يتّحرك بها الثقلان يساوى $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

	($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
$5 \mathrm{~m} / \mathrm{s}^{2}$ (-)	$1 \mathrm{~m} / \mathrm{s}^{2}$ (i)
$30 \mathrm{~m} / \mathrm{s}^{2}$ ()	$10 \mathrm{~m} / \mathrm{s}^{2} \Theta$

$=30 \mathrm{~kg}$

$$
\mathrm{m}_{2}=10 \mathrm{~kg}
$$

$$
\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
a=\text { ? }
$$

 فى الخيط. - يتحرك الثقلاه بنفس مقدار عجلة التحرك لأنهما معلقاه فى نفس الخيط.
$\because m_{1}>m_{2}$
يتحرك الثقل m2 لأعلى بينما يتحرك الثقل m_{1} لأسفل. ? البكرة ملساء. . قوة الشد فى الخيط والمؤثرة على كل ثقل متساوية.

بتطبيق قانون نيوتن الثانى
(Σ F = ma)

$\therefore \mathrm{T}-\mathrm{w}_{2}=\mathrm{m}_{2} \mathrm{a}$
(2)

$$
\begin{equation*}
\therefore \mathrm{w}_{1}-\mathrm{T}=\mathrm{m}_{1} \mathrm{a} \tag{1}
\end{equation*}
$$

 Now

Evill Ins	plant jus	
H2e	3 y	(i)
景		(-)
26	3	\rightarrow
\cdots	$\sqrt{3}$	(3)

Huineniml

$$
\begin{aligned}
& \text { ader blew } \\
& \text { ad } \\
& \text { ana }
\end{aligned}
$$

6

$$
\begin{aligned}
& \frac{1}{4}(2) \quad 2 t\left(\begin{array}{l}
2 \\
4
\end{array}\right.
\end{aligned}
$$

: البدرل التالى يوضح أوجه المقارنة بينها : و(V)
Mass and Weight ijgigatisil

 سطح الأرض،
للذتلاف عجلة الجاذبية على سطع القمر غنبا طلى
سطح الأرض.

 الأرض ولكن كثلته تظل ثابتة،
 مكان لآخر على سطح الأرض (w = mg).

$280 \mathrm{~N}(4)$
$700 \mathrm{~N}(4)$
$\mathrm{m}=70 \mathrm{~kg}$
$a=4 m / s^{2}$

$$
\left.g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right] \quad \mathrm{w}=?
$$

loatin الم

$w=m g=70 \times 9.8=686 \mathrm{~N}$
: الاختيار المحيع هو

الشكل المقابل يوضّح ونش يسحب سيارة بعجلت منتظهة 3 m/s2 3 ، فإذا كانت القوة الـحسالـة المؤثـرة علـى السيارة 3000 N ($\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}:$ علمٌا بـن

ولسيلة دسساعد اوْ الحم مه حساب عجلة الجاذيبة على سططه القمر.

يمكنك مراجعة كيفية حساب ميل الخط المستقيم بند (V) صفحة (IT).
:ـ
ماهذ

Cuntleperill

- استنتاج العلاقة بين العجلة التى يتحرك بها جسم رالقوة المحملة المفُثرة عليه.
 $\mathrm{a}=\frac{\mathrm{F}}{\mathrm{m}}$

معلومة الكلة (m)، من العا(قة :

- رسم العالة البيانية بين العجلة والقوة المحصلة 'استنتا العالحة بينهما .

- سلك.
- شريط مترى.
- أثقال معلومة الكتلة.
- ساءة إيقاف.
- عربة صغيرة.
- بكرة.

E2loh2
(1) ركب الآدوات (كما فى الشكل).

.

daby
 3

的

?
$\mathrm{F}=\mathrm{mg}$
(V)

$\begin{gathered} \text { العجل} \\ \left(\mathrm{m} / \mathrm{s}^{2}\right) \end{gathered}$	المسافة (m)	$\begin{aligned} & \text { r(الزمن) } \\ & \left(s^{2}\right) \end{aligned}$	الزمن (s)	التوة المحمـا (N)	in (kg)
	-.............	0.1	0.01
		0.2	0.02
			0.3	0.03

(' (' ارسم العلاهة اليـاتيَ بين التوَ المحملة (F) على اللحئ الأفتى والعجلة (a) على الحمد الرأسى.

 خط هـيتيم يشر بنتطة الأمل.
 الموثرة علي.

$$
\text { slope }=\frac{\Delta \mathrm{a}}{\Delta \mathrm{~F}}=\frac{1}{\mathrm{~m}}
$$

(ق) تطير أفقئا بسرعة ثابتة بحملتها على غابة مشتعلة ثم أكملت بنفس سرعتها. فإن كمية تحرك الطائرة بعد إلقاء حمولتها
(1) تصبح صفرًا
(i) تزداد

20 m/s 5 kg وسرع فإذا كانت كتلة الثانى 15 kg فابن

 بإِّ a（3）
b -
$c \in$跳

和

 （ $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ ：علمًا بأن（

$$
20 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \because
$$

$$
40 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}(4)
$$

$$
\begin{aligned}
& \text { 年 } \\
& 10 \mathrm{~kg} . \mathrm{m} / \mathrm{s} \text { (1) } \\
& 30 \mathrm{~kg} . \mathrm{m} / \mathrm{s} \text {) }
\end{aligned}
$$

$5 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
$9 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$

$$
\begin{gathered}
\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right) \\
3 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \\
6 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \rightarrow
\end{gathered}
$$

قانِن نيوتن الدا
 (e)
(3) عبة الجسم
(i) كـية تحرك الجسم

ق
(11) عندما تونّر قوة محملة ثابتة على جسم ساكن له كثلة ثابتّ، نابن الجست (ب) يتحرك بسرعة منتلمة
(1) يظل ساكنا
(3) (ـتحرك بعجلة متزايدد

ج
 $50 \mathrm{~N} \rightleftharpoons$

0 (د)

$$
\begin{array}{r}
2 \times 10^{4} \mathrm{~N}(1 \\
0.02 \mathrm{~N} \Theta \tag{10}
\end{array}
$$

$0.25 \mathrm{~m} / \mathrm{s}^{2}$ (i)
$2.5 \mathrm{~m} / \mathrm{s}^{2} \Theta$
 $10 \mathrm{~N} \bigodot$
1 N (3)
(إذا أثرت قوة محملة 2 على جسم كلته 0.5 فان الجسم يتحرك بعبلة متدارها $1 \mathrm{~m} / \mathrm{s}^{2} \Theta$
$4 \mathrm{~m} / \mathrm{s}^{2}$

المجس على سطح القمر يساوى
138.9 N (i)

450 N ($($
$364.5 \mathrm{~N} \Theta$

$$
\begin{aligned}
50 \mathrm{~kg}(9) & 490 \mathrm{~N} \rightarrow \\
490 \mathrm{~kg}(\mathrm{y}) & 30.67 \mathrm{~kg} \text { (i) }
\end{aligned}
$$

 (إن

$0.2 \mathrm{~s}(9$	$0.1 \mathrm{~s}(1)$
$2 \mathrm{~s}(()$	$0.5 \mathrm{~s} \odot$

 متَارها a والكتلة a_{1} $4 \mathrm{~m} / \mathrm{s}^{2} \Theta$
$\xrightarrow{\left(m\left(\mathrm{~m}^{2}\right)\right.}$
(3)

Θ

(-)
$a\left(\mathrm{~m} / \mathrm{s}^{2}\right)$

(i)

$$
\begin{aligned}
& \text { بعجلة منتظمة مقدارها } \\
& 4500 \mathrm{~N} \\
& 18 \times 10^{3} \mathrm{~N} \text { (i) } \\
& 100 \mathrm{~N} \text { (3) } \\
& 3600 \mathrm{~N} \Theta
\end{aligned}
$$

: *
(1) القوة المحصلة المؤئزة على الجسم هى
$400 \mathrm{~N} ?$

550 N (i)
150 N(3)
$250 \mathrm{~N} \rightleftharpoons$
(Y) عجلة حركة الجسم هى

$2 \mathrm{~m} / \mathrm{s}^{2}$	$1 \mathrm{~m} / \mathrm{s}^{2}$
$5 \mathrm{~m} / \mathrm{s}^{2}(1)$	$4 \mathrm{~m} / \mathrm{s}^{2} \Theta$

800 N

* * * * الشكل المقابل يكون مقدار (1) القوة المحصلة المؤثرَ على الجست يساوى

1370 N
1570 N (i)
30 N (1)
$200 \mathrm{~N} \rightleftharpoons$
(Y) عجلة حركة الجسم يساوى
$9.8 \mathrm{~m} / \mathrm{s}^{2} \bigodot$
$78.5 \mathrm{~m} / \mathrm{s}^{2}$
$1.5 \mathrm{~m} / \mathrm{s}^{2}$ (i)
$10 \mathrm{~m} / \mathrm{s}^{2} \Theta$

10 kg ctis (
 $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

> sun
> 50 N
$100 \mathrm{~N} \Theta$
$150 \mathrm{~N} \Theta$
200 N (4)
 : 9570 N (1) القوة المحملة المحركة اللسيارة تشاوى

750 N ¢	$18.39 \times 10^{3} \mathrm{~N}$ (i)
0.92 N ($)$	$1.09 \mathrm{~N} \Theta$
	(r) العجلة التى
. $38 \mathrm{~m} / \mathrm{s}^{2}$ (-)	$24.52 \mathrm{~m} / \mathrm{s}^{2}$ (i)
$0.5 \mathrm{~m} / \mathrm{s}^{2}$ (1)	$2 \mathrm{~m} / \mathrm{s}^{2} \Theta$

$5 \mathrm{~N} \bigodot$
$-10 \mathrm{~N}(9)$
 ع 20 m/s 10 m()$^{+}$

5 m (i)
$20 \mathrm{~m}(3)$
$15 \mathrm{~m} \Theta$

 بنف القوة المحملة على الترتيب هى
$\frac{4}{1} \bigodot$
$\frac{2}{1}$ ()

 الجسم الثاتى تساوى
2.5 kg ($)$
0.4 kg (i)
7.5 kg (1)
$5 \mathrm{~kg} \Theta$

$2 \mathrm{P} \bigodot$
$\frac{\mathrm{P}}{4}()^{-}$

$$
\text { زمن t } 2 \text { من بداية الحركة تصبح كية تحركه . }
$$

$2 \mathrm{P}(\subsetneq$
$\frac{\mathrm{P}}{4}(9$
4 P (i)
$\mathrm{P} \Theta$
ج10 جسمان ساكنان موضوعان على سطح أفقى بـءا التحرك فى نفس الحظة بنفس العجلة عند التأثير على كل
دنجها بقوة، فإذا كانت كثة الجسم الأول m وكتة الجسم الثانى m 2، فابن النسبة : जساوی $\frac{F_{1}}{F_{2}}$ (1)
$\frac{2}{1} \fallingdotseq$
$\frac{1}{4}(巳$
$\frac{1}{2}$ (i)
$\frac{1}{1} \Theta$

عد نفس اللحظة تساوى $\frac{P_{1}}{P_{2}}(Y)$
$\frac{2}{1} \bigodot$
$\frac{1}{4}(-)$
$\frac{1}{2}$ (i)
$\frac{1}{1} \Theta$
(A)

C الئــكل المقابل يوضـح دلات حالات الســيارة كتلتها m تقف لإظهـار إشـارة المرور اللــون الأحمر ، فـابن ترتيب الحالات الثــلات من حيث أقصى قيــة للعجلة التى يمكن أن تتحرك بها السيارة فى كل حالة هو

$$
A<B<C \text { (i) }
$$

$$
\mathrm{A}>\mathrm{B}>\mathrm{C}
$$

$$
\mathrm{A}=\mathrm{B}=\mathrm{C} \Theta
$$

$$
\mathrm{A}=\mathrm{B}>\mathrm{C}
$$

r) تعمل الوسادة الهوائية فى السِيارة على تقليل القوة التى يمكن أن يصنطدم بها السائق مع عجلة التياذزيكه عن طريق زيادة
(ب) كمية تحرك السائق
(i) التغير فى كمية تحرك السائق
(د) سرعة تحرك السائق
? زمن التغير فى كمية تحرك السائق

(1) مقدار التغير فى كهية التحرك للسيارة خلال تلك الفترة يساوي	
$2 \times 10^{4} \mathrm{~kg} . \mathrm{m} / \mathrm{s} \bigcirc$	$2 \times 10^{5} \mathrm{~kg} . \mathrm{m} / \mathrm{s}$ (i)
$2 \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ ($)$	$10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \rightleftharpoons$
.......	(0)
$5 \times 10^{3} \mathrm{~N} \subsetneq$	$2 \times 10^{3} \mathrm{~N}$ (i)
$10^{5} \mathrm{~N}$ ($)$	$2 \times 10^{4} \mathrm{~N} \Theta$

6N فــإذا كان مقذار تــوى الاحتكاك يساوى N 2 فإن عجلة تحرك القطعة الخشبية تــاوى

$$
\begin{array}{rr}
2 \mathrm{~m} / \mathrm{s}^{2} \bigodot & 6 \mathrm{~m} / \mathrm{s}^{2} \oplus \\
-4 \mathrm{~m} / \mathrm{s}^{2} \bigodot & -3 \mathrm{~m} / \mathrm{s}^{2} \Theta
\end{array}
$$

 توقف تمامُا بعد أن قطع مسافة 40 m، فإذا كانت كتلة الجسم 80 kg فابن قوة الاحتكال بين الجسم والسطع

$$
\begin{array}{r}
40 \mathrm{~N}(? \\
-40 \mathrm{~N}(1)
\end{array}
$$

حركة الســيارة هو الاتجاه الموجب، فإن كمية تحرك الســـيارة والقوة المحصـلة الموثرة عليها بعد الضنط على
الفرامل

or
الامتحان فيزياء - ا ث - ترم - بـ ا- (/ /)
(EV يمثل الشكل البيانى المقابل العلاقة بين كمية التحرك والزمن
 تحــت تأثيـــر قــوة ثابتة، فإن القـوة المحصـلـة المؤثرة على ألى

$$
10 \mathrm{~N} \fallingdotseq
$$

الجسم تساوى .

18 N (1)
6 N (i)
$15 \mathrm{~N} \Theta$
.المقابل يمثل العلاقة بين كمية تحرك جسم والزمن،
الشكل البيانى فتكون القوة المحملة الموثرة على الجسم

ج فى نفس اتجاه الحركة © \rightarrow () (د) عودية على اتجاه الحركة

(P) والشكل البيانى المقابل يمثل تغير كمية تحرك الجسم

هــ الزمن (ا)، فابن مقـدار واتجاه القوة المحصلة المونثرة على الجسم هما

F اتجاه	F F	
فى عكس اتجاه حركة الجسم	100 N	(1)
فى نفس اتجاه حركة الجسم	100 N	(-)
فى عكس اتجاه حركة الجسم	1250 N	Θ
فى نفس اتجاه حركة الجسم	1250 N	(1)

(F) (F) جسم كتلته m أثرت عليه عدة قوى محصلة مختلة

كل على حدة فتغيرت عجلة تحرك الجسم (a) كما في الشكل

$$
\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

البيانى المقابل، فابن :

$$
\begin{gathered}
\text { (1) كـة الجسم (m) تساوى } \\
0.01 \mathrm{~kg}
\end{gathered}
$$

$$
0.1 \mathrm{~kg} \bigodot
$$

$$
10 \mathrm{~kg} \Theta
$$

$$
100 \mathrm{~kg}(\perp)
$$

$0.98 \mathrm{~N} \rightleftharpoons$
980 N (2)
(Y) ونْ الجسم يساوى 0.098 N (i) $98 \mathrm{~N} \Theta$
(27) من الشكل المقابل مقدار قوة الاحتكال

 كتلته منتظمة $\frac{3}{2} a \oplus$
6a (2)
3a \odot

- $4 \times 10^{3} \mathrm{~kg} . \mathrm{m} / \mathrm{s}$

$$
16 \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \bigodot
$$

$$
8 \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}(\mathfrak{i}
$$

$$
\left.8 \sqrt{2} \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}(\lrcorner\right)
$$

$4 \sqrt{2} \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \odot$

$t(s)$
(F) الموثّرة (F) الشكل البيانى المقابل يمثل العلاهة بين القوة المحصلة على جســـ ســاكن والزمن (t)، هإذا أصبحت سرعة الجسم بعد مرود 20 من بداية الحركة 2 m/ 2 فان : (1) التغير فیى كمية تحرك الجسم بعد مرور 20 (20
 (Y) كتة الجسم تساوى 0.25 kg (i) $100 \mathrm{~kg} \odot$
$1 \mathrm{~kg}(\underset{)}{2} \mathrm{~kg}()$

(0) تذف شخص كرة معدنية ملساء رأسيًا إلى أعلى من فوق كوبرى يعبر مجرى مائى فارتفعت الكرة حتى وصلت إلى أقصى ارتفاع ألما
 الماء (مرحلة c)، فما الترتيب الصحيع لقدار المجلة التى تحركت بها الكرة خلال المراحل الثلاث ؟

$$
\begin{aligned}
& \mathrm{c}<\mathrm{b}=\mathrm{a} \\
& \mathrm{~b}<\mathrm{c}<\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{c}=\mathrm{b}<\mathrm{a} \oplus \\
& \mathrm{~b}<\mathrm{c}=\mathrm{a} \Theta
\end{aligned}
$$

 ($10 \mathrm{~m} / \mathrm{s}^{2}$ (علمًا بأن : عجلة الجاذبية الأرضية ($30 \mathrm{~m} / \mathrm{s}$

$$
\begin{equation*}
1.5 \mathrm{~kg} \bigodot \tag{1}
\end{equation*}
$$

3000 m/s
 ($10 \mathrm{~m} / \mathrm{s}^{2}$ = علمًا بأن : عجلة الجاذبية الأرضية
$10 \mathrm{~m} / \mathrm{s}(9)$
$20 \mathrm{~m} / \mathrm{s}(9)$
(1) سرعته بعد ثانيتّين تساوى 9
$5 \mathrm{~m} / \mathrm{s}(1)$
$15 \mathrm{~m} / \mathrm{s} \Theta$
(Y) الإزادة التى يقطعها الجسم خلال ثانيتين تساوى

10 m()$^{-}$
20 m ()

$$
5 \mathrm{~m} \text { (i) }
$$

$15 \mathrm{~m} \Theta$

$$
\begin{equation*}
\text { هقدارهـا } 2 \times 10^{3} \mathrm{~N} \text { هان ؛ } \tag{c}
\end{equation*}
$$

(1) التغير فى كمية تحرك السيارة خالال نلك الهترة يساوى

$4 \times 10^{3} \mathrm{~kg} . \mathrm{m} / \mathrm{s} \Theta$	$10^{3} \mathrm{~kg} . \mathrm{m} / \mathrm{s}(i)$
$-4 \times 10^{3} \mathrm{~kg} . \mathrm{m} / \mathrm{s} \Theta$	$-10^{3} \mathrm{~kg} . \mathrm{m} / \mathrm{s} \Theta$

$25.52 \mathrm{~m} / \mathrm{s}$ (?)
$8.96 \mathrm{~m} / \mathrm{s}$ (د)
$77.52 \mathrm{~m} / \mathrm{s}$ (1)
$14.48 \mathrm{~m} / \mathrm{s} \Theta$

$160 \mathrm{~N}(+$
$250 \mathrm{~N}(\mathrm{O}$

ها الشـكل المقابل يوضـح جســ كتله 4 kg 4 يتحرك
بعجلـة 10 m/s 10 فى الاتجاه الموضح، فإن مقدار
$\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
القوة F يساوى
120 N (i)
$200 \mathrm{~N} \Theta$

فابن كمية تحرك الجسم لحظة اصندامه بسطع الارض تساوى wt \because
$\frac{w}{d}($
$\frac{\mathrm{w}}{\mathrm{t}} \Theta$

 الكوكب P إلى الكوكب Q، فإن

$$
\begin{aligned}
& 2 \mathrm{~N}_{\text {gol }} \text { (} 4 \text {) } \\
& \text { colali tuta }
\end{aligned}
$$

$$
2 \mathrm{~N} \text { in } \operatorname{tal} \rightarrow
$$

$$
\begin{aligned}
& 2 \mathrm{~F} \\
& \frac{\mathrm{~F}}{3}(3
\end{aligned}
$$

الثشد فی ال-بل (F. تسمارى
zero (i)

$$
F \leftrightarrow
$$

(m,2 m, 3 m) متصلة * (11)
بواسطة خيطين مهملى الكلة وموضوعة على
ســطح أفقى أملس، عندمـا تؤثر قوة محصلة
أفقية F على الكتة 3 m كما بالشــكل المقابل فإن قوة الشد T2 تساوى

$$
\begin{array}{r}
2 \mathrm{~T}_{1} \fallingdotseq \\
\mathrm{~F}(
\end{array}
$$

$$
3 \mathrm{~T}_{1}(\mathrm{i}
$$

$$
\frac{F}{3} \Theta
$$

(1) (1) يجر فيل ســاقًا خشـبية كتلتها 0.5 على سطـع أفقى بسـرعة ثابتة بواســطة حبل يمنع زاوية 60° مع الأفقى كما فى الشـــكل، إذا علمت أن قوة الاحتكال بين

$$
400 \mathrm{~N} \bigodot
$$

$$
2.5 \times 10^{-3} \mathrm{~N} \bigodot
$$

(

$1200 \mathrm{~N}(\subsetneq$	$1000 \mathrm{~N}(1)$
2400 N()	$1600 \mathrm{~N} \Theta$

أسئلـــة المقــال

يوكن القول بأن قانن نيوتن الاول هو حالَ خاصة من قاننز نيوتن الثانى، وضص ذلك. (1) اكب العلاة الرياضيةِ التى يمثها كل شكل بيانى وما يساويه ميل الثط المستّيم فى كل حالح :

$$
\begin{aligned}
& \text { الساق والأرض } 200 \text { فإن : } \\
& \text { (ا (1) قوة الشد فى الحبل تساوى } \\
& 500 \mathrm{~N} \text { (i) } \\
& 100 \mathrm{~N} \Theta
\end{aligned}
$$

لهسر لمادا هاهت شركات السيارات حديثُا بإضافة وسادة هوائية إلى السيارات.

بت تزداد كیلته
 (د) تقل سر عته

تزداد كمية تحركه (i)

الصيغة الرياضية لقانفن نيوتن الثانى هى

$$
\begin{array}{ll}
\mathrm{F}=\frac{\mathrm{v} \Delta \mathrm{~m}^{2}}{\Delta \mathrm{t}} \Theta & \mathrm{~F}=\frac{\mathrm{m} \Delta \mathrm{P}}{\Delta t} \Theta \\
\mathrm{~F}=\frac{\Delta(\mathrm{mv})}{\Delta \mathrm{t}} \Theta & \mathrm{~F}=\frac{\mathrm{m} \Delta \mathrm{v}^{2}}{\Delta \mathrm{t}} \Theta \\
& \mathrm{~F}=\mathrm{ma} \Theta
\end{array}
$$

J.s/m $¢$	الوحدة
	J.s (i)
N.s (1)	N ¢

N/s Θ

10 kg 10 تم تعجيلـه ليتحرك فى خط مســتقيم بحيث تتغير سـرعته بانتظام مـن 54 km/h إلى 108 km/h
1.5 N (i) تساوى
15 N تساوى

1 s
(ـ) أكبر من معدل التغير فى كمية تحركه

100 kg +17 (1)

$1 \mathrm{~m} / \mathrm{s}^{2}$ …ar
$5 \mathrm{~m} / \mathrm{s}^{2}$ مup

Θ

(A)

(1)

(1)

$$
\begin{aligned}
& F=m \sqrt{2 g h t} \\
& P=\sqrt{2 \mathrm{mgh}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}=\frac{\mathrm{m} \sqrt{2 \mathrm{gh}}}{\mathrm{t}} \\
& \mathrm{P}=2 \mathrm{mgh} \Theta \\
& \mathrm{P}=\mathrm{m} \sqrt{2 \mathrm{gh}} \Theta
\end{aligned}
$$

اختر من القائمة ما يناسب الفراغات :

120 N
60 N
0
-60 N
-120 N

المرحلة CD هى

40 N
60 N
90 N
120 N
150 N

القوة المحصلة التى تؤثر على جسم ساكن كتّته 30 kg 3 : 3 :
(ب) لتكسنبه سرعة قدرها

J.

$$
60 \mathrm{~N}(
$$

$$
400 \mathrm{~N} \text { © }
$$

$$
66 \mathrm{~N} \Theta
$$

را

 سرعته بمقدار 0.63 هى

$1.052 \mathrm{~s} \bigodot$	$0.864 \mathrm{~s}(\mathrm{C}$
$1.487 \mathrm{~s}(\lrcorner)$	$1.296 \mathrm{~s} \Theta$

الـاル
 فتحة فى الشاحنة فابن عجلة تتحركابا

$$
\begin{align*}
& \text { ب- بزداد } \tag{i}
\end{align*}
$$

ت

النسبة بين القوة المؤثرة على جسم وكتلة مدا الجسم hبقًا لقانون نيوتن الانانى هى (حيث a بجلة نّدرل الجسم)

$\mathrm{a}(+)$	$0.5 \mathrm{a}(1)$
2 a()	$1.5 \mathrm{a} \Theta$

عجلة الجاذبية الارضية.

