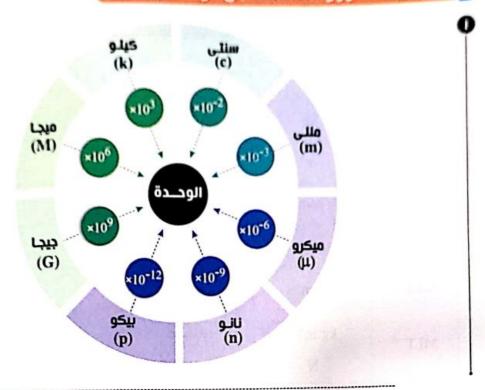
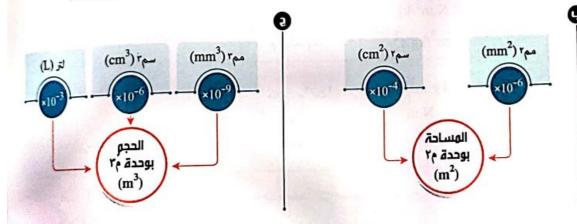


جميع حقوق الطبع واللشر محفوظة

لا يجوز بأى صورة من الصور، التوصيل (النقل) المباشر أو غير المباشر لأن مما ورد في هذا الكتاب أو نسخه أو تصويره أو ترجمته أو تحويره أو الاقتباس منه أو تحويله رقميًّا أو إناحته عبر شبكة الإنترنت إلا **بإذن كتابى مسب**ق من الناشر كما لا يجوز بأق صورة من الصور استخدام العلامة التجارية (**الامتحان**) المسجلة باسم الناشر

الكميات الفيزيانية الواردة بالمنهج ورموزها ووحرات فياسها وصيغ أبعارها

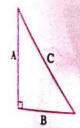

out Most	ي النظام الدولي	erellering e	الزمز	الكمية الغيزيانية
L	m	متر (م)	1	الطول
M	kg	کیلوجرام (کجم)	m	الكتلة
T		ئانية (ڪ)	t	الزمن
LT-1	m/s	0/1	v	ئىس قەرىيىلى ئىسىرى
LT-2	m/s ²	15/4	a	راعذبو
MLT ⁻¹	kg.m/s	کجم.م/ث	Р	كمية التدرك
MLT ⁻²	kg.m/s ² N	کجم.م/ث ^۲ أو نيوټن	F	القوة
M ⁻¹ L ³ T ⁻²	N.m ² /kg ² m ³ /kg.s ²	نیوتن.م۲/کجم۲ أو م۲/کجم.ث۲ م۲/کجم.ث۲	G	ثابث الجذب العام
ML ² T ⁻²	kg.m ² /s ² N.m	کجم. م ^۲ /ث ^۲ او نیوتن-م او چول	W	الشغل
			E	الطاقة



الممسوحة ضوئيا بـ CamScanner

التكامل مع الرياضيات 🎛

🚺 تحويل الكسور والمضاعمًات إلى الوحدات العملية



۲ نظریة فیثاغورس

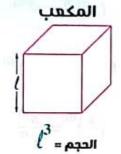
• في المثلث القائم إذا كان B ، A هما ضلعى القائمة، C هو الوتر فيكون :

$$C^2 = A^2 + B^2$$

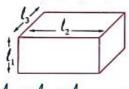
$$C = \sqrt{A^2 + B^2}$$

🔫 العلاقـــات المثلثيـــة

• في المتلث القائم الزاوية يمكن تعيين النسب المتلثية للزاوية θ من العلاقات الآتية :

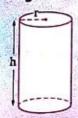

جيب الزاوية (sin θ) = $\frac{| hal + b|}{| left|}$ ، جيب تمام الزاوية (cos θ) = $\frac{| hal + b|}{| left|}$