ث4)

2000 kg تتمركــان بنفـس العجـــــلة، فـإن القوة المحصـة
المؤثرة على العربة ذات الكتـة الأكبر

$$
\begin{aligned}
& \text { (i) تساوى } \\
& \text { (ب) نصف } \\
& \text { (}
\end{aligned}
$$

(1) ثلاثة أمثال

. أجب عما يأتى (IV: 1 :

الشـكل المقابـل يوضـح أريع كتـل متصلة الــة

بواسـطة خيوط مهملة الكتل، يتم سـي الـب الكتـل على سـطح أملس عـديم الاحتكاك

(1) الكتل طبقًا لعجلة تحركها
(Y) الخيوط طبقًا لقوة الشد فى كلل منها.
\qquad
\qquad
\qquad

تطع مسافة 1.25 ، احسب متوسط القوة التى تسببت فى إيقاف اللاعب.

ر-1

(\&)

(r)

(i)

(I)

(r)

أفقى بسرعة تتنير بانتظام من 1 m/s 1 إلى 4 الوا
خــال 2 s فـباذا كانت قوى الاحتكاك بين الســاق والأرض هى 400 N ،

احسب المركبة الأفقية لقوة الشد فى الحبل.
\qquad
\qquad
\qquad
\qquad

قوانين الحركة الدائرية.

الجاذبية الكونية والدركة الدائرية.

 الا, الـتحاu نمزيا، - 1

```
اختبـــار
    ع\mp@code{N}
الفصـل الأول
```


نواتج التعلمرالمتوقعة

بعد دراسة هذا الفصل يجب ان يكون الطالب قادزا علىأن :

ـ يتعرفأنواع القوة الجاذبة المركزية.	
	- يستلتج قوانينّ الحركة فـ
	- يستنّه قيمةّالعجلةّالمركزية ويحدد مفهومها.
للقوة الجاذبة المركية.	-يستنتج
	يحسبقيمة القوة الجاذبة المركزية.

* مها سبق يتفـح أن :

لكى يتدرك جسم حركة دائرية منتظمة (فى مسار دائرى بسرعة مقدارها ثابت) لابد أن تؤثر عليه باستمرار ترف

12

الåو الجالآية
المركـرــاء

Contripotal Acceloration

10)

.الزمهالدوري
الزمهم اللازنه لعمل دورة كاملة فى المسار الدانرى.

$$
v=\frac{2 \pi r}{T}
$$

$T=\frac{t}{N}$
$f=\frac{N}{t}=\frac{1}{T}$

عندمـا تؤـــر قوة محصلـ حركة جسم كتته m وسرعته v فإنه يتحرك فى مسار دانرى نصف قطره r، ويكن : - مقدار السرعة (v) ثابت على طقل محيط المسار الدانرى. - اتجاه السرعة متغير باستمـرار على طـل محيط المســار الدائـرى، وتغيــر اتجــاه السـرعة يعنى اكتســاب الجســ عجلة أنثاء حركتـه الدائريـة تسمـى الجبلة المركزيـة (ويكون اتجاهها فى نفس اتجاه القوة الجاذبة المركزية. T إذا أتم هذا الجسم دودة كاملة فى نفس المسار الدائرى خلال زمن الـون يطلق عليه الزمن الدودى فإن السرعة (v) التى يتحرك بها يطلق عليها
السرعة المماسية، وتحسب من العلاقة : راتجاهها دانمًا فى اتجاه المماس للمسار الدانُى عند موضّع الجسم

رلك اللحظة.
إذا أتم الجســم عدد N من الدودات الكاملة خلال زمن t، فإن الزمن الدودى لحركته يعطى من العلاقة : التردد (f) هو معدل دودان الجسم (عدد الدودات التى يكملها الجسم فى الثانية الواحدة) ويحسب من العلاقة :

(

$\frac{\Delta}{r}=\frac{\Delta v}{v}$
$s v=\frac{\Delta l}{r} v$
$z_{i}=\frac{\Delta v}{\Delta t}=v \frac{\Delta l}{\Delta t} \cdot \frac{1}{r}$

$\because v=\frac{\Delta l}{\Delta t}$
$\therefore \quad a_{c}=\frac{v^{2}}{r}$

 فى الثانية الواحدة فإن السرعة المماسية للكرة والمجلة المركزية لها ديا

العجلة المركزية	السرعة المماسية	
$5.95 \mathrm{~m} / \mathrm{s}^{2}$	$1.89 \mathrm{~m} / \mathrm{s}$	(i)
$94.75 \mathrm{~m} / \mathrm{s}^{2}$	$1.89 \mathrm{~m} / \mathrm{s}$	(ب)
$5.95 \mathrm{~m} / \mathrm{s}^{2}$	$7.54 \mathrm{~m} / \mathrm{s}$	\bigcirc
$94.75 \mathrm{~m} / \mathrm{s}^{2}$	$7.54 \mathrm{~m} / \mathrm{s}$	(1)

$$
\mathrm{r}=0.6 \mathrm{~m}, \mathrm{~N}=2 \mathrm{t}=1 \mathrm{~s} \quad \mathrm{v}=? \mathrm{a}
$$

$$
T=\frac{t}{N}=\frac{1}{2} s
$$

$$
v=\frac{2 \pi r}{T}=\frac{2 \times \frac{22}{7} \times 0.6}{\frac{1}{2}}
$$

$$
=7.54 \mathrm{~m} / \mathrm{s}
$$

$$
a_{c}=\frac{v^{2}}{r}=\frac{(7.54)^{2}}{0.6}
$$

$$
=94.75 \mathrm{~m} / \mathrm{s}^{2}
$$

(د) \therefore
(ذ)

 خال نصف دودة 2 2 2 فان عجلته المركزية تساوى
$0.35 \mathrm{~m} / \mathrm{s}^{2}$ (1)
$4.4 \mathrm{~m} / \mathrm{s}^{2} \Theta$
$N=0.5\left[t=3 \mathrm{~s}[\mathrm{~d}=2 \mathrm{~m}] n_{c}=?\right.$
$\mathrm{d}=2 \mathrm{r} \quad \Rightarrow \quad \mathrm{r}=\frac{\mathrm{d}}{2}=\frac{2}{2}=1 \mathrm{~m}$
$\mathrm{T}=\frac{\mathrm{t}}{\mathrm{N}}=\frac{3}{0.5}=6 \mathrm{~s}$
$v=\frac{2 \pi r}{T}=\frac{2 \times \frac{22}{7} \times 1}{6}=1.05 \mathrm{~m} / \mathrm{s}$
$a_{c}=\frac{v^{2}}{r}=\frac{(1.05)^{2}}{1}=1.1 \mathrm{~m} / \mathrm{s}^{2}$
 لـواذ

1 mo ratlito

slope $=\frac{\Delta \mathrm{N}}{\Delta \mathrm{t}}=\frac{5-0}{2.5-0}=2 \mathrm{turn} / \mathrm{s}$

$T=\frac{1}{\mathrm{~N}}=\frac{1}{\text { slope }}=0.5 \mathrm{~s}$
$v=\frac{2 \pi r}{T}=\frac{2 \times \frac{22}{7} \times 1}{0.5}=12.57 \mathrm{~m} / \mathrm{s} \quad, \quad u_{c}=\frac{v^{2}}{r}=\frac{(12.57)^{2}}{1}=158 \mathrm{~m} / \mathrm{s}^{2}$
(1) الاختيار الصحيح هو

الح

(i)

(9) وسيلة مـساعتـة

$\therefore \mathrm{T}=10 \mathrm{~s}$

$\mathrm{d}=2 \mathrm{r}$
$\therefore r=\frac{d}{2}=\frac{70}{2}=35 \mathrm{~m}$
$v=\frac{2 \pi r}{T}=\frac{2 \times \frac{22}{7} \times 35}{10}=22 \mathrm{~m} / \mathrm{s}$

$a_{c}=\frac{v^{2}}{r}=\frac{(22)^{2}}{35}=1.3 .8 \mathrm{~m} / \mathrm{s}^{2}$
e $\left(\frac{P_{x}}{P_{y}}\right) y, x$ ineiqون

$\omega=\frac{\Delta \theta}{\Delta t}$
$\Delta \theta=\frac{\Delta l}{r}$
ومن المعروف ان قيمة الزاوية بالتقدير الدالرى تساوى النسبه بين طول القوس ونمف فطر المسار.
$\therefore \omega=\frac{\Delta l / r}{\Delta t}=\frac{\Delta l}{\Delta t} \times \frac{1}{r}=\frac{v}{r}$
$\because \mathrm{v}=\frac{2 \pi \mathrm{r}}{\mathrm{T}}$
$\therefore \omega r=\frac{2 \pi r}{T}$

$$
\therefore \quad \omega=\frac{2 \pi}{T}
$$

 ài

洸 أفقى كما هو موضتح باتجاه السهم e على الرسم، فإذا ترك الطفل الخيط فجأة والحجر عند الموضع x فابن الحجر لحظة إفلاته يتمرك

$\overrightarrow{x a}(-)$	$\overrightarrow{x d}(1)$
$\overrightarrow{x c}(-)$	$\overrightarrow{x b} \rightleftharpoons$

米 الشــكل المقابل يمئـل لعبة العجلة الدوارة فــى الملاهى، فإذا جلس طفلان متساويان فى الكتلة فى مكانين مختلفين بحيث كان المان المان
 ودارت اللعبة بسرعة ثابتة، فإن ：
（ا）النسبـة بيـن السرعـة المماسيـة لكـل مـن
$=\left(\frac{v_{1}}{v_{2}}\right)$ الطفليـن
$\frac{1}{2} \because$
$\frac{1}{1}$（i）
$\frac{1}{4}$（」）
$\frac{2}{1} \bigodot$
$=\left(\frac{a_{1}}{a_{2}}\right)$ النسبـة بين العجلـة المركزيـة لكل مـن الطفلين（Y）
$\frac{1}{2} \because$
$\frac{1}{4}(4$
$\frac{1}{1}$（i）
$\frac{2}{1} \oplus$

 فإن العجلة المركزية التى يتحرك بها الجسم والقوة الجاذبة المركزية المؤثرة مليه هـا

$\mathrm{m}=0.5 \mathrm{~kg} \quad \mathrm{r}=2 \mathrm{~m}$
$\mathrm{a}_{\mathrm{c}}=? \quad \mathrm{~F}_{\mathrm{c}}=?$
$a_{c}=\frac{v^{2}}{r}=\frac{(10)^{2}}{2}=50 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{v}=10 \mathrm{~m} / \mathrm{s}$
$\mathrm{F}_{\mathrm{c}}=\mathrm{ma} \mathrm{c}_{\mathrm{c}}=0.5 \times 50=25 \mathrm{~N}$
\qquad

 حجر كتلته 600 g مربوط فى حيما 10.8 N ب

108 N (د)

$$
\begin{array}{r}
\text { فإن مقدار القوة الجاذبة المركزية يسأوى } 8 \text { N (i) }
\end{array}
$$

. 8 N

إذا (i)
 \rightarrow ()

$$
\begin{aligned}
& \mathrm{m}=600 \mathrm{~g} \\
& F_{c}=m \frac{\mathrm{v}^{2}}{\mathrm{r}}=600 \times 10^{-3} \times \frac{(3)^{2}}{50 \times 10^{-2}}=10.8 \mathrm{~N}
\end{aligned}
$$

(ㄷ)
لو

$$
\begin{aligned}
& \text { إذا علدت أن الأرض كلثتا } 10^{24} \text { kg } 6 \text { وتشد } \\
& 5.33 \times 10^{22} \mathrm{~N} \bigodot \\
& 3.14 \times 10^{20} \mathrm{~N}() \\
& \mathrm{m}=6 \times 10^{24} \mathrm{~kg} \\
& \mathrm{r}=1.5 \times 10^{11} \mathrm{~m} \\
& \because \mathrm{~F}_{\mathrm{c}}=\frac{m v^{2}}{\mathrm{r}} \quad, \quad \mathrm{v}=\frac{2 \pi \mathrm{r}}{\mathrm{~T}} \\
& F_{c}=? \\
& \therefore \mathrm{~F}_{\mathrm{c}}=\frac{\mathrm{m} \times\left(\frac{2 \pi \mathrm{r}}{\mathrm{~T}}\right)^{2}}{\mathrm{r}}=\frac{\mathrm{m} \times 4 \pi^{2} \mathrm{r}}{\mathrm{~T}^{2}} \\
& \begin{aligned}
\therefore \mathrm{F}_{\mathrm{c}} & =\frac{6 \times 10^{24} \times 4 \times\left(\frac{22}{7}\right)^{2} \times 1.5 \times 10^{11}}{(365.25 \times 24 \times 60 \times 60)^{2}} \\
& =3610^{22} \mathrm{~N}
\end{aligned} \\
& \text { سِكنا مراجعة خــواص الأسسى } \\
& \text { بن (0) منیة (1) (1). }
\end{aligned}
$$

را
كان المالمب \&

सीकात

- أنبوبة معدنية أو بلاستيكية.

> - خياءة. إيقاف.
-سدادة مطاطية كلتها M

- 1 b द्था

(1) اربط السدادة المطاطية فى الخيط.
(Y) مرر الخيط خلال الانبوبة المعدنية أو البلاستيكية.

M اربط الطرف الآخر للخيط بثقل كهتل (r)
(ع) حرك قطعة المطاط فى مسار دانرى أفقى.
(0) قس الزمن الاودى (T) باستخدام ساعة إيقاف.
، القوة الجاذبة المركزية (قوة شد الخيط) والتى تساوى وذن الثقل من العلاكة : F F

$$
\frac{m v^{2}}{r} \text { : ومنها احسب قيمة v= 2 } \frac{2 \pi r}{T} \text { : سرعة حركة سدادة المطاط من العلاقة }
$$

$$
F_{c}=M g=\frac{m v^{2}}{r}
$$

4 [itrin) 1

$$
\begin{aligned}
& 34 \times 10^{-3} \mathrm{E}(9 \\
& 66 \times 10^{-3} \mathrm{E}(3)
\end{aligned}
$$

13g فی الشكل المقابل، إذا أديرت سدادة مطاطية كلتها فـــ مسـار دائرى أفقَى نصــف قطــره 0.93 لتمسنع
 الطرف الآخر للخيط تساوى

$$
\text { (علمًا بانن : } \pi \text {) }
$$

$m=13 \mathrm{~g} \quad \mathrm{r}=0.93 \mathrm{~m} \quad \mathrm{~N}=50 \quad \mathrm{t}=59 \mathrm{~s} \quad \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2} \quad \pi=3.14 \quad \mathrm{M}=$?
$T=\frac{1}{\mathrm{~N}}=\frac{59}{50}=1.18 \mathrm{~s}$
$=\frac{2 \pi}{\mathrm{~T}}=\frac{2 \times 3.14 \times 0.93}{1.18}=4.95 \mathrm{~m} / \mathrm{s}$
سرعة حركة السدادة
$F_{c}=m \frac{v^{2}}{r}=13 \times 10^{-3} \times \frac{(4.95)^{2}}{0.93}=0.34 \mathrm{~N}$
القوة المركزيـة
$M=\frac{F_{\mathrm{c}}}{\mathrm{g}}=\frac{0.34}{10}=0.034 \mathrm{~kg}=34 \mathrm{~g}$
(1) الاختيار المحيع هو
 \qquad
ماذ

$$
\begin{array}{r}
0.47 \mathrm{~m} / \mathrm{s} \bigodot \\
216.6 \mathrm{~m} / \mathrm{s}(\mathrm{C}
\end{array}
$$

$0.22 \mathrm{~m} / \mathrm{s}$ (i)
$14.7 \mathrm{~m} / \mathrm{s} \Theta$

أنواع القوى الجاذبة المركزية Types of Centripetal Forces

* تعبر القوة الجاذبة المركزية عن أى قوة تؤثر عموديًا على مسار حركة الجسم وتجعله يتحرك فى مسار دائرى بسرعة ثابتة، وفيما يلى سوف نتعرف على أمثة لها :

قوة
الاحتكاك

مجموع المركبتين
الأفقيتين لكل من قوة رد الفعل وقوة الاحتكاك باتجاه مركز الدوران

स्ञाग्राI
. - خيط (طوله حوالى 120).
. قلم رصاص.

ज्याजा

(1) اربط كرة التنس بأدد طرفى الخيط.

هناسـبـة (r) بحيـث يمثـل طــل الخيط بــين موضم يدل
رالكرة نمف تطر المسار الدانرى للكرة.
|آ) أدر الكرذ بسرعة مناسبة بحيث تتحرل على محيط دائرة أفقية.
() كرر الخطوة السابةة باستخدام اطوال مختلهة من الفيط وسجل وصف الحركة فى الجدول إلتالى :

(0) اترك الخيط فجأة من يدك وسجل الاتجاه الذى تتحرك فيه الكرة.

- لكى تتحرك الكرة فی مسار دانرى لابد من جذب الخيط للداخل لتستمر الكرة فى الدادان فى مسارها (وجهى قوة شد تعمل كقوة جاذبة مركزية). - عند ترك الخيط (غياب القوة الجاذبة المركزية) تنطلق الكرة بسـبـب القصود الذاتى فى خط مســتِيم على امتداد ممـاس المســار الدائـرى الذى كانت تســلكه لحظة الإفلات وذلك بسـرعة ثابتة فى المقدار والاتجــــاه يطلق عليها

 - يلزم حســاب القوة الجاذبة المركزية عند تصميم منحنيات الطرق والسـكك الحديدية لكى تـمرا والقطارات فى مسار منحنى دون أن تنزلق.

$$
\left(F_{e} \times m\right) \fallingdotseq=\mathrm{al}
$$

$$
\text { (} \mathbf{F}_{c} \times v^{2} \text {) }
$$

L. aif 1为
بی أنت
拱

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

- تَجْ -

* ع عـد اسـتعهال حجر المسن الكهربانى تنطلق شظايــا المعلـن
 لالموران الحجر.

, اختر الإجابة الصحيحة من بين الاججاباتالمعطاة

 إذا 据 (1) نقص قوة الاحتكاك?
)
(ـ) زيادة نصف قطر المسار الدائرى

؟ بزيادة مقدار الزاوية (8) يزداد مقدار . (i) المركبة الرأسية لوزن السيارة
 ج (ـ) المركبة الرأسية لقوة رد الفعل

|

891

العجلة المركزية

(1) جسم يتحرك بسرعة منتظمهَ فى اتجاد ما ، فإذا أثرت قوة على هذا الجسم فى عكس اتجاه حركه هاذا يحل: لكل من مقدار واتجاه سرعة الجسم ؟

اتجاه السرعة	مقدار السرع*	
لا يتغير	يقل	(i)
لا يتغير	يزدداد	(-)
يتغير	يظل ثابثًا	\bigcirc
لا يتغير	يِل ثابثًا	(3)

.
عليه قوتان رأســيتان F2 ، F2 كما بالشــكل المقابل فان سرعته
(i) تتغير مقدارُا فتط

ج ج تتغير اتجاها فقط
ج
(د) تظل ثابتَ

عندما يتحرك جسم حركة دانرية منتظمة يكن اتجاه القوة الجاذبة المركزية المؤثرة على الجسم
© © نى نغس اتجاه حركة الجسم
٪؟ عمودى على اتجاه حركة الجسم
؟ عكس اتجاه حركة الجسم
(3) مداس لسار حركة الجسم

الثالية، لی أى حاله يتحرك الجسم حركة لدانرية هنتظمة

(3)

Θ

(-)

(1)

© © الشــكل المقابـل يوضـح راكـب دراجة يتحرك علـى طريق، فلكى يتمرك على الطريق المنحنى دون أن يحيد عنه يجب أن (i) يزيد من سرعة الدراجة لتتولد قوة عمودية على اتجاه حركه (7) يزيد من سرعة الدراجة لتتولد قوة فى نفس اتجاه حركته

٪ (ـميل بدراجته نحو مركز المسار المنحنى لتتولد قوة فى نفس اتجاه حركته

دانرى حول الشـــس، أى الأشكال التالية يمثل
اتجاه العجلة المركزية ؟

(3)

(i)

Θ

$$
\begin{aligned}
& \overrightarrow{x a} \\
& \overrightarrow{x c} \\
& \hline
\end{aligned}
$$

$$
\text { بنحنى نصف تطـره } 100 \mathrm{~m} \text { فتكن العباّ }
$$

$$
\begin{aligned}
& \mathrm{xd} \\
& \mathrm{xb} \\
& \oplus
\end{aligned}
$$

$$
20 \mathrm{~m} / \mathrm{s}^{2} \fallingdotseq
$$

$$
\begin{equation*}
40 \mathrm{~m} / \mathrm{s}^{2} \Theta \tag{12}
\end{equation*}
$$

الشـكـل المقابـل يوضح العلاقة البيانية بين مربع الســرعة

منتظــم ونصف قطر المســار (r)، فتكــن العجلة المركزية
التى يتحرك بها الجسم هی $2 \mathrm{~m} / \mathrm{s}^{2}$ (i)
$4 \mathrm{~m} / \mathrm{s}^{2} \bigodot$
$6 \mathrm{~m} / \mathrm{s}^{2} \Theta$
$8 \mathrm{~m} / \mathrm{s}^{2}$ ()

(10 * الشكل البيانى المقابل يوضح العلاقة بين
العجلة المركزية (a) التى يتحرك بها جسـا

يتحرك بها الجسم تساوى
$4.47 \mathrm{~m} / \mathrm{s}$ (i)
$5.58 \mathrm{~m} / \mathrm{s}$ ($)$
$3.13 \mathrm{~m} / \mathrm{s} \Theta$
$9.8 \mathrm{~m} / \mathrm{s}$ (1)

(ac) الشكل البيانى المقابل يمثل العلاقة بين العجلة المركزية (11)
 السـرعة الخطيـة (V²) التـى يتحرك بها ، ـــإن نصف قطر هذا

المسار الدانرى يساوى
100 m ((
175 m (-)
$200 \mathrm{~m} \Theta$
250 m (3)

米 (ل)
(-) الكرسى الذى يبعد 2 من المركز (2) يجب معرفة الزمن الاورى لتديد الإجابة

بسرعة مماسية أكبر ؟

المصيحة فيما بلى هى

القوة الجاذبة المركزية

 (1) عندما يتحرك جسم حر الـ تعمل القوة الجاذبة المركزية على تغيير اتجاه الحركة (i)ج تعمل القوة الجاذبة المركزية على زيادة السرعة المـية المـاسية للجس

() السرعة المماسية =

 : 5 m/s
\qquad (1) العجلة المركزية التى يتحرك بها الجسم تساوى
$2.5 \mathrm{~m} / \mathrm{s}^{2}$ (-) $10 \mathrm{~m} / \mathrm{s}^{2}$ (i)
$50 \mathrm{~m} / \mathrm{s}^{2}$ (1)
$12.5 \mathrm{~m} / \mathrm{s}^{2} \Theta$
(Y) القوة الجاذبة المركزية المؤثرة على الجسم تساوى
60.6 N ب
80.5 N ()
12.5 N (i)
$62.5 \mathrm{~N} \rightleftharpoons$

$35 \mathrm{~m} / \mathrm{s}(9)$	$20 \mathrm{~m} / \mathrm{s}(1$
$50 \mathrm{~m} / \mathrm{s}(()$	$40 \mathrm{~m} / \mathrm{s} \Theta$

(0) حجر كلته 4 مربوط بطرف خيط طوله 10 ومبّبت من الطرف الاخخر ويدو فى دانرة أفقين، فاذذا كانت

$20 \mathrm{~m} / \mathrm{s}()$	$10 \mathrm{~m} / \mathrm{s}$ (i)
$400 \mathrm{~m} / \mathrm{s}$ ()	$100 \mathrm{~m} / \mathrm{s}$ ¢

$75 \mathrm{~kg}(9$	$100 \mathrm{~kg}(1)$
$25 \mathrm{~kg}(9$	$50 \mathrm{~kg} \Theta$

 والراكب مًُا تساوىى
90.3 kg ()
100.1 kg (i)
70.6 kg ()
$86.5 \mathrm{~kg} \Theta$
 (علمًا بأن : 3.14 (ع)

	3 دودات فى الثانية، فإن (1) السرعة الخطية (الماسية) تساوى .
$21 \mathrm{~m} / \mathrm{s}(9)$	$3.14 \mathrm{~m} / \mathrm{s}$ (1)
$28.26 \mathrm{~m} / \mathrm{s}$ ()	$25 \mathrm{~m} / \mathrm{s} \Theta$
	(\%) العجلة المركزية تساوى
$532.4 \mathrm{~m} / \mathrm{s}^{2}(\bigcirc)$	$240 \mathrm{~m} / \mathrm{s}^{2}$ (i)
$721 \mathrm{~m} / \mathrm{s}^{2}$ (1)	$654.6 \mathrm{~m} / \mathrm{s}^{2} \Theta$
	(r) قوة شد الخيط لِ
1568.7N(-)	1064.8 N (i)
858N	$1000 \mathrm{~N} \Theta$

الشــكل المقابل يمثل شخص يقوم بإدارة دلو به ماء فى r.

مستوى رأنسى، فإن الماء لا ينسكب من الدلو عندما يمر الدلو بالنقطة X وذلك بسبب نقص وذن الماء
(أن السرعة المماسية للماء كافية لذلك ج انعدام محصلة القوى الموثّرة على الماء
(ـ) ان اتجاه محصلة القوى الموثّرة على الماء إلى أعلى

$$
\begin{array}{r}
32 \mathrm{~N} \bigodot \tag{i}\\
540 \mathrm{~N}(
\end{array}
$$ (1) فإن القوة الجاذبة المركزية تساوى

$$
\text { (1) فابن القوة الج } 18 \text { N }
$$

18 N (i) ؟ 30 N § $\quad 54 \mathrm{~N}$ §

30 N ما الذى تـوقع حدوثه إذا كا
 ? ↔ (ل) بـقطع الخيط ويتحرك
N يط

$$
\begin{aligned}
& \text { 號 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4) }
\end{aligned}
$$

$\frac{1}{3}$ () $10 \mathrm{~m} / \mathrm{s}$
$\frac{2}{3}$ (3)

$\frac{1}{4} \because$
$\frac{4}{1}(3)$

(c)

(b)

$$
\begin{aligned}
& \mathrm{a}<\mathrm{b}<\mathrm{c}() \\
& \mathrm{c}<\mathrm{b}<\mathrm{a}
\end{aligned}
$$

(a)
$\mathrm{c}<\mathrm{a}<\mathrm{b}$ ©
(1) زيادة توة رد فعل الطريق على السيار:
(-) نتَص قوة الحتكاك بـين إمارارات السيارة والطريق ج-
(ـ) نقص قوة الجاذبية الأرضية المؤثرة على السيارة

على المســتوى الافققى بزاويـة (日)، أى الاختيـارات الآتية يمثل
اتجاه كل من قوة جذب الارض للسيارة (فذن السيارة) ود فعل

وزن السيارة
(د)

\odot

(ب)

وزن السيارة

تسـيز ســيارة على طريق دائرى يميل مستواه
 المقابـل، فإن قــوة الجذب المركزيــة المؤثرة على

السيارة تنتج عن مجموع
(i) المركبتين الرأسيتين لقوة الاحتكال وقوة رد الفعل
(ج المركبتين الالفقيتين لقوة الاحتكال وقوة رد الفعل
ج
(ـ) المركبتين الأفقية لقوة الاحتكال والرأسية لقوة رد الفعل
($5 \cdot \gamma$)

لا

بـا اتحاه القـوة المحمبلة المؤترة عليه؛
in

بترك حركة دارية منتظمة بتأثر بعجلة إلا أن سرعته الخطية ثابتة المقدار.
 (Y) * ع ع ام انزلاق السيارة التى تتحرك فى مسار منحنى أفقى

(ه) من الضرودى تقدير القوة الجاذبة المياره المركية القصىى عند تصميم منحنيات الطرق.

تقليـل سـرعة الســيارة قبـل دخولهـا
لــــــيـــادة الســيارات علـى المتدربــن أنـهـ يجـب
عـ أكـد مـــرب تعا لمنحنـى وذلـك الحفــاظ علـى ســلامة السـيارة وســلامة قائدهـا، مـن خــلال دراســتك لمفهـوم الحركـة
فى دائرة ما سبب ذلك ؟

بدأت سيارة الحركة فى مسار منحنى زلق فلاحظ سائقها أن السيارة تنحرف عن المسار المنحنى، فسر ذلل.

ما النتائج المترتبة على صغر قطر المنحيات فى الطرق السريعة بالنسبة للسيارات التى تتحرك عليها ؟

(ـ يظل ثابتًا دانثّا

السرعة الخطية لجنس يتحرك حركة دانرية منتظمة
(i) مقدارها ثابت

ج (ـ) اتجاهها عمودى على المسار الدائرى
 اتجـاه الشــرق، فإذا أثرت عليها قـوة F، مابن مقدار سرعتا
(i) يقل إذا كانت القوة F فى اتجاه الشرق (1 ج يزداد إذا كانت القوة F فى اتجاه الشرق ج (ـ) يقل إذا كانت القوة F فى اتجاه الغرب
\square

 (هـ) اتجاه السر.ع، الخطلية لهى اتجاه مركز المسار الدانرى الـتـر من القاثمهة ما يلـاسب الفراغاتا

جميع مواضـع الدلو لى المسار الدانرى ؟
(1) الكمية الاولم

رد لفعل الدلو على البا.

0°
45°
60°
90°
180°

 المسار عند ثبوت السرعة الخطية بو

(1)

Θ

(-)

(i)
 نصف قطر المدار B وسرعة الجسم فى المدار A ضـف سرعة الجسم فى المدار B. فابن النسبَّ بين التوة المركزية المؤثرة على الجسم فى المدار A والقوة المركزية المؤثرة على الجسم فى المدار B تساوى
$\frac{1}{1} \oplus$
$\frac{2}{1} \bigodot$
$\frac{1}{4} \bigodot$
$\frac{1}{8}(1)$

(1) الشكل المقابل يوضح دراجتين (1) ، (2) تتحركان بسرعتين

ثابتـى المقدار فى مضمار ســباق دائرى أفقى، فإذا وصلت الدراجتــان لنهاية الســباق فــى نفس اللحظــة، فائيهما يملك سرعة مماسية أكبر ؟
(1) الداجة)
(2)
?
(ـ) يجب معرفة الزمن الدوى لتحديد الإجابة يستغرق 3 لعمل دورة كاملة، تكرن الموة الجاذبة المركزية

$$
\begin{aligned}
& 0.066 \text { N (i) } \\
& 6.585 \text { N } 9 \text { فى اتجاه مماس المسار الدانرى } \\
& 0.066 \mathrm{~N} \Theta \\
& \text { 6.585 N (د) }
\end{aligned}
$$

(0) 2.2 m/s بحيث يتم 6 دورات خلال الالنترة

$7 \mathrm{~m}(4)$	3.5 m (i)
$12 \mathrm{~m}(4)$	$10.5 \mathrm{~m} \bigodot$

 تحركه بعد نصف دورة يساوى
$0.2 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}(\subsetneq$
$0.8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}(\lrcorner)$ zero (i)
$0.4 \mathrm{~kg} . \mathrm{m} / \mathrm{s} \rightleftharpoons$
 m/s ${ }^{2}$ تساوى
$40 \pi^{2} \bigodot$
$8 \pi^{2}$ (」)
$2 \pi^{2} \Theta$

غســالة لعصر الملابس عجلتها المركزية 7000 m/s 4302 ونصف قطر دورانها 20 cm، فإن هذا يعنى أنها

تدور 7000 دورة خلال 20 cm 20 فإن هذا يعنى أها
$3 \min \because$
$7 \min ($
 بنفس السـرعة، فإذا كانت النسبـة بين الزمن الالدى لهـا $ज\left(\frac{F_{A}}{F_{B}}\right)$

$\frac{1}{1} \fallingdotseq$	$\frac{2}{1}(i)$
$\frac{1}{8}(+)$	$\frac{1}{2} \Theta$

 أربعة أضعاف كلته فتكن سرعته المماسية بعد ربع دورة هي

$1 \mathrm{~m} / \mathrm{s}(9)$	$0.5 \mathrm{~m} / \mathrm{s}(i)$
$2 \mathrm{~m} / \mathrm{s}(\mathrm{)}$	$1.5 \mathrm{~m} / \mathrm{s} \Theta$

- (IV: II) أجب عما يأتى
(II)

$$
\text { أببت أن القوة المركزية المؤثرة على الجسم تتعين من العلاقة : F= } \frac{4 \pi^{2} m r}{T^{2}}
$$

احسـب السـرعة المماسـية لجســم يتحرث فى مســار دائرى أفقى منتظم، إذا كان حاصل ضرب مقدار 16 m²/s² العجلة المركزية له فى نصف قطر المسار هو المـي

بالطريق، فهـا تفسير ذلك فى ضوء دراستـل للحركة الدائرية ؟

 شد يتحملها الحبل 12 N، فيّل ينتطع الحبل ؟ ولادًا ؟

اختبـار

\qquad
\qquad

احرص علم اقتناء

 فى شرح جميـع المـواد

sgill للصف

」natil

الجاذُبية الكونية والحركة الدائرية

نواتج التعلمم المتوقعة

بعد دراسة هذا الفصل يجب انن يكون الطالب قادزا على ان - يسلتهج قالونا الجذب العام.

- يفسر دورانا القمر حول الأرض فیمسار لابت لقُرينا.
- يسلـدج العوامل اللن لصدد سرعة قمر صلاعى فى مداره صول الأرض. - يلعرف السلخداماتالأقمار الصلاعية,

فى هذا الفصل سوف نتعرف :

هـ قانـــون الجــذب العــام.
ه شــدة مجــال الجاذبيـة.

* تصهل العالم نيوتن إلى بعض الانتراضات الأساسية منها :

$$
\begin{array}{r}
\text { - وجود قوة تجاذب مادى متبادلة بين القمر والأرض القور حور الأرض. }
\end{array}
$$

- تنشأ قوة التجاذب المادى بين أى جسمين ماديين وتتوقف عالى :

وبناء: على ذلك وضع نيوتن قانون الجذب العام.

- قانون الجذب العام لنيوتم
 بي

ثابـت كونى يسـاوى عدديٌا قوة الجذب المتبادلة بين جســـمين كـلة كل منهمـا 1 والْعُع بين 1 m مركزيهها pgomian

$$
\mathrm{G}=\frac{\mathrm{Fr}^{2}}{\mathrm{mM}} \text { astad }
$$

(G)

$6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} . \mathrm{s}^{2}$

ำกำ
aryal
(1) يُرفِ قاننن قصى التجاذب بين الاجسام المادية بقانون الجذب العام،

ويرجع ذلك اللى عمومية هذا القانون فقوة الجذب بين أى جســمـين قوة متبادلة حيث إن كل جســم يجذب الجسم الآخر نحوه بنفس القوة.
(Y) تظهر قوة التجاذب بوضوح بين الأجرام السماوية بينما لا تكنف واضحة بين الأجسام ثـغيرة الكتلة على سطع الأرض (مثل شخصين يقفان بجوار بعضهما أو عربتين متجاورتين)، ويرجع ذلك إلى صغر قيمة ثابت الجذب العام فلا تكون قوة الجاذبية بين الاجسام مؤثرة وكبيرة إلا عندما تكن كتلة أحد الجسمين أو كليهما كبيرة جدُا.

 المتبادلة بين الشمس والمشترى تسارى

$4.22 \times 10^{45} \mathrm{~N} \bigodot$	$3.26 \times 10^{57} \mathrm{~N}(1)$
$4.22 \times 10^{23} \mathrm{~N}($	$3.26 \times 10^{35} \mathrm{~N} \bigodot$

$$
\mathrm{M}=2 \times 10^{30} \mathrm{~kg} \mathrm{~m}=1.89 \times 10^{27} \mathrm{~kg} \quad \mathrm{r}=7.73 \times 10^{11} \mathrm{~m}
$$

$$
\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2} \quad \mathrm{~F}=\text { ? }
$$

$$
\mathrm{F}=\mathrm{G} \frac{\mathrm{mM}}{\mathrm{r}^{2}}=6.67 \times 10^{-11} \times \frac{1.89 \times 10^{27} \times 2 \times 10^{30}}{\left(7.73 \times 10^{11}\right)^{2}}=4.22 \times 10^{23} \mathrm{~N}
$$

() الاختيار الصحيح هو

 ، 6378 km = علمًا بأن : ككة الارض = =
$19.6 \mathrm{~N} \oplus$
$9.8 \mathrm{~N} \Theta$
($6.67 \times 10^{-11} \mathrm{N.m}^{2} / \mathrm{kg}^{2}=$ ثابت الجذب العام
-
$4.9 \mathrm{~N} \oplus$
2.45 N (i)
$m=1 \mathrm{~kg} \quad \mathrm{M}=5.98 \times 10^{24} \mathrm{~kg} \quad \mathrm{R}=6378 \times 10^{3} \mathrm{~m}$

$$
\mathrm{G}=6.67 \times 10^{-11}{\mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2} \quad \mathrm{~F}=?}^{2}
$$

$\mathrm{F}=\mathrm{G} \cdot \frac{\mathrm{mM}}{\mathrm{r}^{2}}=\mathrm{G} \frac{\mathrm{mM}}{\mathrm{R}^{2}}=\frac{6.67 \times 10^{-11} \times 1 \times 5.98 \times 10^{24}}{\left(6378 \times 10^{3}\right)^{2}}=9.8 \mathrm{~N}$
O

隹

$$
\begin{array}{r}
19.6 \times 10^{3} \mathrm{~N} \bigodot \\
12.5 \times 10^{10} \mathrm{~N} \bigodot
\end{array}
$$

$$
49 \times 10^{3} \times 0
$$

$$
6.25 \times 10^{1 / 2} \times 6
$$

$$
\begin{aligned}
& m=2000 \mathrm{~kg} \quad \mathrm{R}=6380 \mathrm{~km} \quad \mathrm{M}=5.98 \times 10^{24} \mathrm{~kg} \\
& G=6.67 \times 10^{-11}{\mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2}}_{\mathrm{F}=?}
\end{aligned}
$$

$$
\therefore \mathrm{r}=2 \mathrm{R}
$$

$$
\begin{aligned}
F & =\frac{G \mathrm{mM}}{\mathrm{r}^{2}} \\
& =\frac{6.67 \times 10^{-11} \times 2000 \times 5.98 \times 10^{24}}{\left(2 \times 6380 \times 10^{3}\right)^{2}} \\
& =4.9 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

(1): ألاختيار الصحتع هو

فى الشكل المقابل إذا كانت قوة التجاذب بين الكتلتين
 الكتلين فابن قوة التجاذب بينهما تمبع

$$
\mathrm{m}_{1}=\mathrm{m} \quad \mathrm{~m}_{2}=2 \mathrm{~m} \quad \mathrm{~F}_{1}=\mathrm{F} \quad \mathrm{~F}_{2}=?
$$

$\mathrm{F}=\mathrm{G} \frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}$

$$
\begin{equation*}
\mathrm{F}_{1}=\mathrm{F}=\mathrm{G} \frac{\mathrm{~m} \times 2 \mathrm{~m}}{\mathrm{r}^{2}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{F}_{2}=\mathrm{G} \frac{2 \mathrm{~m} \times 3 \mathrm{~m}}{\mathrm{r}^{2}} \tag{2}
\end{equation*}
$$

* بعد إضافة الكتلة (m) :

بقسمة المعادلتين (1) ، (2)
$\frac{\mathrm{F}}{\mathrm{F}_{2}}=\frac{2 \mathrm{~m}^{2}}{6 \mathrm{~m}^{2}}=\frac{1}{3}$
$\mathrm{F}_{2}=3 \mathrm{~F}$

○
زادت الكميات r ، m m ، m 1 إلى الضrف، ماذا يحدث لقوة التجاذب المتبادلة بين الكتلتين ؟

 روالاتة ورالده هى (() فإن معدار راتجاه محملة توى التجاذب المادى المؤثرَ على الطفل والناشئة عن أبويه هـا
($\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2}$: بلمُا بأن)

((Y) وضح تآيّير القوتين المحسوبتين فى (ا) على مسار حركة الطفل.

> | $\mathrm{m}_{1}=30 \mathrm{~kg}$ | $\mathrm{~m}_{2}=65 \mathrm{~kg}$ | $\mathrm{~m}_{3}=80 \mathrm{~kg}$ |
| :--- | :--- | :--- |
| $\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2}$ | $\mathrm{r}=?$ | $\mathrm{r}_{12}=0.5 \mathrm{~m}=?$ |
| $\mathrm{r}_{13}=0.6 \mathrm{~m}$ | | |
| : المادى بين الطفل والاته | | |

\qquad
$F_{12}=\frac{G m_{1} m_{2}}{r_{12}^{2}}=\frac{6.67 \times 10^{-11} \times 30 \times 65}{(0.5)^{2}}=5.2 \times 10^{-7} \mathrm{~N}$

$$
F_{13}=\frac{G m_{1} m_{3}}{\mathrm{r}_{13}^{2}}
$$

$$
=\frac{6.67 \times 10^{-11} \times 30 \times 80}{(0.6)^{2}}
$$

$$
=4.4 \times 10^{-7} \mathrm{~N}
$$

$$
\Sigma \mathrm{F}=\mathrm{F}_{12}-\mathrm{F}_{13}
$$

$$
\begin{aligned}
\mathrm{F} & =\mathrm{F}_{12}-\mathrm{F}_{13} \\
& =\left(5.2 \times 10^{-7}\right)-\left(4.4 \times 10^{-7}\right)
\end{aligned}
$$

.

"

0اذا
a)

$\longdiv { \text { هر } }$

* علماه الفلك :
- أبو الريحان محمد البيرنى : الذى نجع فى تياس محيط الكرة الارضية. - على بن عيسى الالسطرلابى. - على البحترى•
(ــ القمر لا يجذب الأرض
¢ كاهمما يِذب الآخر بنفس القوة

\qquad B الترتيب، فإن مقدار قوة جذب الكوكب للقمر
i(أربعة أمثال
)

「 إذا علمت أن ككلة الارض 81 مرة قدر كتلة القمر وقطرها 4 أمثال تطر القمر، ما النسبة بين قوت جذب

$$
\begin{aligned}
& \text { A مقدار قوة جذبه للقمر } \\
& \text { (ب) يساوى } \\
& \text { (1) ربع }
\end{aligned}
$$

Gravitational Field مجال الجاذبية

* ينص تانون الجذب العام على أن تَوذ الجاذبية بين جسمِين مادبيّن تتناسب

 يوجد حيز تظهر فيه أثر قوة الجاذبية ويطلت على هذا الحيز مجال الجانبية.

(g) aniojll aysiol لan

$$
\begin{align*}
& F=m g=1 \times g=g \tag{1}\\
& F=G \frac{m M}{r^{2}}=\frac{G M}{r^{2}} \tag{2}\\
& g=\frac{G M}{r^{2}}
\end{align*}
$$

ويتطبيق قَانن الجنب العام :
من (1) • (2) نجد أن :

9إذا كانالجسم

حيث : (M) كثة الارض ($)$ ($\left.5.98 \times 10^{24} \mathrm{~kg}\right) ،$
: شدة مجال اللجـذبية الأرضية
1 kg قوة حزب الارض لجسم كتلته عند نقطة ما.

$$
\text { (R) نصف قطر الكرد الارضية (Rm } 6378 \text { تقريئا). }
$$

* مما سـبق نلاحظ أن شــدة مجــال الجاذبية الأرضيـة عند نعطة ما تساوى عدديُا عجلة الجاذبية الارضيةَ عند كلك النقطة.

$$
\begin{aligned}
& \text { على ارتفاع h فوق سطح الاُرض } \\
& \text { (} \mathrm{r}=\mathrm{R}+\mathrm{h} \text {) } \\
& \mathrm{g}=\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})^{2}} \\
& \begin{array}{c}
\text { على سطح الأرض } \\
(r=R)
\end{array} \\
& \mathrm{g}=\frac{\mathrm{GM}}{\mathrm{R}^{2}}
\end{aligned}
$$

مـع مربع البُعـد ه م مركز slope $=\frac{\Delta \mathrm{g}}{\Delta\left(\frac{1}{\mathrm{r}^{2}}\right)}=\mathrm{GM}$

|
تتناسـب شــدة مجــال الجاذبية تناسبًا طرديًا مـ
كـة الكوكب عند ثبوت بُعد
النتطة عن مركز الكوكب. slope $=\frac{\Delta g}{\Delta M}=\frac{G}{r^{2}}$
تمر صناعى كـلت 10^{4} kg يدو حلل الأرض على ارتفاع 600 km من سطحها ، فان :

$7.25 \mathrm{~N} / \mathrm{kg}$ (1) (1) شدة مجال الجاذبية الارضية عند موضن القمر فی مداره تساوى
 $10 \mathrm{~N} / \mathrm{kg}$ (1)
©
$v=m g=3.14 \times 10^{4} \mathrm{~N}$
(د) \therefore
 القّر فی نلس المدار

(i) أكبر من الواحد المبيح

ج \odot تساوى الواحد المنيح

$$
\begin{aligned}
& \mathrm{m}_{(\mathrm{H})}=\rho_{(\dot{H})} \mathrm{V}_{\text {ol }} \\
& \text {. كتلة الكرةالخشبية }
\end{aligned}
$$

$\therefore \mathrm{m}_{\text {(حدي) }}>\mathrm{m}_{\text {(خشب) }}$
$\because \mathrm{g}=\mathrm{G} \frac{\mathrm{M}}{\mathrm{r}^{2}}$
$\therefore \mathrm{g} \propto \mathrm{M}$
X الكرتان على بُعد متساوى من النقطة :
$\because m_{(د ب)}>m_{(ش ب) ~}$
$\therefore \mathrm{g}_{(山 د)}>\mathrm{g}_{(\mathrm{A})}$
(1) الاختيار الصميح هو :

 !إلى عجلة الجاذبية على سطع الارض تساوى
$\frac{1}{1}+$
$\frac{1}{4}$ ()

$$
M_{p}=2 M_{c} \quad R_{p}=2 R_{c} \quad \frac{g_{p}}{g_{e}}=?
$$

$\because g=G \frac{M}{r^{2}}$

$$
\begin{aligned}
\therefore \frac{g_{p}}{g_{e}} & =\frac{M_{p} R_{e}^{2}}{M_{e} R_{p}^{2}}=\frac{2 M_{e} R_{e}^{2}}{M_{e} \times 4 R_{e}^{2}} \\
& =\frac{1}{2}
\end{aligned}
$$

يِكنك مراجعة التناسب بند (T) صفـة
€
 ق قــر صناعـى يدو حـل الأرض على ارتفاع h من ســطح الأرض فإذا كانت عجلة الجاذبية الأرضية عند مداره مساوية لنصف قيمتها عند سطح الارض، فإن ارتفاع القمر الصناعى من سطح الارض (h) بدلالة نصف قطر الارض (R) يساوى 2 R

Achile ?

-ساعة إيقاف.
. مقصن.

سا (r)

(0) احسب متوسط شدة مجال الجاذبية (g).

Satellites alalinal الأقّار

* *ــلـ ارتيــاد الفضـــاء حلــم يـراود عقـــول البشــر لعدة
 أجهـزة الرصــد والصواريــن التـى تُقـذن بمركبـة فضانيـة لتـدور حـــل الأرض أو تمــل لكركـبـ أخـر كالمريـن حتى تحقـق الحلم يوم 4 أكتوبـر 1957م وتم

 أقــار أخـرى والنجاح فــى الهبوط على ســطح القمر،

فكرة إطالاق القّر الصناعى

! إطلاة قذيةَ مدفع من قمة جبل أفقيًا (مع إممال مقاومة الهواء) : - تقطع القنيفة مسافة أفقية قبل أن تسقط سقوطًا حرًا وتتخذ مسارًا منحنيًا نحو سطع الارض.
-بزيادة السرعة التى تُقذف بها القذيفة تزداد المسافة الأفقية التى تقطعها قبل أن تصل إلى سطح الأرض وتتبع مسارًا أقل انحناءً.