بيب الزاوية (sin θ) =
$$\frac{\text{المقابل}}{\text{الوتر}}$$


- $\tan \theta = \frac{\sin \theta}{\cos \theta}$ ، المقابل (tan θ) خلل الزاوية

ع محيطات ومساحات وحجوم بعض الأشكال الهندسية

متوازى المستطيلات

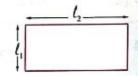


 $l_1 \times l_2 \times l_3 =$ الحجم

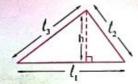
 $\frac{4}{3} \pi r^3 = 100$ الحجم

الأسطوانة

 $\pi r^2 \times h$ = الحجم


الأشكال المسطحة

المربع


 l^2 = المساحة = 4l

المستطيــل

 $l_1 \times l_2$ = المساحة = $2(l_1 + l_2)$ المساحة

المثلث

 $\frac{1}{2} l_1 \times h$ = المحيط = $l_1 + l_2 + l_3$

الدائرة

 $\pi r^2 = 10$ المساحة = $2 \pi r$

الخاصية

$$(-4)^1 = -4$$

$$x^0 = 1$$

$$(3)^{-2} = \frac{1}{(3)^2} = \frac{1}{9}$$

$$x^1 = x$$

$$(2^2)^3 = (2)^2 \times 3 = (2)^6 = 64$$

$$x^{-m} = \frac{1}{x^m}$$

$$(2) - (2) = (2)^6 = 64$$

$$(x^m)^n = x^{mn}$$

$$(2 \times 3)^2 = (2)^2 \times (3)^2 = 36$$

$$(xy)^m = x^m y^m$$

$$\left(\frac{1}{3}\right)^2 = \frac{(1)^2}{(3)^2} = \frac{1}{9}$$

$$\left(\frac{x}{y}\right)^m = \frac{x^m}{v^m}$$

$$(2)^3 \times (2)^{-2} = (2)^3 + (-2)^3 = (2)^1 = 2$$

$$x^m x^n = x^{m+n}$$

$$\frac{(3)^4}{(3)^{-2}} = (3)^4 - (-2) = (3)^6 = 729$$

$$\frac{x^m}{x^n} = x^{m-n}$$

$$(8)^{\frac{1}{3}} = \sqrt[3]{8} = 2$$

$$x^{\frac{m}{n}} = \sqrt[n]{x^m}$$

التناسب الطردى

التناسب العكسي

إذا كانت

$$y = \frac{c}{x}$$
 $y = cx$

 \mathbf{X}_2 مقدار ثابت وتغيرت \mathbf{X} من \mathbf{X}_1 إلى \mathbf{X}_2 فإن y تتغير من y_1 إلى y_2 بحيث تكون فإن

$$\frac{y_1}{y_2} = \frac{x_2}{x_1}$$
 $\frac{y_1}{y_2} = \frac{x_1}{x_2}$

وبالمثل إذا كانت

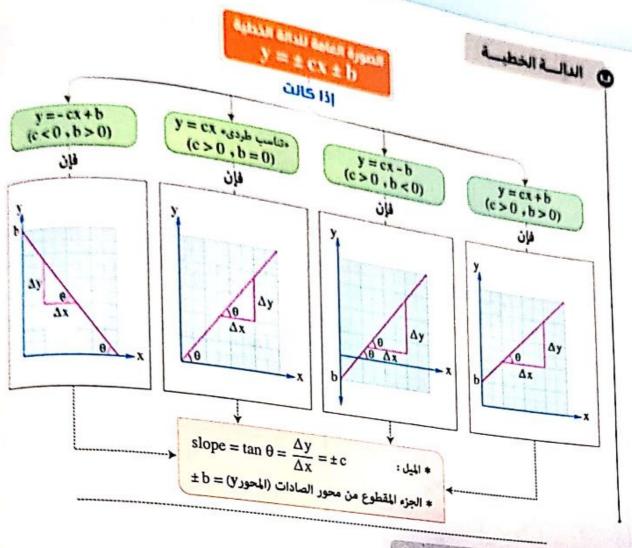
$$y^2 = cx y = cx$$

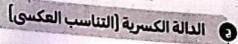
$$\frac{y_1}{y_2} = \sqrt{\frac{x_1}{x_2}}$$
 $\frac{y_1}{y_2} = \frac{x_1^2}{x_2^2}$

$$\frac{y_1}{y_2} = \sqrt{\frac{x_1}{x_2}}$$

$$y^2 = \frac{c}{X}$$

$$\frac{y_1}{y_2} = \sqrt{\frac{x_2}{x_1}} \qquad \frac{y_1}{y_2} = \frac{x_2^2}{x_1^2}$$

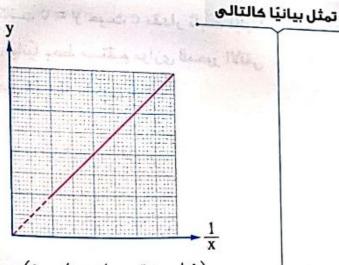

التمثيل البياني

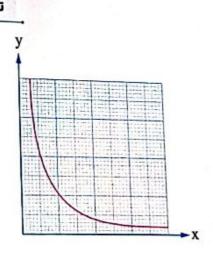


 $y = \frac{c}{x^2}$

الدائة الثابتــة

إذا كانت y = c حيث c مقدار ثابت فإنها تمثل بيانيًا بخط مستقيم موازى للمحور الأفقى (المحور X) ميله يساوى صفر.