-إذا بلغت ســرعة انطـلاق القذيفة حـًا معينًا بحيث يتسـاوى انحناء مســار
 الارض وتصبع تابًِا للأرض مثل القمر الطبيـى لذللك يطلقَ عليها اسم القمر

. السرعةة المدارية للقمر الالمناءى

$$
\begin{aligned}
& \text { (1) إذا تخيلنا توقف مفاجئ لقمر صناعى يدور حول الارض } \\
& \text { (أصبحت سـرعته تساوى صفر)، فإنه يتحرل فی خط } \\
& \text { مسـتقيم نـــو الأرض تحـت تأثيـر الجاذبيـة الارضـية } \\
& \text { ويسقط على سطحها. }
\end{aligned}
$$

(Y) القمر الصناعى المتزامن مع دودان الارض يكن زمنه الدوى مساوى للزمن الدوىى لدوان الارض حلل نفسها أى يوم أرضىى واحد (24 ساعة) وبالتالىى يظل القمر الصناعى فوق نقطة ثابتة من سطع الآرض.

$$
\begin{array}{ll}
\because \mathrm{v}=\sqrt{\frac{\mathrm{GM}}{\mathrm{r}}}=\frac{2 \pi \mathrm{r}}{\mathrm{~T}} & \therefore \frac{\mathrm{GM}}{\mathrm{r}}=\frac{4 \pi^{2} \mathrm{r}^{2}}{\mathrm{~T}^{2}} \\
\therefore \mathrm{~T}^{2}=\frac{4 \pi^{2} \mathrm{r}^{3}}{\mathrm{GM}} \quad, \quad \therefore \text { كركته (T) كالتالى } & \therefore \mathrm{T}^{2} \propto \mathrm{r}^{3}
\end{array}
$$

$$
v=\frac{2 \pi r}{T}
$$

$$
\mathrm{v}=2 \pi \mathrm{rf}
$$

$$
v=\sqrt{\frac{G M}{r}}
$$

$$
\mathrm{v}=\sqrt{\mathrm{gr}}
$$

(£) يمكن حساب السنرعة المدارية (v) لقمر صناعى كالتالى :

($3.85 \times 10^{5} \mathrm{~km}$ ، فـإن السـرعة المدارية الثر

$$
1.02 \times 10^{3} \mathrm{~m} / \mathrm{s} \text { (علمًا بأن : ثابت الجذب العام = }
$$

$1.04 \times 10^{6} \mathrm{~m} / \mathrm{s}\left(() \quad \begin{array}{l}2.04 \times 10^{2} \mathrm{~m} / \mathrm{s} \oplus \\ 3.22 \times 10^{4} \mathrm{~m} / \mathrm{s} \Theta\end{array}\right.$

$$
\begin{aligned}
& \mathrm{r}=3.85 \times 10^{5} \mathrm{~km} \quad \mathrm{G}=6.67 \times 10^{-11} \mathrm{~m}^{3} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~s}^{-2} \quad \mathrm{M}=5.98 \times 10^{24} \mathrm{~kg} \\
& \mathrm{r}=\sqrt{\mathrm{G} \frac{\mathrm{M}}{\mathrm{r}}}=\sqrt{\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}{3.85 \times 10^{5} \times 10^{3}}}
\end{aligned}
$$

$=1.02 \times 10^{3} \mathrm{~m} / \mathrm{s}$

(ب) : الاختيار الصحيح هو

$$
\begin{aligned}
& m_{A}=3 m \quad m_{B}=2 m \quad m_{C}=m \quad r_{A}=3 r \quad r_{B}=2 r \quad r_{C}=r \\
& \because v=\sqrt{G \frac{M}{r}}
\end{aligned}
$$

$$
\therefore v \propto \frac{1}{\sqrt{r}}
$$

: الأقمار الثلاثة تدو حل الارض.
$\because r_{A}>r_{B}>r_{C}$
$\therefore \mathrm{v}_{\mathrm{A}}<\mathrm{v}_{\mathrm{B}}<\mathrm{v}_{\mathrm{C}}$
€ : الاختيار المصيح هو

> ماذا | كانت هذه الآقمار تدد على نفس الارتفاع من سطح الارض، فما إجابت 9 |
| :--- |

 (1) السرعة المدارية للقمر تساوى

$$
\begin{aligned}
& 7.9 \times 10^{3} \mathrm{~m} / \mathrm{s} \bigodot \\
& \left.2.1 \times 10^{4} \mathrm{~m} / \mathrm{s}(\lrcorner\right)
\end{aligned}
$$

$$
7.4 \times 10^{3} \mathrm{~m} / \mathrm{s}(i)
$$

................ $8.6 \times 10^{3} \mathrm{~m} / \mathrm{s} \rightleftharpoons$

$$
1.61 \mathrm{~h} \fallingdotseq
$$

2.18 h (1)

$$
\begin{aligned}
& \begin{array}{l}
\text { (n= } 940 \mathrm{~km} \quad \mathrm{R}=6360 \mathrm{~km} \quad \mathrm{M}=6 \times 10^{24} \mathrm{~kg} \\
\mathrm{q}=? \mathrm{~T}=\text { ? }
\end{array} \\
& { }_{1}=\mathrm{R}+\mathrm{h}=6360+940=7300 \mathrm{~km}=7.3 \times 10^{6} \mathrm{~m} \quad \mathrm{G}=6.67 \times 10 \cdot 11 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2} \\
& t=\sqrt{G \frac{M}{r}}=\sqrt{6.67 \times 10^{-11} \times \frac{6 \times 10^{24}}{7}} 10^{6} \mathrm{~m} \\
& =7.4 \times 10^{3} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& I=\frac{2 \pi r}{\mathrm{~V}}=\frac{2 \times 3.14 \times 7.3 \times 10^{6}}{7.4 \times 10^{3}}=6195.14 \mathrm{~s}=1.72 \mathrm{~h} \\
& \text { (1) } \\
& \text { (r) }
\end{aligned}
$$

فصر مناعى يتم دورته حمل كوكب معين فى 94.4 min وطول مساره 43153 km، فإن : (G = $6.67 \times 10^{-11} \mathrm{N.m}^{2} / \mathrm{kg}^{2}$ ، $\pi=3.14 ، 6360 \mathrm{~km}=$ (عمّا بأن : نصف تطر الكوكي)
(ا) السرعة المارية للقمر الصناعى تساوى

$7.6 \times 10^{3} \mathrm{~m} / \mathrm{s} \fallingdotseq$	$1.9 \times 10^{3} \mathrm{~m} / \mathrm{s}(1$
$4.6 \times 10^{5} \mathrm{~m} / \mathrm{s} \Theta$	$4.8 \times 10^{4} \mathrm{~m} / \mathrm{s} \Theta$

$13.2 \times 10^{3} \mathrm{~km} \rightleftharpoons$
$5.1 \times 10^{2} \mathrm{~km}$ (1) $49.5 \times 10^{3} \mathrm{~km}$ ($36.8 \times 10^{3} \mathrm{~km} \Theta$

$$
v=\frac{2 n}{3}=\frac{43353 \times 10^{2}}{444 \times 40}=7.6 \times 10^{3} \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& t=\frac{48153}{2 \times 3.74}=6871.997 \mathrm{~km} \\
& h=1-R=6871.497-6360=5.1 \times 10^{2} \mathbf{k m 1}
\end{aligned}
$$

(a) * cencull \therefore
(1) (1) : الاختيار المسيع هو

 $2.7 \times 10^{11} \mathrm{~m}(-)$

$$
9.6 \times 10^{6} \mathrm{~m}()
$$

$1.8 \times 10^{15} \mathrm{~m}$ (1) $4.2 \times 10^{7} \mathrm{~m} \Theta$
$\because \mathrm{v}=\sqrt{\frac{\mathrm{GM}}{\mathrm{r}}}=\frac{2 \pi \mathrm{r}}{\mathrm{T}}$
$\therefore r^{3}=\frac{\mathrm{GMT}^{2}}{4 \pi^{2}}$
$\therefore r=\sqrt[3]{\frac{G M T^{2}}{4 \pi^{2}}}=\sqrt[3]{\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24} \times(24 \times 60 \times 60)^{2}}{4 \times\left(\frac{22}{7}\right)^{2}}}=4.2 \times 10^{7} \mathrm{~m}$
O) هـ

$\therefore \frac{\mathrm{GM}}{\mathrm{r}}=\frac{4 \pi^{2} \mathrm{r}^{2}}{\mathrm{~T}^{2}}$
$T=24 h$

$$
\begin{aligned}
& M=5.9 \\
& \frac{I}{=}=\frac{2 \pi r}{T}
\end{aligned}
$$

$$
\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2} \quad \mathrm{r}=?
$$

$$
4 \times\left(\frac{22}{7}\right)^{2} \times(24 \times 60 \times 60)^{2}=4.2 \times 10^{7} \mathrm{~m}
$$

 .
كثن فابن سترcغ المدارية

الموجات اللاسلكية.

(1) القمار الاتماللات

- اللاممار القطبيـة نـدور فـى مدارات فــوق المناطـق القطبية على ارتفـاع يتراوح بين 1000 km 10 فـوق سـطح البحـر وتكــل دورة كاملة فــى فترة زمنية 200 km تتراوح بين 100 - 110 دقيقة حسب ارتفاع مدارها. - تسـتندم الاقمـار القطبيـة فــى مراقبة سطـ الارض والأرصاد الجوية حيث تمسـح جميع النقاط على سطح اللارض بالتتابع مع دوران الارض حول محورها.

$$
\begin{array}{ll}
2.67 \times 10^{-12} \mathrm{~N} \odot & 2.67 \times 10^{-8} \mathrm{~N}(1) \\
5.34 \times 10^{-11} \mathrm{~N} \odot & 5.34 \times 10^{-9} \mathrm{~N} \Theta
\end{array}
$$

 من الكرتين تسادى

$$
\begin{array}{r}
20 \mathrm{~kg} \bigodot(\bigodot \\
400 \mathrm{~kg} \bigodot
\end{array}
$$

$$
14.14 \mathrm{~kg} \text { (} 1
$$

$$
200 \mathrm{~kg} \bigodot
$$

© ك كرتان كلتهما المتبادلة بينهما بالنيوتن تساوى 8 كا

$$
\begin{array}{r}
40 \mathrm{G} \bigodot \\
8000 \mathrm{G}(3
\end{array}
$$

$$
8 \text { G (1) }
$$

$$
4000 \mathrm{G} \Theta
$$

\qquad المادى بينهما يعطىى من العلاقة

$$
\begin{aligned}
& \mathrm{F}=\frac{\mathrm{Gm}^{2}}{4 \mathrm{r}^{2}}(\bigcirc) \\
& \mathrm{F}=\frac{\mathrm{Gm}^{2}}{2 \mathrm{r}^{2}}(\bigcirc)
\end{aligned}
$$

$$
\mathrm{F}=\frac{\mathrm{Gm}^{2}}{\mathrm{r}^{2}}(1)
$$

$$
\mathrm{F}=\frac{2 \mathrm{Gm}}{\mathrm{r}^{2}} \Theta
$$

إذا تضضاعف البُعد بين مركزى جسمين، فإن قوة التجـأذب بيتهيا
(9) (9)

(1) تتضاعف

- - تصبح ريع قيمتها الأصلية

شدة مبال الجاذبية
(1.)

$$
\text { : } 6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

(1) قوة الجذب التى يتأثر بها جسم كتلته 1 موضو ع على سطح الكوكب تساوى
39.45 N ?
24.86 N (i)
60.42 N (د)
$45.95 \mathrm{~N} \rightleftharpoons$
(() قيمة عجلة الجاذبية على سطح الكوكب تساوى

$39.45 \mathrm{~m} / \mathrm{s}^{2} \bigodot$	$24.86 \mathrm{~m} / \mathrm{s}^{2} \oplus$
$60.42 \mathrm{~m} / \mathrm{s}^{2} \Theta$	$45.95 \mathrm{~m} / \mathrm{s}^{2} \Theta$

aii ($G=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2}:$ علمًا بأن) تبعد 36000 عن سطحه تساوى $22.2 \times 10^{-4} \mathrm{~N} / \mathrm{kg}$ (i) $22.2 \times 10^{-2} \mathrm{~N} / \mathrm{kg}($ $22.2 \times 10^{2} \mathrm{~N} / \mathrm{kg} \Theta$ $94.1 \times 10^{5} \mathrm{~N} / \mathrm{kg}(\lrcorner$

Irv (الامتتحان فيزياء - ا ث- ترم

(3)

Θ
مربع بُعد النقطة عن مركز الارضن

(-)

(i)
 نتطة على نفس البُعد من مركز كل كوكب وكتة الكوكب (M) هو

(2)

\odot

(ب)

(i)
(18) إذا تخيلنـا أن الأرض بـــأت فـى الانكمـاش بانتظــام بينمـا ظلـت كتلتها ثابتة، فـإن قيمة عجــة الجانيبا
\qquad على سطحها
(i) تزداد لان عجلة الجاذبية تتناسب عكسيًا مع مربع نصف قطر الأرض (ب) تزداد لان عجلة الجاذبية تتناسب طرديًا مع مربع نصف قطر الأرض § تظل ثابتة لان عجلة الجاذبية تعتمد على كلة الارض فقط (1) تَ تل لان عجلة الجاذبية تتناسب عكسيًا مع نصف قطر الأرض

10 (إذا علدت أن عجلة الجاذبية علـى سطع القـــر سدس عجلة الجاذبية على سـطح الأرض، فإن النسبة بينثاء. الجذب العام على سطع الأرض وثابت الجذب العام على سطع القمر .
$\frac{1}{3} \fallingdotseq$
$\frac{6}{1}(2)$

 ($\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2}:$ بأن (1) شُدة مجال جاذبية هذا الكركب عند سطفه نساور
$8 \mathrm{~N} / \mathrm{kg}()^{-}$
$32 \mathrm{~N} / \mathrm{kg}$ (1)
$4 \mathrm{~N} / \mathrm{kg}$ (i)
$16 \mathrm{~N} / \mathrm{kg} \Theta$
(r) نمسف قَطر الكركب يساوى $7.01 \times 10^{3} \mathrm{~km}$ (i)

$$
2.51 \times 10^{4} \mathrm{~km}(9
$$

$4.92 \times 10^{13} \mathrm{~km}$ ()
$5.42 \times 10^{9} \mathrm{~km} \Theta$

"米 يسارى	
25 N ¢	20 N (i)
40 N (30 N ¢

بين القمر الصناعى وسطع الارض (h) تساوى
(10 m/s² = نصف قطر الارض، شدة مجال الجاذبية عند سطح الارض R :

$$
\mathrm{R} \bigodot
$$

$$
2 \mathrm{R} \text { (i) }
$$

$$
\begin{equation*}
\frac{\mathrm{R}}{4}(\tag{R}
\end{equation*}
$$

، فإذا كان وذن الجسم على سطع الالرز 150 N

$$
\begin{aligned}
& 150 \mathrm{~N}(\bigodot \\
& 450 \mathrm{~N}()
\end{aligned}
$$

$$
75 \mathrm{~N} \mathrm{(i)}
$$

$$
300 \mathrm{~N} \Theta
$$

السرعة المارية

 ($\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2}$: علمُّا بأن $)$
$311 \mathrm{~m} / \mathrm{s}(9$ $249.9 \mathrm{~m} / \mathrm{s}$ (1)
$744 \mathrm{~m} / \mathrm{s}$ (
$713.13 \mathrm{~m} / \mathrm{s} \Theta$

\qquad لسرعة دودان القمر الصناعى فإنه
(i) يظل متحركُا فى مداره
(٪ بت تنعدم قوة الجاذبية الارضية المؤثرة عليه ج (3) يتحرك فى خط مستقيم مماس لـداره

$$
\begin{aligned}
& \text { (3) }
\end{aligned}
$$

(1) يقل بمقدار 0.1 من تيهت
? ـ يطلل ثابتًا

 (الذى يدو حوله الآهر (الـهر (

(1)

Θ

(ب)

(i)

 (1) سرعته المدارية تساوى
$6.1 \times 10^{5} \mathrm{~m} / \mathrm{s} \bigodot$
$9 \times 10^{5} \mathrm{~m} / \mathrm{s}$ (2)
$4.4 \times 10^{3} \mathrm{~m} / \mathrm{s}$ (1)
$7.7 \times 10^{3} \mathrm{~m} / \mathrm{s} \Theta$
(Y) زمن دورة القمر الصناعى حول الأرض يساوى (1)
$5.45 \times 10^{3} \mathrm{~s} \bigodot$
$2.34 \times 10^{3} \mathrm{~s}$ (1)
$9.22 \times 10^{3} \mathrm{~s}$ (1)
$6.32 \times 10^{3} \mathrm{~s} \Theta$
(r) قيمة العجلة المركزية أثناء حركته تساوى
$4.3 \mathrm{~m} / \mathrm{s}^{2} \bigodot$
$8.9 \mathrm{~m} / \mathrm{s}^{2}$ (د)
$2.4 \mathrm{~m} / \mathrm{s}^{2}$ (i)
$6.8 \mathrm{~m} / \mathrm{s}^{2} \odot$
 مدار B فابن النسبة بين سرعة A وسرعة B A على الترتيب هـى
$\frac{1}{4}$ (3)
(1) تمران صناعيان كتتهما $15 \times 10^{3} \mathrm{~kg}$ يدودان حل الارض على نفس الارتفاع منسـ الأرض، فــان النسـبة بين الســرعة المدارية للقمر الصناعى الأنل والســرعة المدارية للقمـر الصناعـ الثانز

$$
\begin{array}{cr}
\frac{1}{3} \fallingdotseq & \cdots\left(\frac{v_{1}}{\mathrm{v}_{2}}\right) \tag{1}\\
\frac{1}{\sqrt{3}}(\cdots) \cdots \cdots \cdots \cdots
\end{array}
$$

 منهما واحد وكتة الأرض تسعة أمثال ككلة المريخ فإن النسبة بين السرعة الخطية (المماسية) للقمر الذى يلر حل الأرض والنرعة الخطية (المماسية) للقمر الذى يدور حل المريخ على الترتيب هى

$$
\begin{equation*}
\frac{9}{1} \fallingdotseq \tag{1}
\end{equation*}
$$

$\frac{3}{1}$ (1)
r الصناعيـة، والشــكل المقابـل يمثل العلاقـــة البيانية بين مربع الســرعة المداريـة (v²) للأقمار الصناعية ومقلوب نصف القطر $)\left(\frac{1}{r}\right)$ لـــدار كل منهـا، فتكون النسبة بين $\frac{2}{1} \because$ $\frac{1}{2}$ (i) $\frac{3}{1}(1)$
علمى نفس الْعُ عن مركز الكركب والجذر النربيعى الكـلة كلـ
من مذد الكراكب (
الآتار يساوى
($\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2}:$: علما $)$
$2.39 \times 10^{3} \mathrm{~km}$ (i)
$4.17 \times 10^{3} \mathrm{~km} \bigodot$
$16.68 \times 10^{3} \mathrm{~km} \Theta$
$59.97 \times 10^{3} \mathrm{~km}$ (2)
तr تم إطلاق عدة أقمار صناعية لتدو حل كوكب، والشـكل
اليانى المقابل يِيثل العلاقَ بين مربع الزمن الدوسى القمر
حل الكوكب (T²) ومكعب نصف قَطر مدار القمر (r) ،
فإن كثة الكوكب تساوى
($\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2}$: علمُا بأن)
$2.96 \times 10^{24} \mathrm{~kg}$ (i)
$4.7 \times 10^{24} \mathrm{~kg}()$
$2.96 \times 10^{25} \mathrm{~kg} \Theta$
$4.7 \times 10^{25} \mathrm{~kg}$ ()
الأرض مساويًا لزمن دودان الأرض حل هحورها دوردَ كاملة فابن :

$$
\begin{aligned}
& \text { (} \mathrm{R}=6378 \mathrm{~km}, \mathrm{M}=5.98 \times 10^{24} \mathrm{~kg} \\
& \text { (1) ارتفاع القمر المناعى عن سطع الأرض (h) سِاودى } \\
& 6.6 \times 10^{7} \mathrm{It:} \text { (1) } \\
& 2 \times 10^{7} \mathrm{~m} \text { (1) } \\
& 5.6 \times 10^{7} \mathrm{~m} \Theta \\
& \text { (Y) السرعه المدارية للقمر المناعى تّساوى } \\
& 0.22 \mathrm{~m} / \mathrm{s} \text { (1) } \\
& 3.07 \times 10^{3} \mathrm{~m} / \mathrm{s} \Theta
\end{aligned}
$$

 $2 \mathrm{R} \bigodot$

4 R (1)
$1 \times 10^{6} \mathrm{~m} .2 \times 10^{6} \mathrm{~m}$ يـدوران حصل C . A A A
 $4 \times 10^{6} \mathrm{~s}($
$4.5 \times 10^{8} s($

$$
5 \times 10^{5} s \text { i }
$$

$$
2.3 \times 10^{8} \mathrm{~s} \Theta
$$

أسئلــة المقــال

ثانُ

ماذا يحدث عند تساوى انحناء مسار قنيفة أطلقت أفقيًا من قمة جبل مع انحناء سطح الارض ؟

هسر العبارات التالية :
(1) (1 (1) يسقط قمر صناعى يدود حلل الأرض فى مسار دائرى منتظم رغم تأثره بالجاذبية الأرضية.
 15×103 kg السرعة المدارية لقمر صناعى كتله 5×10^{3} (Y) تساوى السرعة المدارية لقمر آخر كتلته (Y) يدد حول نفس الكوكب وعلى نفس الارتفاع.

 ع 65 kg
(علمُا بأن : ثابت الجذب العام
240.5 N (i)

637 N
320.5 N O ون الجسم على سطح كوكب عطارد

65 kg (1) كلة الجسم على سطح الأرض (()
172 kg (ـ) كـة الجسم على سطح الأرض الارض

ك

$$
\begin{aligned}
& \text { شده مجال جاذبية كوكب عنل سطحه تتّاست V }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (د } \\
& \text { هـ هـرديًا مع الجذر التربيعى لكتلة الكوكب }
\end{aligned}
$$

(1) (1)

 حلاكوكب، فإذا كان تقَار قوة جنب الكوكب القصرين تانـانی ثإن :

 فإذا كانت سرعة القمر A هى v فإن سرعة القمر B هـى $\sqrt{2} \mathrm{v} \because$

2 v (i)
$\frac{\mathrm{v}}{\sqrt{2}}($
 (G $=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2}$: علمًا بأن)
13.34 kg (1)

> سرعة دودان الأرض حل الشمس تعتمد على (i) كتلة الأرض فقط
> (? - كتلة الشمس فقط (ذ \bigodot كتلة الشمس والارض والبُعد بينهما (1) كـلة الشمس والبُعد بينهما
 الحالة ؟

 كاملة حول الأرض يساوى

$$
\begin{aligned}
& 6.54 \times 10^{3} \mathrm{~s} \text { ? } \\
& 5.25 \times 10^{3} \mathrm{~s} \text { (i) } \\
& 7.33 \times 10^{3} \mathrm{~s}(\\
& 6.92 \times 10^{3} \mathrm{~s} \Theta
\end{aligned}
$$

$$
150 \mathrm{~s}(
$$

0 (i)
300 s (ㄱ)
$220 \mathrm{~s} \Theta$
(V) 2000 kg يدود حمل الأرض فی مســار دائرى طولـه ($\mathrm{R}=6400 \mathrm{~km}$: بألمًا

القمر الصناعى عن سطح الأرض يساوى

$$
\begin{array}{lr}
2.6 \times 10^{6} \mathrm{~m} \bigodot & 2 \times 10^{6} \mathrm{~m}(\\
3.8 \times 10^{6} \mathrm{~m}(& 3.2 \times 10^{6} \mathrm{~m} \Theta
\end{array}
$$

هـ عملـة الجاذبيـة الأرضيـة عنــد سـطح الأرض تقـل إلـى (علمًا بأن : R نصف قطر الأرض)
$2 R(5$
$9 R(3)$

R(i)
$3 \mathrm{R} \odot$
(9 كوكـب كتلــه M ونصف قطره R وشـدة مجال الجاذبية على ســطـه و، يـدور حوله قمر صناعى على
 من الآتى يعبر عن كلة الكوكب M

$\frac{g_{2}(R+h)^{2}}{G}(3)$

$$
\begin{aligned}
& \frac{v(R+h)}{G}(i) \\
& \frac{g_{1}(R+h)^{2}}{G} \Theta
\end{aligned}
$$

$$
\begin{align*}
& \frac{1}{1} \text { (i) } \\
& \frac{2}{1}(9) \tag{18}\\
& \frac{1}{4} \text { () }
\end{align*}
$$

كوكب كثت أربع أمثال كثة الارض ونمف تطره أربع أمثال نصف قطر الأرضن، احسب عبلة الجانين

تظهر قوى التجاذب المادى بوضوح بين الأجرام السماوية بينما لا تظهر بوضوح بين شخصين يقفان عل بُعد عدة أمتار من بعضهما، فسر ذلك.
\qquad
 المادى بينهما بدلالة F إذا أخذ 5 kg من أحدهما وأضيفت للأخرى وقلت المسافة بينهما للنصف.

تمر هناعى يدور فى مدار دانرى على ارتغاع 1600 km من سطع الاردض، أوجد الزمن الاودى للقمر . ($\mathrm{G}=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg}, \mathrm{s}^{2} \cdot \pi=3.14, \mathrm{M}=6 \times 10^{24} \mathrm{~kg}, \mathrm{R}=6400 \mathrm{~km}$: اؤنا بأن (علمد)
\qquad
\qquad
\qquad

\qquad

- 11

(Y)

(1)

 مرة كتلة القمر ، فإذا تساوت قوة جذب القمر وقوة جذب الكوكب $\frac{d_{1}}{d_{2}}$

- توجد الطاقة فى الطبيعة فى عدة صصور مختلفة مثل الطاقة الحرارية والطاقة الكيمائبية والطافه
 فما المقصود بالطاقة ؟ وما علاقتها بالشغل المبذول ؟

اذتبـار
على الفصل الأول

بعد دراسة هذا الفصل يجب ان يكون الطالب قادرًا على ن :

- يقارنبين طاقة الحركة وطاقة الوضع - يستنتح أنن طاقة الوضع عبارة عن شغل مبذول.
- يغسر المعلىالغيراياسللشغل.
- بستلنج انْ الشغل كمية قياسية. - يستلدج وحدات قياسالطاقة. - بسلللح العلاقة الرياضية المسانخدمة لحساب كل منطاقَةً الحركة وطامَةَالوضع.

فى هذا الدرس سوف نتعرف :
ه العوامل التى يتوقف عليها الشغل المبذول.
ه تأثير زاوبة المبـل على قيمة الشغل المبذول.
ه حســابالشغـلبـــانتِــا

Joill Uwر二厶

(\%) أن بنمرن الجسم إزاحة هعينة فـ نفس اتحاه عمل الحوة.
رينظهِ ذلك هن خلال المثالين التاليين ؛
(1)
< الشخص الذى يحاول سحب الحانط ل يبذل شـنغان

(1)

1

الاستنتاج

 بيث لا بوجد شغل مبذول عليه لان القوة المونّرة على القمر . i
ج
ج
(ـ) سساوى صفرًا

Hitur fixill ulim

: إذا أثرت قوة F على جسم فسبيت له إزاحة d فی نفس اتجاه القوة المؤثرة

$$
\text { فابن (} \left.\theta=0^{\circ}\right) ،
$$

وعند تمثيل العلاقة بين (القوة - الإزاحة) بيانيًا نحصل على الشكل ألمابل :
: الشنل = القوة × الإزاحة
: الشنل (بيانيّا) = المساحة تحت منحنى (القوة - الإزاحة)

علماء افادوا البشرية حییمس حل (1818-1889) م :

 منها في أعلى الشـلال مما يثبت أن جزء من طاقة المياه الساقطة تحمل إلى حرارة.
 :

 مقدارها 60° مع الا\$فقى، فابن الشغل المذذل براسطة القوة المحصلة يساوى 200 J (1) $100 \sqrt{3} \mathrm{~J} \bigodot$ 100 J () 80 J (1)

$$
\mathrm{F}=50 \mathrm{~N}
$$

$$
\theta=60^{\circ} \quad W=?
$$

بـ

كان المطللوب حسـاب الشغل الذى تبذله نفس القوة المحصلة 8 m (مقـداراًا واتجاهأ) على العربـة إذا كانت إزاحة العرا على مستّى مانل يمنع زاوية 30° مـ الافقى، ما إجابتل ؟

الدرسالأول

(8) JL

$$
3000 \mathrm{~J} \text { (5) } 0 \text { }
$$

$$
120 \mathrm{~J} \Theta
$$

$\mathrm{v}=5 \mathrm{~m} / \mathrm{s}$

$\mathrm{d}=\mathrm{vt}=5 \times 10=50 \mathrm{~m}$
$W=F d=F_{(ا a ت ك ا)} d=60 \times 50=3000 \mathrm{~J}$
 براسطة القوة الحمـا المؤثرة عليه عند تحركه نفس الإزاحة ؟

قوة ثابتة أفقية معدارها 100 أثرت على جسم ساكن موضوع على سطح أفقى فحركها
 تأثير قوة الاحتكاك يساوى

$5 \times 10^{3} \mathrm{~J} \bigodot$	$10^{3} \mathrm{~J}(i$
$2.5 \times 10^{4} \mathrm{~J}(\odot$	$10^{4} \mathrm{~J} \Theta$

$$
\mathrm{F}=100 \mathrm{~N} \quad \mathrm{v}_{\mathrm{i}}=0 \quad \mathrm{t}=5 \mathrm{~s} \quad \mathrm{v}_{\mathrm{f}}=20 \mathrm{~m} / \mathrm{s} \quad W=?
$$

: الجسم يتأثر بقوة تابتة.

$$
\begin{aligned}
& a=\frac{v_{1}-v_{i}}{t}=\frac{20-0}{5}=4 \mathrm{~m} / \mathrm{s}^{2} \\
& d=v_{i} t+\frac{1}{2} \mathrm{at}^{2}=0+\left(\frac{1}{2} \times 4 \times(5)^{2}\right)=50 \mathrm{~m} \\
& W=F d=100 \times 50=5 \times 10^{3} . \mathrm{J} \\
& \bar{v}=\frac{d}{t}=\frac{v_{i}+v_{i}}{2} \\
& \frac{d}{5}=\frac{20+0}{2} \quad, \quad d=50 \mathrm{~m} \\
& W=F d=100 \times 50=5 \times 10^{3} \mathrm{~J}
\end{aligned}
$$

| بن المادرة الاولى اللحركة :
نـ المعادرة الثانية للحركة :
:
(:) الاختيار الصحيح هو
كانت قوة احتكاك الجســم مع السـطـع غير مهملة ومقدارها 10 وتحرك الجسم نغس الجزاحء، ما الشغل المبذول بواسطة القوة المحملة على الجسم ؟

 ندركته فـى خط مستقيميم والشكـل البيانـى المقابـل يمثل العلاقة بـين السـرعة (v) للجســ والزمـن (t)، فيكن مقدار الشـغل المبذول علـى الجسـم بواسـطة القوة (F) خـلال 4 مـن بدء الحركة هـو
$40 \mathrm{~J}(+) \quad 10 \mathrm{~J}(1)$
$a=$ slope $=\frac{\Delta v}{\Delta t}=\frac{20-0}{4-0}=5 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{F}=\mathrm{ma}=2 \times 5=10 \mathrm{~N}$

يمكتك مراجعة كيفية حساب ميل الخط المستقيم بند (V) صفـة (I) .

$$
\begin{aligned}
& d=v i+\frac{1}{2} s t^{2} \\
& d=\frac{1}{2} a t^{2}=\frac{1}{2} \times 5 \times(4)^{2}=40 \mathrm{~m} \\
& W=F A=10 \times 40=400 \mathrm{~J}
\end{aligned}
$$

$\frac{1}{4}$ () $\frac{2}{1} \Theta$
$\frac{1}{2} \fallingdotseq$ $\left(\frac{W_{A}}{W_{B}}\right)$ (i)
$m_{A}=m$

$$
m_{B}=2 m
$$

$$
\frac{\mathrm{W}_{\mathrm{A}}}{\mathrm{~W}_{\mathrm{B}}}=\text { ? }
$$

: التطاران بدءا الحركة من السكن وقطعا نفس المسافة خلال نفس الزمن. .
$\therefore a_{A}=a_{B}$

- $\mathrm{F}=\mathrm{ma}$
$\frac{F_{A}}{F_{B}}=\frac{m_{A}}{m_{B}}=\frac{m}{2 m}=\frac{1}{2}$
$\because \mathrm{W}=\mathrm{Fd}$

$$
\frac{\mathrm{F}_{\mathrm{A}}}{\mathrm{~F}_{\mathrm{B}}}=\frac{1}{2}
$$

:
يمكن مراجعة التناسب الطردى بند (7) صنحة (10).
(ب) الاختيار الصحيح هو

$$
\begin{array}{r}
\frac{1}{2} m v_{i}^{2} \bigodot \\
\frac{1}{2} m\left(v_{\mathrm{f}}^{2}+v_{i}^{2}\right)(2
\end{array}
$$

$$
\begin{array}{r}
\frac{1}{2} m v_{f}^{2}(i) \\
\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right) \Theta \\
u
\end{array}
$$

من المعادلة الثالثة للحركة
$v_{f}^{2}-v_{i}^{2}=2 \mathrm{ad}$
$d=\frac{v_{f}^{2}-v_{i}^{2}}{2 a}$
$\because W=F d$
$\because \mathrm{F}=\mathrm{ma}$
$\therefore W=m a \frac{v_{f}^{2}-v_{i}^{2}}{2 a}$
$W=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)$
: : الاختيار الصحيح هو

(F) والاشـكال البيانية النالية تمثل العلاه بي

(2)

(i)

$$
\begin{aligned}
& \text { (ب) قَية عظمى موجبة } \\
& \text { () لا يمكن تحديد ا'إجابة }
\end{aligned}
$$

(i) مسفر

ج
ترة ثابتة F تؤثر على جسم فتحرك، إزاحة d، فان الشغل المبذول بواسطة التوة (F) يكن فيمة عظفى سالبة فی الشك

(1)
 اللى بذلته قوة الجاذبية على الكرة أثناء هعودها وأثناء هبوطها على الترتيب هى الـى

 إذا كانت :

250 J ©
$217 \mathrm{~J} \Theta$

250 J ($\quad 217 \mathrm{~J} \Theta$
(1) فی اتجاه حركة الجسم يساوى 125 J (-)
(Y) تميل بزاوية 60° على اتجاه الحركة يساوى 125 J ()

 عجلة الجاذبية g، فابن مقدار السغل (W) الذى يبذله الطالب يساوى

 (i) قوة الجاذبية على قطار يسير فى طريق أفقى مستقيم ج
 () قوة الاحتكاك بين إطارات السيارة والطريق عند استخدام الفرامل
(أى القوى التالية لا تبذل شغلًا فى جميع الحالات على الجسم الذى تؤثر عليـ؟ ؟ ٪ ب القوة المفناطيسية
(ـ) قوة الاحتكاك
(أ) قوة الجاذبية الأرضية
ج قوة الجذب المركزى

القوة المؤثرة عليه بزاوية 30° كما بالشكل، فإن الشغل المبذول على الصندقق بواسطة هذه القوة يساوى
$\mathrm{Fd}\left({ }^{+}\right.$
$\frac{\sqrt{3}}{2} \mathrm{Fd}(1)$
(W) الثكل (I)

 المؤثرة على الجسم يساوى 1 N (i) $5 \mathrm{~N} \Theta$

$$
\begin{array}{ll}
20 \times 10^{3} \mathrm{~J} \text { (-) } & 15 \times 10^{3} \mathrm{~J} \text { (1) } \\
35 \times 10^{3} \mathrm{~J} \text { () } & 25 \times 10^{3} \mathrm{~J} \Theta
\end{array}
$$

(50 kg
(F) (F) $5 \mathrm{~kJ} \rightarrow$

 0

 نهسن هب الالفقى زاوية 60 ${ }^{\circ}$ فإذا كانت العربة تتعرض لغوة احنكاك هفـارهها 20 فابن الشغل المبذول بواسطة الام لتفطع العربة مسمالة

$$
5 \text { m }
$$

$80 \mathrm{~J}(-)$	100 J (i)
$40 \mathrm{~J}(\mathrm{O}$	$50 \mathrm{~J} \Theta$

(4) الشُكل المقابل يوضـع أربع قوى تؤثر على جسم موضوع
 الجسم أفقيّا m 1 فان الشغل الذى تبذله القوة المحملة
على الجسم يساوى

$4 \mathrm{~J} \bigodot$	$2 \mathrm{~J}(\mathrm{i}$
$14 \mathrm{~J}(\lrcorner$	$8 \mathrm{~J} \Theta$

فإذا كان مقدار الشــل المبذول بواســطة القوة المحصلة لإزاحة

بين اتجاهى القوتِين يساوى
120° ب)
160° (ㄱ)
 رأسيًا إلى سطع الأرض كان مقدار الشغل الذى تبذله قوة الجاذيية الاورضية.
(i) أكبر على الجسم الأثقل
(ج) أقل على الجسم الأثقل
ج
(2) بساوى صـر على الجسمين

(P) (C)
 نمسن مع الأفقى زاوية 60²، فإذا كانت العربة تتعرض القوة احتكاك. هقدارها 20 فإن الشغل المبذول بواسطة الام لتقطل العربة مسانة 5 m

80 J (-)
100 J (i)
40 J (3)
$50 \mathrm{~J} \Theta$

(艹) جســم يتحرك تحت تأثير قوتين على ســطح أفقى كما بالشــكل، فإذا كان مقدار الشـغل المبذهل بواســطة القوة المحصلة لإزاحة

25 an اolar بين اتجاهى القوتين يساوى
120° \because
160° (د)
100° (i)
$150^{\circ} \Theta$
(P)

(i) أكبر على الجسم الأثقل

ج ج متنساوى على الجسـمين (3) بــاوى صفر على الجسمـين

100 J (
500 J (ㄱ)

0 (i)
$250 \mathrm{~J} \Theta$
(Y) قيمة الزاوية عند النقطة B تساوى

$30^{\circ} \bigodot$	$0^{\circ} \oplus$
$\left.90^{\circ}(\lrcorner\right)$	$60^{\circ} \Theta$

(r) قيمة الزاوية عند النقطة D تساوى
30° (ب)
0° (i)
$60^{\circ} \Theta$
 فإن الشغل الذى يبذله الرجل يساوى المى (10 m/s ${ }^{2}$ (عمًا بأن : عجلة الجاذبية الأرضية ل
$17.5 \times 10^{2} \mathrm{~J}$
$35 \times 10^{2} \mathrm{~J}($
$30.3 \times 10^{2} \mathrm{~J} \odot$

 تُـم ينطلـق جريًا مـن B إلى C C تـم يمعد سـلم رأســى من C إلى A ليكرر الأمر مرة أخـرى، فإن الشــغل المبذول بواســطة وذن الطفل يكن

AB أكبر فی المرحلة (i) BC ، AB متس میى فی المرحلتين CA ، AB \odot
() متساوي فی جميع المراحل

(r)

(I)

النماط جديدة من الاســـــة!

|خنر إجابتين من بين الإجابات المعطاة ،
$\mathrm{N} . \mathrm{m} \odot$

$$
\begin{array}{r}
\mathrm{N} \cdot \mathrm{~m}^{2} \Theta \\
\mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2} \Theta
\end{array}
$$

$$
\begin{gathered}
\text { الجبول بكانمi } \\
\mathrm{N} / \mathrm{m} \text { (i) } \\
\mathrm{kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2} \text { () }
\end{gathered}
$$

(-)

(1)

Θ
 أفقى، أثرت عليه قوة F مقدراها 40 م 40 فحركهك من السكن مسافة 4.5 من النقطة a a إلى النقطة b، فإذا كانت قوى الاحتكال 15 فإن
(1) الشنل البذول على الجسم بواسطة القوة الحمصلة يساوى صفر
 112.5 J ج

$$
1.85 \text { m/s تساواقى b سرعة الجسم عند }
$$

(10.6 m/s سرعة الجسم عند b تساوى

[^0]

 (ـ) تبذل المظلة شغلًا موجبًا على المندرق

 التى يتمركها نتيجة تأثره بهذه القوة، فإن

اختر من القائمة ما يناسب الفراغات :

$\frac{d}{\cos \theta}$
$\frac{F}{d}$
$d \cos \theta$
$F d$
$\frac{F}{\cos \theta}$

״حيث (W) الشغل المبذول، (F) القوة المحصلة،
(ө) الزاوية بين القوة والإزاحة، (d) الإزاحة،..

49.9
86.6
92.4
1524.8

فى هذا الدرس سوف نتعرف :

a الوضـــــــــع
4 طاق
4 الفيزيـاء فـى خدمـة البيئـة.

، للماتة أهمية كبيرة فى حياتنا حيث لا نستطيـع القيام بالأنشُطـة المختلفة (ذهنية ، عضلية) بدون الطاقة الناتجة من احتراق السكريات داخل أجسامنا.

هح
4 للمطاةَ صور متعددة، منها : - الطاقة الكيميائية. - الطاقة الكهربية. - الطاقة الحرارية.

؛ ورغم التعدد فى صور الطاقة والتى تبدو كل صورة منها وكأنبا مستقلة بذاتها عن باقى الصود، إلا أنه توجد علاقة بين جميع صور الطاقة حيث يمكن أن تتحول الطاقة من صورة لأخرى، وهو ما يعبر عنه قانون بقاء الطاقة. ب بنص فانون بقاء الطافة على أن الطاقة لا تفنى ولا تستحدث من العدم ، لكن يمكن تحويلها من صورة إلى أخرى. .

علم الكيمياء الحرارية

```
اتحاد غـانى)
    لتكوين الماء يعتبر ت
```



```
        يعتبر تغير فيزيانى.
```

علم الدبنامبكا الحرارية هو العلم الذى يختص بدراسة الطاقة وكبفبة انتقالها.
\& وبعتبر علم الكيمباء الحرارية فرع من فروع الدينامبكا الحرارية وهو العلم الذى بختص بدراسة التغيرات الحرارية المصاحبة للتفاعلات الكبمبانية والنغبرات الفيزياينية. معظم التنيرات الفيزيائية والتفاعلات الكيميائية تكن مصحوبة بتفير فى الطاقة. ٪ ومن الماهيم الاساسية المرتبطة بالكيمياء الحرارية :

「 القانون الالول للديناميكا الحرارة.
(1) النظام و الوسط المحبط.

ع
با الحرارة و دربة الدرارة.

\qquad

(C)

(B)

(A)
الشكل

لانه يسمع بتبادل الطاقـة فقط مــ الوسـط المحيط على هينّة حـرارة.	مغلق	(A)
لانـ لا يسمع بتبادل أيّا من المادة أو الطاقة مـ الوسط المحيط.	معزول	(B)
لانه يسمح بتبادل كل من المادة والماقة مع الوسط الميط.	مفتوح	(C)

يعتبر الترمومتر الطبى نظام مغلق،
لانه يسمح بتبادل الطاقة فقط مـ الوسط المحيط على هيئة حرارة

¢ عندما يفقد النظام كمية من الطاقة يكتسبها الوسط المحيط والعكس صحيع، لذلل فان : أى تغير فى طاقة النظام $\Delta \mathrm{E}_{\text {surrounding }}$ بمقدار مماثل ولكن بابشارة مخالفة ... حتى تظل الطاقة الكية مقدارُا ثابتًا.

$$
\Delta \mathbf{E}_{\text {system }}=-\Delta \mathbf{E}_{\text {surrounding }}
$$

¢ ويختص القانون الأول للايناميكا الحرارية بدراسة تغيرات الطاقة الحادثة فى الانظمة المعزولة. وبنص القانون الأول للدبناميكا الحرارية على أن الطاقة الكلية لأى نظام معزول تظل نابثة، حتى لو تغير النظام من صورة لأخرى.

$$
\begin{aligned}
& v_{f}^{2}=v_{i}^{2}+2 a d \\
& \because v_{i}=0 \\
& \therefore v_{f}^{2}=2 a d \quad, \quad d=\frac{v_{f}^{2}}{2 a}
\end{aligned}
$$

$$
\therefore F d=\frac{1}{2} \frac{F}{a} v_{f}^{2}
$$

$$
\because \frac{F}{a}=m
$$

** إذا أُـرت قـوة F على جسـم ســاكن كتلته m فتحـرك بعجلة منتظمة a لتصل سرعته إلى Vf بعد أن يقطع إزاحة d، فابن :

من المعادلة الثالثة للحركة :

بضرب طرفى المعادلة فى القوة (F) :
هن قانون نيوتن الثانى :
$\therefore \mathbf{F d}=\frac{1}{2} \mathbf{m v}_{\mathbf{f}}^{\mathbf{2}}$

يمثل طاقة الحركة (K.E) وهى الصورة التى تحول اليها الشغل المبذول

คmª

$$
\text { K.E }=\frac{1}{2} m v^{2}
$$

(A)

 \% سـالًٌا : فإن طاقة الجسم الحركية تقل بمقدار الشعاه معاكس لاتجاه حركته.

$v_{f}=v_{i}+a t=0+a t=a t$
$K . E=\frac{1}{2} m v_{f}^{2}$
$=\frac{1}{2} m(a t)^{2}$
$=\frac{1}{2} m a^{2} t^{2}$
$K B \propto t^{2}$

طرديًا مع مربع الزمن، حيث :

ويمكن تمثيل ذلك بيانيًا كالتالى :

$1 \Delta 1-6$

 بـ بربع السرعا التى يتحرك بها

$$
\mathrm{v}=60 \mathrm{~km} / \mathrm{h}
$$

مركتهـ K.E، عند الضنغط على دواســة الفرامل ببرة F فإنها تقطع مساهة d قبل ان تتقفلف.

$$
\mathrm{v}=30 \mathrm{~km} / \mathrm{h}
$$

(المطلوبة لتوقف سيارة تتحرك بسرعة v باستخدام قوة معية حتى تفتد طاةة حركهبا تيتاسب
$\mathrm{Fd}=\frac{1}{2} m v^{2}$ طرديّا مع مربع هذه السرءة، حيث : .
$\therefore \mathrm{d} \propto \mathrm{v}^{2}$

ماقة حركة شاحنة محملة كتلتها 2000 تسير بسرعة 72 km/h تساوى $1.44 \times 10^{5} \mathrm{~J} ?$
$8 \times 10^{5} \mathrm{~J}$ (1)

$$
\begin{aligned}
& 4 \times 10^{4} \mathrm{~J}(1) \\
& 4 \times 10^{5} \mathrm{~J} \odot
\end{aligned}
$$

$\mathrm{m}=2000 \mathrm{~kg}$	$\mathrm{v}=72 \mathrm{~km} / \mathrm{h} \quad \mathrm{K} . \mathrm{E}=$?

$\mathrm{v}=72 \times \frac{1000}{60 \times 60}=20 \mathrm{~m} / \mathrm{s}$
$\mathrm{K} . \mathrm{E}=\frac{1}{2} \mathrm{mv}^{2}$

$$
=\frac{1}{2} \times 2000 \times(20)^{2}=4 \times 10^{5} \mathrm{~J}
$$

$$
\text { :ـ الاختيار, الصحيح هو } \Theta
$$

الشكل المقابل يوضـح جسمان B ، A كتلتيهما الترتيب كل منهما يتحرك بسرعة منتظمة 2 v v v 2 على الترتيب' فإذا كانت طاقة حركة الجسم A هى K.E فإن طاقة حركة
الجسم B هی

2 K.E (i)
4 K.E © \cdot
8 K.E \odot
16 K.E (3)

$$
\begin{align*}
\mathrm{m}_{\mathrm{A}}=\mathrm{m} & \mathrm{v}_{\mathrm{A}}=\mathrm{v} \\
\mathrm{~m}_{\mathrm{B}}=2 \mathrm{~m} & (\mathrm{~K} \cdot \mathrm{E})_{\mathrm{A}}=\mathrm{K} \cdot \mathrm{E} \\
\mathrm{v}_{\mathrm{B}}=2 \mathrm{v} & (\mathrm{~K} \cdot \mathrm{E})_{\mathrm{B}}=? \\
(\mathrm{~K} \cdot \mathrm{E})_{\mathrm{A}} & =\mathrm{K} \cdot \mathrm{E}=\frac{1}{2} \mathrm{mv}^{2} \\
(\mathrm{~K} \cdot \mathrm{E})_{\mathrm{B}} & =\frac{1}{2} \times 2 \mathrm{~m} \times(2 \mathrm{v})^{2} \tag{2}\\
& =8 \times \frac{1}{2} \mathrm{mv}^{2}
\end{align*}
$$

بالتويض من المعادلة (1) فى المعادلة (2) :
$(\mathrm{K} . \mathrm{E})_{\mathrm{B}}=8 \mathrm{~K} . \mathrm{E}$

- الاختيار الصحيح هو

Ge, س.
1510
 (t) (t) 2 kg 2 وزمـن حركة هــذا الجس

(i)
 K.E $=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \times 2 \times(2)^{2}=4 \mathrm{~J} \quad$ موازی اللمحو الأفقى (محو الزمن)).
(i) : الاختيار الصحيح هو كان المطان
$5 \mathrm{~m} / \mathrm{s}$ سيارة كتلتها 1200 kg تتحرك على طريق أفقى، فإن الشغل اللازم بذاله لزيادة سرعة السيارة من ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

إلى 10 يساوى

$$
\begin{array}{r}
4.5 \times 10^{4} \mathrm{~J} \Theta \\
9 \times 10^{4} \mathrm{~J}()
\end{array}
$$

$$
\begin{aligned}
& 6 \times 10^{3} \mathrm{~J}(1) \\
& 6 \times 10^{4} \mathrm{~J} \Theta
\end{aligned}
$$

$m=1200 \mathrm{~kg} \quad \mathrm{y}_{\mathrm{i}}=5 \mathrm{~m} / \mathrm{s}$
$W=\Delta(\mathrm{K} \cdot \mathrm{E})=(\mathrm{K} \cdot \mathrm{E})_{\mathrm{f}}-(\mathrm{K} \cdot \mathrm{E})_{\mathrm{i}}$

$$
\begin{aligned}
& =\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \\
& =\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right) \\
& =\frac{1}{2} \times 1200\left((10)^{2}-(5)^{2}\right) \\
& =4.5 \times 10^{4} \mathrm{~J}
\end{aligned}
$$

: (2) ، (1) المعادلتين
$\mathrm{Fd}=\frac{1}{2} \mathrm{mv}_{\mathrm{i}}^{2}$
$\therefore \frac{d_{1}}{d_{2}}=\frac{\left(v_{i}\right)_{1}^{2}}{\left(v_{i}\right)_{2}^{2}}$
$\therefore \frac{20}{d_{2}}=\frac{(15)^{2}}{(30)^{2}}$
بككن مراجعة التناسب الطردى بند (7) صفـة (10).
$\therefore \mathrm{d}_{2}=80 \mathrm{~m}$
(د) الانتيار الصحيع هو :

كان المطلوب إيجاد النسبة بين مقدارى العجلة التى تباطأت بها السيارة فى الحالتين، ما إجابتكه ؟

 $180 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}(9) \quad 60 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \bigodot \quad 20 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \bigodot(+) \quad 10 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}(i)$

$$
\begin{align*}
& (\mathrm{K} \cdot \mathrm{E})_{\mathrm{x}}=100 \mathrm{~J} \\
& (\mathrm{~K} . \mathrm{E})_{y}=900 \mathrm{~J} \\
& \mathrm{P}_{\mathrm{x}}=20 \mathrm{~kg} . \mathrm{m} / \mathrm{s} \quad \mathrm{P}_{\mathrm{y}}=\text { ? } \\
& \because K E=\frac{1}{2} m v^{2} \tag{1}\\
& \therefore \mathrm{~K} . \mathrm{E} \propto \mathrm{v}^{2} \\
& \therefore \mathrm{P} \propto \mathrm{v} \\
& \because P=m v \\
& \therefore \mathrm{P} \propto \mathrm{~V} \tag{2}\\
& \therefore P \propto \sqrt{K . E} \\
& \therefore \frac{\mathrm{P}_{x}}{\mathrm{P}_{\mathrm{y}}}=\sqrt{\frac{(\text { K.E })_{x}}{(\mathrm{~K} \cdot \mathrm{E})_{\mathrm{y}}}} \\
& \text { من العلاقتين (1) ، (2) : } \\
& \therefore \frac{20}{\mathrm{P}_{y}}=\sqrt{\frac{100}{900}} \\
& \therefore P_{y}=60 \mathrm{~kg} . \mathrm{m} / \mathrm{s}
\end{align*}
$$

+気
يككت مراجثة التناسب الطردى بند (7) هفحة (10).