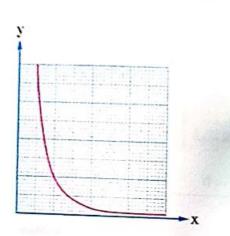


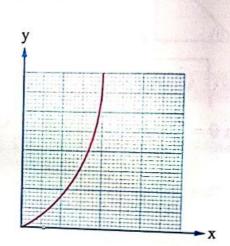


ادا کانت $y = \frac{c}{x}$ مقدار ثابت

$$(y-\frac{1}{X})$$
 فإن العلاقة

(y-x)


(خط مستقیم میله یساوی c)


17

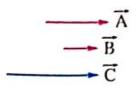
$$y = \frac{c}{x^2}$$

$$y = cx^2$$

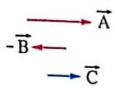
حیث (c) مقدار ثابت فإن العلاقة (y – x) تمثل بیانیًا کالتالی

ميل المماس عند نقطة على المنحنى

يقل بزيادة مقدار X


يــزداد بزيـادة مقــدار x

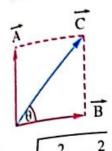
محصلة منجهين


* إذا كان المتجهان :

لهمــا نفـس الاتجاه

$$\vec{C} = \vec{A} + \vec{B}$$

في اتجاهين متضاديـن


$$\overrightarrow{C} = \overrightarrow{A} + (-\overrightarrow{B})$$

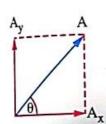
$$\overrightarrow{C} = \overrightarrow{A} - \overrightarrow{B}$$

متعامدان

الهرم التعليمى

قلب التعليم النابض

$$C = \sqrt{A^2 + B}$$


$$\tan \theta = \frac{A}{B}$$

🗗 تحليــل متجــه

\star عندما يصنع متجه \overline{A} زاوية θ مع الأفقى، تكون \star

$$A_x = A \cos \theta$$
 مركبته الأفقية

$$A_y = A \sin \theta$$
 مركبته الرأسية

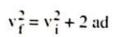
علاقات فيزيائية هامة تم دراستها في الفصل الدراسي الاول

🚺 السـرعــــة

$$v = \frac{\Delta d}{\Delta t}$$

المجلــــة

$$a = \frac{\Delta v}{\Delta t}$$


الهرم التعليمى من قلب التعليم النابض

معادلات الحركة بعجلة منتظمة

🚺 معادلة الحركة الأولى 💮 معادلة الحركة الثانية

$$v_f = v_i + at$$

و معادلة الحركة الثالثة


 $d = v_i t + \frac{1}{2} a t^2$

۵ قانون نيوتن الثالث

$$\vec{F}_1 = -\vec{F}_2$$

ع قانون نيوتـن الأول 🕻


$$\Sigma \overrightarrow{F} = 0$$

الباب الثاني

الحركة الخطية

3 4

القـــــــوة والحركــــــة.

(كمية التحرك - قانون نيوتن الثاني).

مقدمة

من المهم فى حياتنا اليومية ونحن نتابع اللجسام المتحركة بدءًا من الدراجات والسيارات والطائران...
 أن نفهم كيف تتحرك ؟ وما الذى يسبب هذه الحركة ؟
 لذلك سنركز على دراسة حركة اللجسام نتيجة تأثير قوة عليها.

القـــوة والحــركـــــة (كمية التحرك - قانون نيوتن الثانى)

اختبـــار على الفصـل الثالث

نواتج التعلم المتوقعة

بعد دراسة هذا الفصل يجب أن يكون الطالب قادرًا على أن :

- يستنتج العلاقة بين كمية تحرك جسم وكتلة الجسم وسرعته.
 - پفسر قانون نیوتن الثانی.
 - يغسر بعض الظواهر الحياتية باستخدام قانون نيوتن الثانى.
 - يغرق بين مفهومى الكتلة والوزن.
 - يصمم تجربة لاستنتاج العلاقة بين القوة والعجلة.

الممسوحة ضوئيا بـ CamScanner

« درسمنا ضي القصل الدراسي الأول قانون نيوشن الأول (قانون القصور الذاشي) وقانون نيوشن ا

(قانون الفعل ورد الفعل)، وفيما يلي سندوس:

قانون نيوتن الثاني

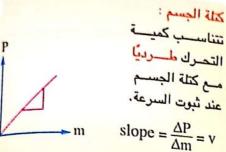
كمية التحرك

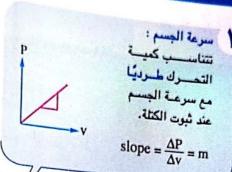
كميــة التحـــرك

* لعلك تلاحظ أن إمكانية إيقاف الأجسام التي تتحرك تحت تأثير القصور الذاتي،

* ترتبط كتلة الجسم (m) وسرعته (v) معًا بكمية فيزيائية متجهة تعرف باسم كمية التحرك (P)

من العلاقة : P = mv


تفس السرعة.


وحدة كمية المعادها وصيغة المعادها المعادة المعادها المعا

Jedin 3

العوامل التى تتوقف عليها كمية التحرك لجسر

@ والاحظات