Jلم

Potential Energy (P. ©) gagil able tify

$$
869.1136
$$

gegllanls che ain

 لسطع الارض (بالنسبا لجال الجالبية) ليخنّن الجسمطاơة ونع مختزنة فى بسم مرفوع طاقـة وفـــ تثا لالية أكبر إدا تحـرك إلى نفطة إبد لمى

$$
\mathrm{W}=\mathrm{Fh}
$$

من العلاة :
حيث : F مى القوة اللازمة لرفع الجسم لاعلى ضد الجالبية
الارضية وتساوى رذنه (w) :

$$
\mathrm{F}=\mathrm{w}=\mathrm{mg}
$$

$$
\therefore \mathrm{W}=\mathrm{mgh}
$$

: الشنل المبذل يُختنز داخل الجسـم فـى مــودة طاتَ
وضى (P.E).

\therefore P.E $=\mathbf{m g h}$

 (W) الموضع B كما فى الشكل المقابل يُذل على الجسم شغل بحسب من العلاقة :

$$
\begin{aligned}
\mathrm{W} & =\mathrm{mgh}_{\mathrm{f}}-\mathrm{mgh}_{\mathrm{i}} \\
& =\mathrm{mg}\left(\mathrm{~h}_{\mathrm{f}}-\mathrm{h}_{\mathrm{i}}\right)=\mathrm{mg} \Delta \mathrm{~h} \\
\mathrm{~W} & =\Delta(\mathrm{P} \cdot \mathbf{E})
\end{aligned}
$$

$\because \mathrm{PE}=\mathrm{mgh}$

$$
\begin{aligned}
\therefore(P E)_{A}:(P E)_{B}:(P . E)_{C} & =m_{A} h_{A}: m_{B} h_{B}: m_{C} h_{C} \\
& =m \times 3 \mathrm{~d}: 2 \mathrm{~m} \times 2 \mathrm{~d}: 2 \mathrm{~m} \times \mathrm{d} \\
& =3 \mathrm{md}: 4 \mathrm{md}: 2 \mathrm{md} \\
& =3: 4: 2
\end{aligned}
$$

B $>\mathrm{A}>\mathrm{C}$
: : الترتيب الصحيع للعبوات تبعًا لطاقة الوضع المختزنة فى كل متها بو :
: الاختيار الصميح هو :

 ($g=10 \mathrm{~m} / \mathrm{s}^{2}$)

$\Delta(\text { P.E })_{\mathbf{y}}$	$\Delta(\text { P.E })_{\mathbf{x}}$	
150 J	100 J	$(1$
250 J	100 J	\bigodot
150 J	150 J	\bigodot
250 J	150 J	$(\mathrm{C}$

(Y) الشغل المبذول بواسطة الشخص على كلّ من الجسمين يساوى (Y)

$\mathbf{W}_{\mathbf{y}}$	$\mathbf{W}_{\mathbf{x}}$	
150 J	100 J	\oplus
250 J	100 J	\ddots
150 J	150 J	\ddots
250 J	150 J	$\left(\begin{array}{l}\mathrm{J} \\ \hline\end{array} \mathrm{e}\right.$

$\mathrm{m}_{\mathrm{x}}=10 \mathrm{~kg}$

$$
\mathrm{m}_{\mathrm{y}}=10 \mathrm{~kg} \quad \mathrm{~h}_{\mathrm{x}}=1 \mathrm{~m}
$$

$\mathrm{h}_{\mathrm{y}}=2.5 \mathrm{~m} \quad \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}$
$\Delta(\mathrm{PE})_{x}=$?
$\Delta(\text { P.E })_{y}=$?
$W_{x}=$? $\quad W_{y}=$?

$$
\begin{align*}
& \Delta(P \cdot E)_{x}=m_{x} g \Delta h_{x}=10 \times 10 \times(1-0)=100 \mathrm{~J} \tag{1}\\
& \Delta(P \cdot E)_{y}=m_{y} g \Delta h_{y}=10 \times 10 \times(2.5-0)=250 \mathrm{~J}
\end{align*}
$$

(7) الاختيار المبحيع هو

$$
\begin{align*}
& W_{x}=F d=m_{x} g h_{x}=10 \times 10 \times 1=100 \mathrm{~J} \\
& W_{y}=F d=m_{y} g h_{y}=10 \times 10 \times 2.5=250 \mathrm{~J}
\end{align*}
$$

(7) \therefore

$7.5 \times 10^{4} \mathrm{~J}(\leftrightharpoons) \quad 5 \times 10^{4} \mathrm{~J} \Theta$
 رالراكب مئا 200 من ســطع الارض إلى الموضـ (1) ثم إلــى الموضع (2)، فـإن التنير نى طاقة الوضع عند انتقال العربة من سـطع $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right) \quad: \quad$:

$2.5 \times 10^{4} \mathrm{~J}(-$ $2 \times 10^{4} \mathrm{~J}$ (i) الموضع (2) يساو1 (i)
$7.5 \times 10^{4} \mathrm{~J}(3)$
$5 \times 10^{4} \mathrm{~J}$
$\mathrm{m}=200 \mathrm{~kg} \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{~h}_{1}=10 \mathrm{~m} \quad \mathrm{~h}_{2}=25 \mathrm{~m}$

$$
\Delta(\text { P.E })_{1}=? \Delta(\text { P.E })_{2}=?
$$

(1) غد انتقال العربة من سطح الارض إلى الموضع (1) : $\Delta(\mathbf{P} \cdot)_{1}=m g \Delta h_{1}=200 \times 10 \times(10-0)=2 \times 10^{4} \mathrm{~J}$
(1) الانتيار الصحيع هو
(r) غi انتقال العربة من سطح الاءرض إلى الموضع (2) :
$\Delta(\mathbf{P E})_{2}=m g \Delta h_{2}=200 \times 10 \times(25-0)=5 \times 10^{4} J$
©
ماذا المطلـوب هو حسـاب التنير فى طافة الوضت عد انتقال العربة من الموضـع (2) إلمى الموضع (1)، ما إجابثك ؟
 فباذذ علت أن طاقة الوضع للجسمين واحدة وكلتيهما متساوية، فان النسبة
(علما بأن : عجلة الجاذبية على سطح الأرض ستة أمثال عجلة الجاذبية على سطع القمر) $\frac{1}{3}$ (2)
$\frac{3}{1} \Theta$
$\frac{1}{6} \oplus$

CANon C K عند سطع الارض لتصمل إلى ارتفـا ع معـين :

(a)

(b)

(c)

فى أى مسار يكنذ الشغل المبذول لرفع الكرة أكبر ما يكن ؟
(1) جميع4 منساوية b a المسار i)
 $\frac{3}{1}(1)$
 الوضع (P.E) لكل من جســمين B ، A الرارتفاع كل منهما (h) عن سطح الأرض، فابن النسبة بين $\frac{1}{3}$
$\frac{1}{2}$

* معا سبق يمكن المقارنة بين طاقة الحركة وطاتة الوضب كما يلى :

() حرك الركاب من الموضى (A) إلى الموضى (B) بحيث يعطل الركاب على شد الشريط المرن إلى الخلف ويذله يختزن الشغل المبذول على الشريط المرن فى صودة طاقة وضع.

بالظلية الكهروضنوئية.
() احسب سرعة الركاب (V) بقسمة المسافة التى تحركها على الزمن الذى قطع فيه هذه المسافة.

تسجيل النتانج فى الجدول التالى :

$v^{2}\left(m^{2} / s^{2}\right)$	$\frac{1}{m}\left(\mathbf{k g}^{-1}\right)$	$\begin{gathered} \text { السرع } \\ v(\mathrm{~m} / \mathrm{s}) \end{gathered}$	الزمن t(s)	$\begin{aligned} & \hline \text { كـة الركاب } \mathrm{m}(\mathrm{~kg}) \end{aligned}$
\ldots	\cdots	...-.	\cdots	\ldots
\cdots	\cdots	\cdots	\cdots	\cdots
\cdots	\ldots	..-7-	\cdots	\cdots

 $v^{2} \propto \frac{1}{m}$

ريتفس من ذلك ان :

$$
\text { slope }=\frac{\Delta v^{2}}{\Delta\left(\frac{1}{m}\right)}=2 \mathrm{~K} \cdot \mathrm{E}
$$

الفيزباء فى خدمة البينة

: مسظم الطاقات التى يستخدمها ابإنسان تأتى من مصادر طاقة غير متجددة،

 فى توليد الكهرباء وتحويلها إلى العديد من صود الطاقة الللممة للحياة العقلية للبانسان وللحفاظ على البيئة.

(2) (الترتيب الصحيع اللسيارات الموضحة بالشكل المقابل تبعًا لطاقة حركة كل منها هو

$$
\begin{aligned}
& \mathrm{b}<\mathrm{c}<\mathrm{a} \oplus \\
& \mathrm{c}<\mathrm{b}<\mathrm{a} \Theta \\
& \mathrm{~b}>\mathrm{c}>\mathrm{a} \Theta \\
& \mathrm{c}=\mathrm{a}=\mathrm{a} \oplus
\end{aligned}
$$

(1)

البيانية بين مربع مقدار سرعة الجسم (v²) ومقلوب كلثة (1) (1)
 0.5 J (i)

(1) التنير فى طاقة حركة السيارة يساوى

$$
\text { m } 4 \mathrm{~J} \leftrightarrow
$$

.
(1)

ज

$\frac{2}{1}(4)$	$\frac{1}{2}(1)$
$\frac{4}{1}(4)$	$\frac{1}{4} \Theta$

الدرس الشانق

ك米（0）

$$
\begin{array}{ll}
\frac{3}{8} m v^{2} \Theta & \frac{1}{8} m v^{2}(1) \\
\frac{1}{2} m v^{2} \Theta & \frac{1}{4} m v^{2} \Theta
\end{array}
$$

 فنكن ملاقة حركة الجسم هـ
0.2 J 〒
0.1 J （1）
2 J （3）
$1 \mathrm{~J} \Theta$
 200 m／s 9800 J （－） 980 J（1） $588 \times 10^{3} \mathrm{~J}$（〕） $588 \mathrm{~J} \Theta$
 لحظة خروجها من المطاط
（Y）متسط قوة مقاومة المطاط للقذيفة يساوى
$-12.5 \mathrm{~N} \rightleftharpoons$
-12500 N ©

$$
12.5 \mathrm{~N} \mathrm{(1)}
$$

$$
12500 \mathrm{~N} \Theta
$$

(1) ماتة حركة

$$
\text { - } \text { ماقة نوية }
$$

$8 \times 10^{4} \mathrm{~J} \bigodot$	$2 \times 10^{4} \mathrm{~J}$（1）
$14 \times 10^{4} \mathrm{~J}$（）	$10 \times 10^{\mathrm{t}} \mathrm{J} \Theta$

$$
\begin{aligned}
& \text { (ج) طهامة وضّ }
\end{aligned}
$$

$$
\begin{align*}
& \text { (1) الشنل الذى تبذله قوة مقاومة المطاط على القذية يساوى } \\
& -1 \mathrm{~J} \text { (}) \tag{1}\\
& -1000 \mathrm{~J} \text { () } \\
& 1000 \mathrm{~J} \oplus
\end{align*}
$$

. 2 kg عليها كتاب كتر
 (7 m/s ${ }^{2}$

20 kg (i)
50 kg ?
$100 \mathrm{~kg} \rightleftharpoons$
196 kg (ㄱ
، 100 kg الشكل المقابل يوضت رافع أثقال يرفع كتلة مقدارها ت (©

فيكن الشغل المبذول بواسطة رافع الأثقال هو
($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$: علما بان $)$
100 J (i)
200 J
$1000 \mathrm{~J} \rightleftharpoons$
2000 J (3)
(12) ومل رجل إلى شقته صعودًا على السلم مرة، وباستخدام المصعد مرة ثانية، أى العبارات التاليح مصية! (i) ماقة وضـع الرجل أكبر عند صـقره السلم (ب) ماتاتة وضنى الرجل أكبر عند استخدام المصعد
 (د) (ـ) داقة وضن الرجل متساوية فى الحالتين
(i)
() أيهما أكبر طاقة وضع الماء أعلى شلال أم طاقة وضعه عند تاع الشلال ؟ ولماذا ؟

السبب	الموضّ ذو طاتة الوضّ الآكبر	
لأن سرعة الماء أعلى الشـلال أكبر من سرعت فى تاع الشـلهل	أعلى الشللا	(i)
لأن طاقة الوضى تزداد بزيادة الارتفاع	أعلى الشلال	(-)
لأن سرعة الماء فى قاع الشلال أكبر من سرعته أعلى الشِل	أسفل 8الشلال	\bigcirc
لأن طاقة الوضع تزداد بنص الارتفاع	أسفل الشلال	(1)

يمبع له طاقة وضب الصندوق (b) هو
1.3 m (i)
1.5 m ب
$3 \mathrm{~m} \Theta$
5 m (3)

(1)

Θ

(-) الأصلى (d) هو

(i)

أسئلـــة المقـــال

©
(1) طاقة الحركا كيلة قياسية.
(Y) ماتة حركج جسم ساكن تساوى مفر .
(r) عند قذف جسم رأسيًا إلى أعلى تزداد طاقة الوضع له الثناء المعقر.

O اكتب العلاهة المياضية التى يمثها الاشكال البيانية التالية قها يعبر من ميل الخط المستيم :

P.E(J)	$\mathrm{v}^{2}\left(\mathrm{~m}^{2} / \mathrm{s}^{2}\right)$

״حيث (v) سرعة الجسم، (m) كتلة الجسم، (P.E) طاقة الوضم، (h) الارتفاع،
(艹 تارن بين طاقة الوضع المرنة و طاقة الوضع التاقاقلية (من حيث : المفوم).

2 m		
$\frac{\mathrm{~m}}{2}$		
2 v		
$\frac{\mathrm{v}^{2}}{2}$		
4 v		
slope $=\ldots(\mathrm{J})$	$\mathrm{m})$	$\mathrm{m}(\mathrm{kg})$
slope $=\ldots \ldots(\mathrm{J})$		

2.5
5
25
1500
2500

0
5
25
125
200

(K.E) (1)	(v) السرها	الكه1
$\cdots . . .(1) ~ J ~$	$10 \mathrm{~m} / \mathrm{s}$	50 kg
5000 J	$\ldots(4) \ldots . .0 \mathrm{~m} / \mathrm{s}$	400 kg

عالفسـلالول

ا

 $\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

فى طاقة وضى السيارة من بداية المندر إلى أسفله هو

$5.8 \times 10^{5} \mathrm{~J} \bigodot$	$4.9 \times 10^{5} \mathrm{~J} \oplus$
$8.6 \times 10^{5} \mathrm{~J} \bigodot$	$6.7 \times 10^{5} \mathrm{~J} \Theta$

 بسـرعة ابتدانيـة 8 m/s 8 وفــى اتجــاه يميـل على الائفقى بزاوية 60، فان التغير فى الطاقة الحركية للكـرة مـن نقطة قذفهـا (O) إلى أقصـى ارتفا ع تصل إليه عند النقطة (A) يساوى

ما كانت عليه.
(V) (V) إذا قلت طاقة حركة كرة إلى الثك فابن هذا يعنى أن سرعتها
$\frac{1}{9}$ ب قلت إلى
(i)
(ـ) زادت إلى 3 أمثال

$$
\frac{1}{\sqrt{3}} \bigodot
$$

(1) إذا كان وذن جسم على سطح الأرض 6 أمثال وذنه على سطح القمر، فإن النسبة بين طاهة حركه على

سطح الأرض وطاقة حركته على سطح القمر عندما يتحرك بنفس السرعة تساوى 6
$\frac{1}{1} \fallingdotseq$
$\frac{1}{6}$ (i)
$\frac{36}{1}$ (1)

(9 الشكل المقابل يوضح العلاقة بين القوة المؤثرة
على جسم وإزاحته، فتكن العلاقة بين الشغل
المبذول والإزاحة

(د)

Θ

(ب)

(1)
r-9] $(r y / f)-1 \rightarrow-r_{p-1}$

$$
(\mathrm{K} \cdot \mathrm{E})_{\mathrm{A}}=(\mathrm{K} \cdot \mathrm{E})_{\mathrm{B}}=0
$$

$$
(\mathrm{K} \cdot \mathrm{E})_{\mathrm{A}}=(\mathrm{K} \cdot \mathrm{E})_{\mathrm{B}} \neq 0
$$

$$
(\mathrm{K} \cdot \mathrm{E})_{\mathrm{A}}<(\mathrm{K} \cdot \mathrm{E})_{\mathrm{B}} \odot
$$

- أجب عما يأتى (IV:

ك كمية تحرك الجسم A A وكتيهية تحرك الجسم B على الترتيب.
\qquad
. وضت لماذا لا تبذل القوة الجاذبة المركزية شفلاء على الإلكترن أثثاء دودانه.

$$
\begin{aligned}
& \text { احسب ارتفاع الجسم عن سطح الأرض. } \\
& \text { (} g=10 \mathrm{~m} / \mathrm{s}^{2} \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& (\mathrm{K} . \mathrm{E})_{\mathrm{A}}>(\mathrm{K} . \mathrm{E})_{\mathrm{B}} \bigcirc
\end{aligned}
$$

.الـتـار

 على سطح القمر، احسب الارتفاع الذى يمل إليه الحجر مستخدنا معادلات الشغل رالطاتة. (علمًا بأن : عجلة الجاذبية على سطع القمر = $\frac{1}{6}$ عجلة الجاذبية على سطع الارض)
\qquad
\qquad
\qquad
\qquad
\qquad
 للدة 4.5 s، احسب مقدار السرعة التى تتحرك بها المكنسة.
\qquad
\qquad
\qquad
\qquad

 أى الجسمين يبذل عليه شغل أكبر ؟

\qquad
\qquad
\qquad
\qquad
\qquad

اذتبـار
 على
 الفمر الثالى

نوآد الآعلمr|lالمتوقعة

--

قاكنون بُعاء اللطـةّة

في هذا الفصل سوف نتعرف :
4 استنتاج قانون بقاء الطاقة الميكانيكبة.
4 قانون بقاء الطاقة فـى الحيـاة العمليـة.

بافة حركة فى شـبال الباء

طاقة ميكانيكية تتمثل فى حركة السيارات والفطارات

طامٌة الوفع8 الكيميانية المختزنة
(بنزن وغن الوقود ذلك)
طامقة الوفُع

.
: تيها بلى سندرس إحلى صند قانون بقاء الطاقة وهو قانون بقاء الطاقة الميكانيكية.

الستأتاج قانون بقاء الطاقة الميكانيكية

$\therefore a=-g$
$\therefore \mathrm{v}_{\mathrm{f}}^{2}-\mathrm{v}_{\mathrm{i}}^{2}=-2 \mathrm{gd}$

 المبنل على الجسم بفعل قوة الجاذبية أثناء ارتفاعه يعمل على : (ا) زيادة طاقة الوضـع للجسم بزيادة الارتفاع.
(r) نقص طاقة الحركة للجسم بنقص سرعته.
$v_{f}^{2}-v_{i}^{2}=2$ ad : ن المعادلة الثالثة الحركة
: : الجسم يتحرك لأعلى فى عكس اتجاه مجال الجاذبية الأرضية.

بفرب المعادلة السابقة فى (

$$
\begin{aligned}
& \frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=-m g d \\
& \because d=y_{f}-y_{i} \\
& \therefore \frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=-m g\left(y_{f}-y_{i}\right) \\
& \frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=-m g y_{f}+m g y_{i} \\
& m g y_{f}+\frac{1}{2} m v_{f}^{2}=m g y_{i}+\frac{1}{2} m v_{i}^{2} \\
& \quad(\text { P.E })_{f}+(\text { K.E })_{f}=(\text { P.E })_{i}+(\text { K.E })_{i}
\end{aligned}
$$

 وأنه : كا فـا زادت طاقـة حركـة الجسـم فـإن ذلك يكِن على حسـاب طاقـة الوضـع (تقل طاقـة الوضـع) والمكس صحيـع "ماسبق يعكن تعريف الطاقة الميكانيكية وقانفن باء الطاتة الميكانيكية كالتالى : - قانوه بقاء الطاقة المـيكانبيكية

(1) عندما يتحرك جسم رأسيًا تحت تآثير قرة الجاذبية الارضيةّ وبإهمال مقاومة الهواه، فابن :

(Y) فى حاله البندول البسيط كما بالشكل :

C A A بتطبيق قانمن بقاء الطاقة الميكانيكية على الموضعين (Y)
 $\left(\mathrm{P} \cdot \mathrm{E}_{\mathrm{i}}+(\mathrm{K} \cdot \mathrm{E})_{\mathrm{i}}=\left(\mathrm{P} \cdot \mathrm{E}_{\mathrm{f}}\right)_{2}+\left(\mathrm{K} \cdot \mathrm{E}_{\mathrm{f}}\right)_{2}\right.$
 $1470+0=0+\left(\frac{1}{2} \times 5 \times\left(v_{f}\right)_{2}^{2}\right)$
 $\left(\mathrm{v}_{\mathrm{f}}\right)_{2}=24.25 \mathrm{~m} / \mathrm{s}$

○

قُذف جسم من نقطة عند سطع الأرض رأسيًا إلى أعلى بسرعة 10 m/s، فإن أقصى ارتفا ع يِحل إليه الحسم ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$: علمُا با

1 m (ب)
0.5 m (i)

10 m (1) $5 \mathrm{~m} \bigodot$

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{i}}=10 \mathrm{~m} / \mathrm{s} \quad \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{~h}=\text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} m v_{i}^{2}=m g h \\
& \frac{1}{2} \times(10)^{2}=10 \times \mathbf{h} \\
& h=5 \mathrm{~m}
\end{aligned}
$$

 على الترتيب من ارتفاع h عن سطع الارض كـا با بالشكل، ما

$$
\begin{aligned}
& \text { لى طريقهما إلى سطح الارض } 9 \\
& \text { (ب) طاتة الحركة } \\
& \text { (1) ماقة الوضع } \\
& \text { (ـ) الماقة الميكانيكية }
\end{aligned}
$$

b

nolu

(1) طاتة: الوضع
P.E $=\frac{1}{2} \times 2 \mathrm{mgh}=\mathrm{mgh}$

$$
\text { P.E }=\frac{1}{2} \mathrm{mgh}
$$

?() طاتة الحركة
$K . E=\frac{1}{2} \mathrm{mgh}$

ج الطاتة المكانيكين

$$
\mathrm{E}=\mathrm{P} \cdot \mathrm{E}+\mathrm{K} \cdot \mathrm{E}=2 \mathrm{mgh}
$$

$$
\mathrm{E}=\mathrm{P} \cdot \mathrm{E}+\mathrm{K} \cdot \mathrm{E}=\mathrm{mgh}
$$

(1) السرعغ

$$
\because \mathrm{v}_{\mathrm{f}}^{2}=\mathrm{v}_{\mathrm{i}}^{2}+2 \mathrm{gd}
$$

$$
\because v_{i}=0, d=\frac{h}{2}
$$

$$
\therefore \mathrm{v}_{\mathrm{f}}^{2}=2 \mathrm{~g} \frac{\mathrm{~h}}{2}
$$

$$
\therefore \mathrm{v}_{\mathrm{f}}=\sqrt{\mathrm{gh}}
$$

(․) الاختيار الصيح هو :

$$
\begin{aligned}
& h=2.5 \mathrm{~cm}=0, C_{b}^{v}
\end{aligned}
$$

$$
\begin{aligned}
& m=4 \mathrm{~kg} \quad v \quad 0.49 \mathrm{~m} / \mathrm{s} \\
& \text { E.jis tritan } 4 \\
& 2.45 \mathrm{~m} / \mathrm{s} \bigcirc\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2} .\right. \\
& (P E)_{a}+(K \cdot E)_{a}=(P \cdot E)_{b}
\end{aligned}
$$

$$
\begin{aligned}
& v_{\max }=\sqrt{2 \mathrm{gh}}=\sqrt{2 \times 9.8 \times 2.5 \times 10^{-2}}=0.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \text { af }
\end{aligned}
$$

 $\frac{2 h}{3} \fallingdotseq$
$\frac{3 h}{2}$ (ゝ)

$$
\begin{aligned}
& \frac{3 h}{4} \oplus i \\
& \frac{h}{2} \oplus
\end{aligned}
$$

قانون بقاء الطاقة فى الحياة المماية

; نربد أمثـة كثيرة اللتحمل المتبادل بين طاقة الوضع (P.E) وطاقة الحركة (K.E)، منها :

(1) الولب العالى فى العاب القوى
 طاتة حركة.

كُ يُستخدم فى الملاهى محرك ضنم السِم
 لرفع العربات والاشخاص داخلها علها عكس الجاذبية، وعندما تصل عريا

 ثابتـا ، ولذلك يجـب أن يكمن المرتفع الأول هو الأعلى لإختزان أكبر قدر

ممكن من طاقة الوضّ فى العربات.

© (0) الماء المختزن خلـف السد

حيث إن مســتواه أعلى من مســتمى الماء أمام السد ويذلك يختزن طاقة وضنع تححل إلى طاقَ حركة عندما يبدأ سقوط الماء عبر السد.

- إثبات قاننن بقاء الطاقة الميكانيكية.

सhb

- شريط مترى.
- شريط لاصق.
-ساعة إيقاف.
. كرة تنس.
- ميزان رقمى.

Sthey

(1) عيّن كثة كرة التس بالجرام باستخدام الميزان الرقمى ثمث حولها إلى الكيلوجرام.
((() الصق فطّ شريط لاصق على الحانط على ارتفاعات مختلة (()
 (ع) كرن المحاولة السابقة عدة مرات.
(0) كرر الخطوتين (ץ) ، (() للارتفاعات الأخرى (2 m, 2.5 m) مـ تسجيل النتانع فى الجدلل التالى :

($\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$: علمٌا بأن)
(1) احسب طاقة الوضب عند كل ارتفا ع من العلاقة : P. E = mgh

$$
v_{f}=v_{i}+g t \quad: \quad ل \quad \text { لحركة }
$$

حيث : vi
K.E= $\frac{1}{2} \mathrm{mv}_{\mathrm{f}}^{2}$: احسب طاقة حركة الكرة لحظة اصنطدامها بالارض من العلاقة () الرة () (9) سجل النتانْج السابقة فى الجدلل التالى :

- بريادة الارتفاع تزداد طاقة الوضنع.
-طاتة الوضع عند أقصى ارتفاع = طاقة الحركة عند سطح الارض = الطاقة الميكانيكية. :uls

الطاتة |لميكانيكية = طاتة المضع + باتة المركة= متدار ثابت
 سـرعته أكبر لحظـة انطلاقه 9

(r)

(1)
(I) (i) السهم)
(i) السهم (i)

〒 كلاهما ينطلق بنفس السرعة
لا يمكن تحديد الإجابة

© إذا تُذف جسم رأسيًا لأعلى، فأى الكميات الفيزيائية الآتية تساوى حفر عند أْصى ارثناع ؟ ?
(i) توة الجاذبية الأرضية
(3) السرعة

ج ط باقة الوضح
(1) عند قذف جسم لأعلى فإنه أثناء الصحود (i) تزداد طاقة الحركة وتتناقص طاقة الوضع () تَتناقص طاقة الحركة وتزداد طاقة الوضع

٪ ت تزداد كل من طاقتى الوضن والحركة
() تَناقص كل من طاقتى الوضع والحركة
(1) عند تذف جسم لأعلى ثم عودته إلى النقطة التى قَذف منها، فابن طاقته الميكانيكية
ب(لا تتغير طوال الحركة
(i) تزداد طوال الحركة
(ـ) تزداد أثناء الصعود وتقل أثناء الهبوط
(6) تنزلق كرة على سطح مائل مهمل الاحتكاك، فإن : أثتاء انزلاقها. \qquad (1) سرعتها
(i) تزداد بمعدل منتظم
() لا تـفير ٪ ((
(ب) تقل ولا تساوى المفر
(3) لا تـغير
(i) تزداد
©
 ج ((3) لانتزان أكبر طاقة وضن فى العربات

لزيادة قوة جذب الأرض للعربات
? ? التقليل مقاومة الهواء

................ الشكل المقابل يوضح بندول بسيط يتأرجع، فتكن (1) () باقة الحركة عند C قيمة عظمى
B () الطاقة الميكانيكية عند A > الطاقة الميكانيكية عند
e
() باقة الوضع عند C > ماقة الوضع عند A

$$
\begin{align*}
& \frac{1}{2} \bigodot \\
& \frac{1}{4}(\tag{2}
\end{align*}
$$

(9) سقط جسم كتله m سقوطُا هرُا ، فإذا كانت سرعته عند منتصف المسافة بين موضع سقوطه وسطح الاارض

$$
\begin{aligned}
& \frac{1}{2} m v^{2}(9) \\
& 2 m v^{2}(1)
\end{aligned}
$$

$$
\begin{array}{r}
\frac{1}{4} m v^{2} \oplus \\
m v^{2} \Theta
\end{array}
$$

 تساوى

$$
5 \mathrm{~kg} \bigodot
$$

$$
1.25 \mathrm{~kg} \text { (i) }
$$

200 kg (2) $50 \mathrm{~kg} \Theta$
 عند النقطة B هى 800 J، فإن طاتة حركت عند النقطـة A تساوى

$$
\text { (} \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2} \text { : علمًا بَن }
$$

$400 \mathrm{~J} \bigodot$
200 J (i)
800 J (ㄱ
$600 \mathrm{~J} \Theta$

$$
\begin{aligned}
& \text { (1) } \\
& \text { اللرجل أكبر ما يككن عند الوضّ } \\
& \text { (I) (i) } \\
& (r)
\end{aligned}
$$

(0 ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$: علمّا بان 20 m
400 J (-)

700 J (3) $500 \mathrm{~J} \Theta$

$25 \mathrm{~m} / \mathrm{s}$ (-)	$5 \mathrm{~m} / \mathrm{s}$ (i)
$100 \mathrm{~m} / \mathrm{s}$ ()	$50 \mathrm{~m} / \mathrm{s} \odot$

$$
\begin{aligned}
& \text { (g=10 m/s : علمّا بأن (} \\
& \text { (ا) أتصى ارتفاع يمل إليه الجسم يساوى) } \\
& \begin{array}{r}
20 \mathrm{~m}(\bigcirc) \\
200 \mathrm{~m}(9)
\end{array} \\
& 1 \mathrm{~m} \text { (i) } \\
& 40 \mathrm{~m} \odot
\end{aligned}
$$

$$
\begin{aligned}
& 20.21 \mathrm{~m} / \mathrm{s} \text { © } \\
& 14.14 \mathrm{~m} / \mathrm{s} \text { (i) } \\
& 30.42 \mathrm{~m} / \mathrm{s} \text { }
\end{aligned}
$$

(1) (1) قذن جسم رأسيًا لاعلى من نقطة عند سطع الارض

 : وارتفاءه عن سطح الارض (h.E) ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$: علمّا بأنا

$$
\begin{aligned}
& 120 \text { J }(- \\
& 60 \text { J (i) } \\
& 240 \text { J () } \\
& 180 \mathrm{~J} \Theta
\end{aligned}
$$

((1) ($10 \mathrm{~m} / \mathrm{s}^{2}=$ علة الجاذبية الأرضية)
17.75 J ©
22.25 J ()

$\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
 (1) (إن الشغل الذى يبذله الرجل لرفع الصندق يساوى

 $19.8 \mathrm{~m} / \mathrm{s}(\mathrm{P}$ $14 \mathrm{~m} / \mathrm{s}$ (i)
$392 \mathrm{~m} / \mathrm{s}$ (2)
$196 \mathrm{~m} / \mathrm{s} \Theta$

$$
\begin{array}{ll}
\\
\frac{1}{2} \bigodot & \frac{1}{3} \oplus\left(\frac{(\mathrm{~K} . \mathrm{E})_{1}}{(\mathrm{~K} .)_{2}}\right) \\
\frac{3}{1} \odot & \frac{1}{1} \Theta
\end{array}
$$

"米
 ($g=10 \mathrm{~m} / \mathrm{s}^{2}$)

$10 \mathrm{~m} / \mathrm{s}$ (
$100 \mathrm{~m} / \mathrm{s}$ (3)
$50 \mathrm{~m} / \mathrm{s} \odot$

هنحنى أملس مبتدُأا من النقطة x (1) فابن سرعة الجسم عند النقطة y تساوى
$5 \mathrm{~m} / \mathrm{s} \rightleftharpoons$
$3 \mathrm{~m} / \mathrm{s}$ (i)
$6.5 \mathrm{~m} / \mathrm{s}$ (3)
$6 \mathrm{~m} / \mathrm{s} \rightarrow$
(إذا ومل الجسم عند النقطة Z بسرعة 7 m/s هيكن ارتفاع النقطة Z عن سطع الارض يساوى

$7.55 \mathrm{~m}(9$	$8.45 \mathrm{~m}(\mathrm{i})$
$6.85 \mathrm{~m}(4)$	$7.25 \mathrm{~m} \Theta$

(0) (0) بنـدول بسـيط ينتقل أثنـاء، امتزازه مـن النقطة a إلى "النقطة b كما بالشكل المقابل، فابن : (ا) سرعة ئقل البندول عند النتطة b هى . .

$2.1 \mathrm{~m} / \mathrm{s} \bigodot$	$4.3 \mathrm{~m} / \mathrm{s}(\mathrm{i}$
$0.5 \mathrm{~m} / \mathrm{s} \bigodot$	$1.2 \mathrm{~m} / \mathrm{s} \bigodot$

(ا أتصى ارتفا ع يمل إليه ثتل البندول هو
31.9 cm ($)$ 20.5 cm (i)
36.9 cm (2)
$35.8 \mathrm{~cm} \Theta$

($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$) $\quad: 20 \mathrm{~m}$ ((1) (إن الثط البيانى المثل باللمن الاحمر يمثل (i) طاتة حركة الجسم (
(\odot (2) (2) الطاة الميكانيكية للجسم

)

طاتّ حركة الجسم	طاقة وضّ الجسم	
0	0	(i)
2000 J	0	
		(-)
0	2000 J	Θ
2000 J	2000 J	(1)

(0) فإن الطاقة الميكانيكية للجسم تساوى

500 J -
2000 J (1)

$$
0 \text { (i) }
$$

$1000 \mathrm{~J} \Theta$
(7) فإن سرعة الجسم عند النقطة a تساوى
$10 \mathrm{~m} / \mathrm{s}$?
$20 \mathrm{~m} / \mathrm{s}$ (د)

$$
0 \text { (i) }
$$

$14.14 \mathrm{~m} / \mathrm{s} \Theta$
(v) فإن سرعة الجسم عند النقطة b تساوى (V)

$$
\begin{align*}
& 10 \mathrm{~m} / \mathrm{s} \bigodot \\
& 20 \mathrm{~m} / \mathrm{s} \bigodot \\
&
\end{align*}
$$

$$
\begin{aligned}
& 10 \mathrm{~m} / \mathrm{s} \bigodot \\
& 20 \mathrm{~m} / \mathrm{s} \bigodot
\end{aligned}
$$

$$
14.14 \mathrm{~m} / \mathrm{s} \Theta
$$

 للجسـت والمسـافة (d) التى يقطعها من نقطة سقوطه فی اتحاه سطع الأرض، فان الكمية (y) تصثل
(i) سرعة الجسم ()

لجسم متذوف رأسياً إلى أعلى والزمن : بي ب
(1) أى الكهيات يمثها كل من المنحنى Aالمنحنى B \&

(r) العلاةَ بين الطاهة الميكانيكية اللجسم والزمن يمثلها الخط الاسوود فى الشكل اليانى

(1)

Θ

(-)

$-2400 \mathrm{~N}(\underset{-}{-}$
-4000 N ($)$

$$
\begin{aligned}
& -1600 \mathrm{~N} \oplus \\
& -3200 \mathrm{~N} \oplus
\end{aligned}
$$

25 kg تها (18) مـن السـكن عنــد النقطـة A وكانــت قيمة سـرعته عند
 فـى الطاقـة الميكانيكيـة نتيجـة الاحتـكا ($\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$: علمُا بــن الا

980 J (2)
0
530 J

أسئلـة المةــال

ثا

(1) جسم كتله 4 يسقط سقوطُا حرًا من ارتفاع 20 س 20 فق سطح الأرض، أكمل الفراغات الموجودة بالجبدل التالى متبرُا عجلة الجاذبية الأرضية $10 \mathrm{~m} / \mathrm{m}^{2}$:

الطاتة المكانيكية	طاته الحركة (J)	$\begin{aligned} & \text { السرعر } \\ & (\mathrm{m} / \mathrm{s}) \end{aligned}$	طاتها الوضع (J)	الإزاحة من نتطة السقوط (m)	النقطة
\cdots	\cdots	\square	\cdots	0	(I)
\cdots	...	5	\square	\cdots	(r)
\cdots	\cdots	\cdots	400	\square	(r)
\cdots	800		\cdots	\cdots	(ε)

هن النتاني التى توصلت إليها، حدد موضع النقطة أثاه السقوط التى تكن عندها : (1) الطاتة الميكانيكية للجسم مساوية لطاتة حركت.
 (r) باقة الحركة للجسم مساوية لطاقَة الوضع.

O اللتعبير عن اللحاهة بيغ بعض الكهياث النيزيانية له،

(r)

(r)

(1)

حدد أيها يصلح للتعبير عن العلاقة بين كل من : (ا) طاقة الوضب وارتفاع الجسم عن سطح الأرض. (Y) طاقة الحركة وارتفاع الجسم عن سطح الأرض.
 (0) عندما تبدأ عربة الملاهى فى الانزلاق من أقصى ارتفاع فابن سرعة حركهها تزداد تدريجيًا ، فسر ذلك.

ختر إجارتين من بين الإجابات المعطاة ؛ عندما يسفط جسم سقوطأ هرا فإنه أُثناء السقوط (i) تزدار الطاقة الميكانيكية
 ج
 ٪ـ تزداد طاقة الوضـ وتتناقص طاقة الحركة

سقط جسم من ارتفا ع 18 فوق سطح الأرض والشكل البيانى
المقابـل يوضـع العلاقَة بِين طاقــة حركة الجســ (K.E) ومربي سرعته (v20) أثناء السقوط، فإن

180 J = طاقة الجسم الميكانيك.
360 J =
360 J 4 تساوى 4 m
160 J 10 m تساوى () طاقَ حركة الجسم عند ارتفاع ارتاع
180 J 12 m تساوى ($)$ طاقة حركة الجسم عند ارتفاع

($10 \mathrm{~m} / \mathrm{s}^{2}$ (علمٌا بأن : عجلة الجانبية الأرضبـ)

¢
 6 m (
() بيكن وليد ومروان فى مبنى، فإذا قام وليد بإسـقاط كرةٌ من الدور الثانى بينا ثام مروان بإسقاط كرة أخرى لها نفس كتلة الكرة الاولمى من الدور الثالث لسْطّا الكرتان
(i) باقة وضب أكبر لحظة سقوطها (?) باقة وضح أقل لحظة سقوطها ج - طاقة حركة أكبر لحظة اصنطدأمها بالأرض (1) طاقة حركة أقل لحظة اصطدامها بالأرض (ـ) نفس طاقة الحركة لحظة اصنطدامها بالأرض

فى الشكل الموضح يسقط جسم من أعلى مبنى ارتفاعه 3 3 فتككن y (i) طاقة الوضب عند x ٪ y طاقة الوضن (ـ) طاقة الوضب عند x > طاقة الحركة عند k (هـ طاقة الوضـع عند y > طاقة الحركة عند k

اختر من القائمة ما يناسب الفراغات: 2 kg فى الشـكل المقابل يقوم شخص بإســقاط ككاب كتا من السكن رأسيًا، بإهمال قوة احتكاك الهواء يكن الشنغل
 الشـخص الواتقف أســفل المبنى هو J............... (1 ومقةار

130.4
 ($g=10 \mathrm{~m} / \mathrm{s}^{2}$)

من سـطع الارض.
15 m (\bigodot
35 m

الدركية تــاروى ماقة وضنهع على ارتفأع 7.5 m (i)
$17.5 \mathrm{~m} \leftrightarrow$

(

Θ

(-)

(i)

200 J (90$) \quad 100 \mathrm{~J}(\mathrm{i})$
 سرعة الكرة عند النتطة C هى 8m/s. فابن ارتفاع النتطة C عن سطع الأرض يساوى $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

6.8 m (1)
$8.8 \mathrm{~m} \rightarrow$

$$
\frac{\mathrm{h}}{2} \bigodot
$$

$\frac{4 \mathrm{~h}}{5}$ (3)

$$
\begin{equation*}
\frac{h}{4}(i \tag{3h}
\end{equation*}
$$

 $\frac{1}{1}(7)$
$\frac{1}{4}$ (3)

5700 J
11400 J

- ic S
sulu vojl er
$\frac{4}{1}$ (i)
$\frac{1}{2} \Theta$

السقوط تساوى
2850 J (i)
$8550 \mathrm{~J} \rightleftharpoons$

kge 19
سقوطه وســــ"
$5 \mathrm{~m} / \mathrm{s}$ (i)
$25 \mathrm{~m} / \mathrm{s} \div$
$50 \mathrm{~m} / \mathrm{s} \Theta$

C

$$
\begin{aligned}
& \text { (B) بـأ زجل الحزكة هن السكون هن النقطة A على سطع } \\
& \text { مبهـل الالحتكالك والســتمز فى الحركـة حتى وصل إلى } \\
& \text { النقطة C كـا هو موضح فى الشكل المقابل، فابن سرعة } \\
& \text { الزجل عند النقطة C تساوى } \\
& \left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& 15 \mathrm{~m} / \mathrm{s} \bigodot \quad 10 \mathrm{~m} / \mathrm{s} \text { (i) } \\
& 30 \mathrm{~m} / \mathrm{s} \text { (3) } \\
& 25 \mathrm{~m} / \mathrm{s} \rightleftharpoons
\end{aligned}
$$

فــر ذّنـ.

\qquad
\qquad
 P.E $=\mathrm{mg} \ell(1-\cos \theta) \quad$ العظى بالنسبة إلى موضع اتزانه تحسب من العلاقة
\qquad
\qquad
\qquad
\qquad
\qquad

اختـــار

عن سـطـع الأرض، أوجد النسبة بين طاتة الحركة عند النقطة x وطاقة y الحركة عند النقطة

v=

amioll

 سـرعتبا إلى 8 m/s خلال زمن 6 m ، فان مقدار متوسـط القوة الموْثرة على السـيارة خلال هذه اللترة واتجاهبا

$$
\begin{aligned}
& 2400 \text { N (i) } \\
& 2400 \text { N } \because \\
& 1200 \text { N } \Theta \\
& 1200 \text { N (} 1 \text { عكس اتجاه الحركة }
\end{aligned}
$$

(1) عندما يتحرك جسم حركة دانرية منتظمة فان

(1) طفل كتله 40 يتحرل أفتيًا فى صـالة التزلج، فيكن الشغل الذى تبذله قوة وزنه عندما يقطع مسافة

100 J (200 J ©
التنير فى طانةَ حركه يساوى ا...........

200 J (1)
$150 \mathrm{~J} \Theta$

 اتجـاه ثابــت والإزاحـة (d) التـى يقطعها الجسم
 القوة على الجسم هو
37.5 J (-)
12.5 J (i)

75 J (1)

(4) منتظم تحت تأثير قوة محملة مركزية 100 فتككن قيمة
\qquad الزمن الدوى لحركة الجست هى
1.26 s (-)
0.63 s (i)
6.28 s (1)
$3.14 \mathrm{~s} \rightleftharpoons$
 B B

$\frac{2}{1} \bigodot$	$\frac{1}{1}(i$
$\frac{1}{4}()$	$\frac{1}{2} \Theta$

(1) الشـكل البيانــى الذى يمثل العاقة بين السـرعة المداريـة (v) لعدة أقمار صناعية تـدود حول نفس الكركبـ ومقلوب الجذر التربيعى لنمف قطر مدار كل مننها

(1)

\odot

(7)

(i)

$$
\begin{array}{ll}
5.94 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2} \odot & 1.99 \times 10^{-7} \mathrm{~m} / \mathrm{s}^{2}(1) \\
4.43 \times 10^{7} \mathrm{~m} / \mathrm{s}^{2} \bigodot & 1.7 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2} \bigodot \\
\hline
\end{array}
$$

4 m ()

 زمن قدره s 90 لعمل 45 دورة كاملة، احسبب العجلة المركزية لهذا الجسم.

米 (188 احسب عدد أيام السـنة الارضية إذا تخيلنا أن المسـافة بين مركزى الأرض والشمس قلت إلى نصـا قيمتها ، بفرض ثبات مدة دوران الأرض حول نفسها (علما بأن : عدد أيام السنة الأرضبية = 365.25 يم)
\qquad
\qquad
\qquad
 ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
الأرض، احسب مقدار الشغل الذى يبذله الرجل على الحقيبة.
(17i (17)

(3) للصف الأول الثانوى

(R (1) ($\mathrm{R}=6400 \mathrm{~km}$: علمًا بأن ارتا

$$
\begin{aligned}
& \text { سساوى تقريبًا } 60 \mathrm{~km} \text { (i) } \\
& 30 \mathrm{~km} \bigodot
\end{aligned}
$$

$$
\begin{aligned}
& 64 \mathrm{~km}(\bigcirc \\
& 32 \mathrm{~km}(\lrcorner)
\end{aligned}
$$ 28×103 N

$$
27 \mathrm{~m}(9) \quad 20 \mathrm{~m} \bigodot \quad 15 \mathrm{~m} \bigodot \quad 9 \mathrm{~m}(\mathrm{i}
$$

(T) سقط جسم كتله 1 kg من ارتفاع 180 من سطح الآرض، فابن كمية الحركة الخطية للجسم لحظة ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
اصطدامه بسطح الأرض تساوى .

$$
60 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \text { (i) }
$$

$180 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \rightleftharpoons$
(3) اتجـاه السـرعة المداريـة لقمر مناعى يدد حمل الارض يصنع مـ اتجاه تـوة الجاذبية الارضية زاوية مقدارها
180° (ㄱ) $90^{\circ} \odot$
$45^{\circ} \div$
zero (i)

الشكل المقابل يوضح ثلاث كرات Z ، y x موضوعة

 المـادى بين الكرتين x x y وقوة التجاذب المادى بين
الكرتين

$$
\begin{align*}
& \frac{8}{1} \bigodot \tag{1}\\
& \frac{1}{\sqrt{2}} \bigodot
\end{align*}
$$

 الهيارة هـى
i(المركبة الرأسية لقوة رد الفعل فقط ج (المركبة الأفقية لقوة الاحتكاك فقط
ج - مجموع المركبتين الرأسيتِين لكل من قوة رد الفعل وقوة الاحتكاد
(ـ) مجموع المركبتين الأفقيتين لكل من قوة رد الفعل وقوة الاحتكال
 (اعتبر مقاومة الهواء مهيلة)

ج
(ـ) الطاةة الميكانيكية

بمبح لهما نفس المقدار من (i) السرعة

ج

$$
\begin{array}{ll}
3.96 \times 10^{7} \mathrm{~m} \bigodot & 3.54 \times 10^{7} \mathrm{~m}(1) \\
3.77 \times 10^{8} \mathrm{~m}() & 3.24 \times 10^{8} \mathrm{~m} \bigodot
\end{array}
$$

(9) جسمان يتحركان على مستى أفقى أملس. فإذا كان حركة الجسم الاول وطاةَ حركة الجسم الثانى $)$ (少
$\frac{4}{3}$ (1)
$\frac{3}{4} \Theta$
$\frac{2}{3} \bigodot$
) وإلارتفاع (h (h) سن سطح الأرض أثناء المعود هو

الجسم (P.E)

(2)

\odot

\odot

(1)

2.7 m ism

 اهسبب الزاوبا بين اتجاه القوة واتجاه الإزاهة،
. (8)

(r)

(1)
 فى زمن T، فإذا قلت القوة الجاذبة المركزية الموثرة عليه للربع أنبت أن زمنه الدورى يزداد اللضعـر
 هس الفترة الزمنية التى تكون ليها سرعة الجسم ثابتة

\qquad
\qquad

 الحجر إذا انقطع الخيط؟

تساوى عدديًا نصف وزنها احسب سرعة السيارة.
\qquad
\qquad
\qquad
\qquad

Lillun إم

囲) 回

 مقاومة الهواء والاحتكال تكن
(i) طاقة حركة الكرة عند الموضعين d ، c متساوية

ج (
ج
() جميع ما سبق
(ا) جسـم يدو فى مسـار دائرى نصف قطره r بسـرعة V تحت تآثير قوة مركزية F، فإذا زادت ســرعت إلى $\sqrt{2} \mathrm{~F}$

$$
\begin{array}{lr}
24 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \bigodot & 8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}(1) \\
48 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}() & 40 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \bigodot
\end{array}
$$

فان التنير فى كعبية حركته خلال هذه المدة يساوى

؟
? (1) قوة الاحتكال فقط

Y Y إذا تناقصت الطاقة الحركية لسيارة إلى ريع ما كانت عليه، فابن كمية حركها ? (1) تظل كما هـ هـ〒 تزداد لاربع أمثالها
(A) الأشـكال التالية تعبر عن أربعة أجسـام متسـاوية فى الكسة تكرك حركة دائرية منتطمة، أى من الأجسام يتأثر بقوة جاذبة مركزية أكبر ؟

(1)

Θ

(-)

(i)
 تقل توة التجاذب المادى بينهها اللانصف يساوى
$2 r$ (1)
$r e$
$\frac{\mathrm{r}}{2} \bigodot$
$\frac{\mathrm{r}}{4}$ (1)

أبّ أبما يأتى (IV: II) :

 موضح باتجاه السـهـ على الشكل، فإذا تران الطفل الخيط فجأة والحجر عند الموضع x، وضح على الشكل اتجاه حركة الحجر لحظة إفلاته.

ا(I) الشـكل البيانى المقابل يوضـع تغير العجلة مع تغير مقدار
 احسب النسبة بين كتة الجسم A وكة الجسم B
 السرعة الابتانية، قارن بين طاتتى حركتيهما لحظة امطدامهـيما بسطع الآرض.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(170 احسـب كتلـة الأرض إذا علمـت أن عجلة الجاذبيـة عند سـطح الأرض 6.8 m/s 9.8 وثابت الجذب العام $6.36 \times 10^{6} \mathrm{~m}$ N.m²/kg2
\qquad
\qquad
 $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$ احسب أقصـى عجلة يمكن أن يكسبها الجسم أثناء صعوده.
(1) بـدر تمر صناعى حل كوكب بسـرعة مماسـية 9 وكانت المســافة بين القــر المناعى ومركز الكوكب 5.43×106
$1.21 \pi \times 10^{3} \mathrm{~s} \because$
$6 \pi \times 10^{3} \mathrm{~s}$ (
$1.21 \pi \times 10^{6}$ s (i)
$6 \pi \times 10^{6} s \odot$
(i) إذا تحـرك جســم من السـكن بعجلـة منتظمة (a) فإن الشـكـل البيانى المعبر عن العلاقـة بين الإزاحة

(د)

المطوعة وطاقة حركته هو

(3) كرتان متالامستان ومتماتمان كتة كل منهما m ونصف قطر كل منهما r، فابن مقدار قوة الجذب المادىى المتبادلة بينهما يكنف

$$
\begin{align*}
& \frac{\mathrm{Gm}^{2}}{4 \mathrm{r}^{2}}(+) \tag{2}\\
& \frac{\mathrm{Gm}^{2}}{2 \mathrm{r}^{2}} \text { () }
\end{align*}
$$

(0) بزيادة بُعد القمر المناعى عن مركز الارفن فابان

السرها الدارب4	الزمن الدودى يقل	
تیّل		(1)
تزداد	يزداد	(-)
تزداد	يقل	\odot
تّل	يزداد	(1)

(9 ط

$9.5 \times 10^{3} \mathrm{~kg}(\subsetneq$	$10^{3} \mathrm{~kg}(i)$
$570 \times 10^{3} \mathrm{~kg}(\bigcirc)$	$19 \times 10^{3} \mathrm{~kg} \Theta$

(A)

(B)
居 6.67×10^{5} m ($\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2}$: علمُ)

$$
6.67 \times 10^{3} \mathrm{~m} / \mathrm{s}\left(\bigcirc \quad 10^{3} \mathrm{~m} / \mathrm{s} \odot \quad 10^{5} \mathrm{~m} / \mathrm{s} \bigcirc\right) \quad 10^{4} \mathrm{~m} / \mathrm{s}
$$

من مستوى الارض لاعلى المستوى المانل يساويى .

$$
450 \mathrm{~J} \subset
$$

$$
300 \mathrm{~J} \text { (1) }
$$

$$
750 \text { J () }
$$

$$
600 \mathrm{~J} \Theta
$$

جب عما يأتى (IV: I : ج

11 الأرض $7.35 \times 10^{22} \mathrm{~kg}$ الانمi تطره $1.74 \times 10^{6} \mathrm{~m}$

Gavity

\qquad

\qquad

$$
\begin{aligned}
& \text { (1) }
\end{aligned}
$$

> A 新
> B $-4 y^{\prime} 4$ (1)
 كتله 2 2 ، احسب العجلة التى يكتسبها الجسم الثانى بدلالة a
\qquad
\qquad

米 (IV)
الشـــنل وزاويـة ميـل خــط عهــل القوة علــى اتجاه
100 N الحركة، إذا علمت أن القوة المسببة للحركة

B (Y) قيمة الزاوية عند (Y)

$$
\begin{aligned}
& 3.95 \times 10^{4} \mathrm{~km} \bigodot \\
& 4.84 \times 10^{4} \mathrm{~km}(
\end{aligned}
$$

$3.62 \times 10^{4} \mathrm{~km}$ (i)
$4.52 \times 10^{4} \mathrm{~km} \bigodot$

> -533 kJ (3)
> $-426 \mathrm{~kJ} \odot$
> 533 kJ ©
> السيارة يساوى حوالى
> 426 kJ (i)
 ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

25 N(3)
$20 \mathrm{~N} \Theta$
تقدار قوة جذب الأرض للعربة يساوىى
5 N (-)
0.5 N (i)

 بين الزهن الدودى للقـر

$\frac{\sqrt{2}}{1} \bigodot$	$\frac{2}{1} \bigodot$
$\frac{1}{1}(3)$	$\frac{1}{2} \bigodot$

(F) (0) الثــكـل البيانى المقابـل يمثل العلهة بين القوة (d)

الذى تبذه عذه القوة على الجسم هو
3.2 J 于

1J (i)
12.8 J (1)

 ($\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)

ومقاومة الهواء تككن سرعة العربة عند قمة التل الثانى هى الـى
$12.25 \mathrm{~m} / \mathrm{s}$ ($)$
$22.23 \mathrm{~m} / \mathrm{s}$ ($)$ $11.55 \mathrm{~m} / \mathrm{s}$ (i)
$18.22 \mathrm{~m} / \mathrm{s} \rightleftharpoons$
 (i) يستمر فى الحركة حول المركز بنفس السرعة (ج يستمر فى الحركة حول المركز بسرعة أقل ج
(ـ) يتحرك فى اتجاه مماس المسار الدانرىى

هـ هـ الأرض وR نصف تطر الارض، فإن ارتفاع القمر الصناعى عن سطح الارض هو

$\frac{2 R}{3} \fallingdotseq$	R $(i$
$\frac{R}{2}(+$	$\frac{3 R}{2} \bigodot$

 الجسم فى لحظة معينة 10 فان الشغل المبذول على الجست بواسطة القوة المركزية يساو

4 J ($)$	0 J (i)
$400 \mathrm{~J}(\lrcorner)$	$40 \mathrm{~J} \Theta$

 $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$ بمقدار 76 نتيجة الاصنطدام فانها ترتد لاعلى بسرعة مقدارها $14 \mathrm{~m} / \mathrm{s} \bigodot$ $12 \mathrm{~m} / \mathrm{s}$ (i) $18 \mathrm{~m} / \mathrm{s}$ (3) $16 \mathrm{~m} / \mathrm{s} \Theta$

هند أى المواضب تكون طاقة الحركة للرجل اكبر ما بـمكن ؟ مع التعليل.

(III

\qquad
\qquad
\qquad
\qquad

5

(Y) اتجاه السرعة الخطية.
(1) اتجاه العجلة المركية.

\odot

\div

(i)

17 متزلب كلته 52 kg يتحرك بسـرعة $2.5 \mathrm{~m} / \mathrm{s}$ ، احسـب مقدار الشـغل المبذول بفعل الاحتكاك مع الجليد 24 m ليتوقف المتزلج بعد أن يقطع مسافة
\qquad
\qquad
\qquad
\qquad

احسب مقدار القوة المحصلة المؤثرة على الكلة وعجلة تحركها فى الشكل التالى. (IV)

a (1) عبـر مســار مهمــل الاحتـكال، فإن ســرعة الكـرة عند ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$) \quad تساوى E b ال.............
$5 \mathrm{~m} / \mathrm{s}$?
$4 \mathrm{~m} / \mathrm{s}$ (i)
$7.5 \mathrm{~m} / \mathrm{s}$ (1)
$6 \mathrm{~m} / \mathrm{s} \rightleftharpoons$

 الدوى للقمر المناعى A

$$
\begin{array}{rr}
4 \times 10^{6} \mathrm{~s} \bigodot & 5 \times 10^{5} \mathrm{~s} \text { (i) } \\
4.5 \times 10^{8} \mathrm{~s}(\bigcup & 2.3 \times 10^{8} \mathrm{~s} \bigodot
\end{array}
$$

(1) فی الشـكل المقابل وضـع صندوق خشــبـى على سطع أفقى أملس وأثرت عليه قوة F، فإذا كان مقدار الشغل المبذول لإزاحة الصندوق
مسافة أفقية 20 يساوى 1000 J، فابن القوة المؤثرة عليه (F)

قـر صناعسى A يـدو حــل الارض وآخر B يدود حــل المريخ، فـإذا كان نصفى قطـرى مداريهـا
 للقمر

$$
\begin{aligned}
& \frac{1}{3} \bigodot \\
& \frac{9}{1}(
\end{aligned}
$$

الارتفاع، لان فى حالة كسرها يكن .
(i) التغير فى كمية الحركة أكبر
€ التغير فى كمية الحركة أقل
ج زمن التوقف أكبر
(ـ) زمن التوقف أقل

4 cm 7 $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

$$
\begin{aligned}
& -200 \mathrm{~N} \oplus \\
& -3000 \mathrm{~N} \Theta \\
& -5000 \mathrm{~N} \Theta \\
& -8000 \mathrm{~N} \Theta
\end{aligned}
$$

(V) الشكل البيانى المعبر عن شدة مجال الجاذبية (g) لكوكب عند نقطة هو

(4)

Θ

(-)

(i)
(1) جسـمان متسـاويان فى الكتلة فإذا تأثرا بقوتين محصلتين هختلتين السبة بينهما $\frac{3}{1}$ ، فإن الفسبح بين

عجلتى الحركة للجسمين على الترتيب هى .
 من ارتفاع ما عند رسمهما بنفس مقياس الرسم هو

\odot

(ب)
$\xrightarrow[\text { (i) }]{\substack{\text { P.E } \\ 60^{\circ} \lambda}}$ K.E
 ($G=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2}$: بأن

$12.08 \mathrm{~m} / \mathrm{s}^{2} \bigodot$	$21.21 \mathrm{~m} / \mathrm{s}^{2}(1)$
$1.87 \mathrm{~m} / \mathrm{s}^{2}(\bigcirc)$	$8.22 \mathrm{~m} / \mathrm{s}^{2} \bigodot$

تظهر قوة التجاذب المادى بين الأجرام السماوية ولا تظهر بين الاشخاص، هسر دلك.
\qquad
\qquad
(IIT) بدأت ســيارة الحركة فى مسـار منحنى زلق فاحظظ سـانقها أن الســيارة تنحرف عن المســار المنحنى، فسر ذلك.
\qquad
\qquad

 يتحمليا الحبل 12 ههل ينقطع الحبل ؟ وكادا 8
\qquad
\qquad
\qquad

 احسب الطاقة المفقودة نتيجة التصادم.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
الاحتكال
(10) تمامًا بعد أن تطع مسافة 40 m، احسب مقدار متوسط قوة الاحتكاك.

1400 kg 18 m/s 18 على أرض أفقية وعندما ضتغط السائق على دواسة البنزين تأثرت السيارة بقوة ثابتة فأصبحت سرعتها 18 m/s فإنـ مقدار الشغل الذى تبذله هذه القوة يساوى
$10^{5} \mathrm{~J}$ (1)
$2.1 \times 10^{5} \mathrm{~J} \Theta$
$2.2 \times 10^{5} \mathrm{~J} \rightleftharpoons$
$2.75 \times 10^{5} \mathrm{~J}$ (i)

 متساويتين، فتككن. $2 \mathrm{~m}(\bigcirc$
$8 \mathrm{~m}(\mathrm{C}$
$4 \mathrm{~m} \bigodot$
(0) 300 kg ومقَدار كميـة تحركـه الخطية 1.77×10 $1 \mathrm{lg} . \mathrm{m} / \mathrm{s}$ ($\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2} \cdot \mathrm{M}=5.98 \times 10^{24} \mathrm{~kg}:$ علمُا بان)

$$
\begin{array}{lr}
8.59 \times 10^{3} \mathrm{~km}(& 5.73 \times 10^{3} \mathrm{~km} \mathrm{(i} \\
17.18 \times 10^{3} \mathrm{~km}(\lrcorner & 11.46 \times 10^{3} \mathrm{~km} \bigodot
\end{array}
$$

الأرض، فإن

 سرعتة المماسية هى
$40 \mathrm{~m} / \mathrm{s}(+$
$\pi \mathrm{m} / \mathrm{s}$ (i)
$100 \pi \mathrm{~m} / \mathrm{s}(4$
$100 \mathrm{~m} / \mathrm{s} \bigodot$
, أجب عما يأتى (IV : IV) :
 مساويًا للصفر، فسر ذلك.
\qquad
\qquad
\qquad
\qquad
\qquad

 هع تفسير أهـابتك.
(16) إذا كان الجدول التالى يوضح الاوزان المختفة لجسم عند وضعه على أربعة كواكب مختلة،

 كما بالشكل المقابل ؟ (علمأ بان : عجلة الجاذبية الأرضية = 10 m/s
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
B.O .

 ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$) $\quad \mathrm{A}$ احسب طاتَ حركه غi النتطة

الثكل البيانى المقابل برضـح العلاتة بين عجلَّ حركت جسينغ

عن مركز الكوكب.
\qquad
\qquad
\qquad
\qquad
\qquad

vigالثانصف

- الختر اللجِابة الصديحة (1 : . 1) :
(1) تستغدم الوسادة الهوانية لدماية السائق لانها تقلل قوة التصادم نتيجة
 (
ج
(3) نتص كية التـرك

87 الشـل
 لهـا نفـس الكـلة ومريع اللـــزعة الخطية التى يتحرلن ببا كل منهما فى مســار دانرى منتظم، نتكـرن النسـبة بـــن نصفـى تَطـرى المدارين $\rightarrow\left(\frac{r_{A}}{r_{B}}\right)$
$\frac{\sqrt{2}}{1} \bigodot$
$\frac{1}{4}()^{\circ}$
$\frac{4}{1} \odot$
 فيكن الزنز الدوى لحركه الدانرية هو

$$
\begin{aligned}
& 8.8 \mathrm{~s}(-) \\
& \frac{22}{7} \mathrm{~s}(2)
\end{aligned}
$$

$$
22 \mathrm{~s} \text { (i) }
$$

$4.4 \mathrm{~s} \rightleftharpoons$

$$
\begin{aligned}
& 2 \mathrm{v}_{1} \bigodot \\
& 4 \mathrm{v}_{1}(
\end{aligned}
$$ بعد تضاعف طاتة حركه تساوى

$\mathrm{v}_{1} \sqrt{2}$ (i)
$v_{1} \sqrt{3} \Theta$

 ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

المرضعين a a a a فابن

 موضعه الأصلى هو

(2)

\uparrow

(-)

(i)

$3.27 \mathrm{~m} / \mathrm{s}^{2}$ ©
$1.09 \mathrm{~m} / \mathrm{s}^{2}$ (i)
$2.45 \mathrm{~m} / \mathrm{s}^{2}$ ()
$4.9 \mathrm{~m} / \mathrm{s}^{2} \Theta$
 (R=6400 km. 0

$$
\begin{array}{ll}
15.1 \times 10^{3} \mathrm{~s} \Theta & 14.39 \times 10^{3} \mathrm{~s}(1) \\
16.2 \times 10^{3} \mathrm{~s} \Theta & 15.96 \times 10^{3} \mathrm{~s} \Theta
\end{array}
$$

 $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

5700 J ب(2850 J (i)
11400 J (4)
(10) يدور جسـم فى مسـار دانرى منتظم نصف قطره 25 نتيجة تأثره بقوة مركزية تَــارى عدديًا أريع أضعاف كتلته فتكفن سرعته المماسية بعد ربع دودة هیى

$1 \mathrm{~m} / \mathrm{s}(+$	$0.5 \mathrm{~m} / \mathrm{s} \bigodot$
$2 \mathrm{~m} / \mathrm{s}(()$	$1.5 \mathrm{~m} / \mathrm{s} \bigodot$

- أجب عما يأتى (IV: II) :

$$
\begin{aligned}
& \text { (III تنكسـر البيضة عند سـقوطها على الأرض ولا تنكسـر عند سـقوطها على وســادةَ من نفس الارتناع، } \\
& \text { فسر ذلك. }
\end{aligned}
$$

\qquad
\qquad
\qquad

> (III) بـدأت ســيارة الحركـة فى مسـار منحنـى زلق فلاحظ ســائقها أن الســيارة تتحـرف عن المســار المنحنى، فسر دّلك.
\qquad
\qquad

(18) الشكل المقابل يوضح جسمين كرويين متماثلين قوة التجاذب r بلمادى بينهما
 ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$) الأرض، احسب سرعته على ارتفاع 2 m 2 من سطح الأرض.
\qquad
\qquad
\qquad
\qquad
\qquad
 (17) ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$) تتحرك بها 2 m/ 2 أوجد كل من كتلة ونذن السيارة.
\qquad
\qquad
\qquad
\qquad

 احسبب اللسبة بين الزمن الدویى لكل منهما (T)
\qquad
\qquad
\qquad
\qquad
\qquad

$1240 \mathrm{~N} \bigodot$
$6200 \mathrm{~N}(\bigcirc)$
...............
10.3 N (1)
$2480 \mathrm{~N} \odot$

ما كانت علي.
(1) إذا زادت سرعة جسم إلى مثى قيمتها فابن طاقة حركت تصبع ()

§ الالفقيـة الموثرة على جســ ومقــدار الإزاحة الانفقية التى يتحركها الجســـ بفعل هذه القوة، فان الثـــل المبذول بواسطة هذه القوة يساوى

$6.7 \times 10^{4} \mathrm{~km}$ قمـر صناعـى يــدو حـل كوكـب بسـرعة

فتكن كتلة الكوكب هى

$$
2.5 \times 10^{18} \mathrm{~kg}(i)
$$

$$
2.5 \times 10^{23} \mathrm{~kg} \bigodot
$$

$$
4.02 \times 10^{20} \mathrm{~kg} \rightleftharpoons
$$

$$
4.02 \times 10^{28} \mathrm{~kg}(\Omega)
$$

 (10 m/s ${ }^{2}=$ = علما بأن : عجلة الجالبية الاورضية)

$$
\begin{array}{rr}
392 \mathrm{~N}(+) & 400 \mathrm{~N}(i) \\
60 \mathrm{~N}(3 & 66 \mathrm{~N} \bigodot
\end{array}
$$

موضعه الأصلى هـو .

(1)

\odot

(-)

(i)

$$
\begin{aligned}
& \text { (Y) جسم يتمرك فى مسار دائرى بسرعة ثابتَ، فيكن اتجاه عجلة حركه } \\
& \text { ج } \\
& \text { (i) فی اتجاه سرعته } \\
& \text { (ـ) مهانًا للمسار الدائرى } \\
& \text { ج بعيُّا عن مركز الدائرة }
\end{aligned}
$$

 بـَّار 100 تككن طاقَّ حركته مساوية لـ

100 J ($)$	50 J (i)
$400 \mathrm{~J}(\mathrm{C}$	$200 \mathrm{~J} \Theta$

IYY

 N د دقيقة، فابن القوة الجاذبة المركزية الموثرة على الكرة تساوى $5 \pi(?$
$5 \pi^{2}$ (()
2π (i)
$10 \pi^{2} \Theta$
.

(III الشكل المقابل يوضتح أربع كتل متصلة

بواسطة خيوط مهملة الكتلة، يتم سحب
الكتل على سطح أملس مهمل الاحتكاك
بواسطة قوة أفقية (F)، رتب تصلم ألماعديًا الكتل طبقًا لعجلة تحركها.

(r)

(1)
\qquad
\qquad
 الترة الجاذبة المركزية شغلا على البالكرين أثناء دورانه.

لا يحدث تصادم بين قمرين صناعيين يتحركان فى نفس الملار وفى نفس الاتجاه، فسر دلك.
\qquad
\square
10 (10 الشــكل المقابل يوضـح جســم كتلته 10 يتحرك فى مسار
 مركزيـة 100 N، احسب الزمن الدورى لحركة هذا الجسم.
\qquad
\qquad

11 (17 يدو تمران صناعيان حل الأرض، فإذا كان القمر الاول يدو فى مدار متزامن مـ الارض نمف

للقمر الثانی.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

 g , v , m ${ }_{2}$ ، m 1 الأخر كثة (مـ إهمال قوى الاحتكال).

-
[94

§ الاشكال التالية توضح أربعة أجسام مختلفة الكتلة ومتحركة، أى من هذد الاجسام لى ماثة حركت أكبر 5
$\xrightarrow{\square \frac{1}{2} \mathrm{~m}} \rightarrow \frac{1}{2} \mathrm{v}$
ب)

(i)
(د)

 من سطحها، فتكن السرعة المدارية للقمر الصناعى هى

$$
\begin{aligned}
& 2.05 \times 10^{3} \mathrm{~m} / \mathrm{s} \subsetneq \\
& 2.92 \times 10^{3} \mathrm{~m} / \mathrm{s} \rightleftharpoons \\
& 3.08 \times 10^{3} \mathrm{~m} / \mathrm{s} \bigodot \\
& 3.64 \times 10^{3} \mathrm{~m} / \mathrm{s} \bigodot
\end{aligned}
$$

(1) تصنع زاوية حادة مـع

$$
\begin{array}{cr}
\mathrm{F}(& \frac{\mathrm{F}}{2}(1) \\
4 \mathrm{~F}(1) & 2 \mathrm{~F} \bigodot
\end{array}
$$

$$
\begin{aligned}
& \text { (i) فیى نفس } \\
& \text { (7) عكس } \\
& \text {) } \rightleftharpoons
\end{aligned}
$$

80 kg الشـكل المقابل يوضح مسار متزلب كتلته ينزلق بدءًا من السكنن من أعلى منحدر وعلى ارتفاع 20 m A إلـى النقطة B أملس وألســـار مـن النقطة B إلى
 C السـطح الخشن اللازمة لإيقاف المتزلج عند النقطة （ $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ ） يساوى
$-2400 \mathrm{~N} \rightleftharpoons$
－ 1600 N（i）
$-4000 \mathrm{~N}(9$
$-3200 \mathrm{~N} \Theta$

$$
\begin{aligned}
& \text { تمر صناعى يدود حل الأرض بسرعة خطية 9/s } 7613 \text { ويتم دورة كاملة خلال 94.4 min، فإن نصن } \\
& (\pi=3.14) \\
& 4242 \mathrm{~km} \text { (i) } \\
& 7200 \mathrm{~km} \text { (」) } \\
& 6866 \mathrm{~km} \rightleftharpoons
\end{aligned}
$$

教 أمثال ما كان عليه فإن القوة تصبح

$$
\begin{array}{ll}
3 \mathrm{~F} \because & 9 \mathrm{~F}(i \\
\frac{1}{9} \mathrm{~F}(& \frac{1}{3} \mathrm{~F} \bigodot
\end{array}
$$

(ا) الشــلـ المابل يبين بنـدول طاقته الميكانيكية
10 J
بالنقـاط C، O، A ، احسـب طاقة الوضع
D ، O وطاقة الحركة عند كل من B

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
 القمر الصناعى ؟
\qquad
\qquad
\qquad
\qquad
\qquad
 الاستوا أم تلث التى تتع عند مدارى الجدى والسرطان ؟
\qquad
\qquad
\qquad
\qquad
\qquad

المركزيـة المونــرة على كــــة تتحرك لمى مســار دانرى نمف تطره 0.4 ومربع السـرعة الماســية للكرة. احسب كلة الكرة.
\qquad

الآن بجـميئ المكــتبات سلسلةكتب
 فص: - الأح - الكـ
 - الت

- الج غـرافـــاريا - اللغ

0 0
الغلســــفى والعـــــــمى

[^0]:

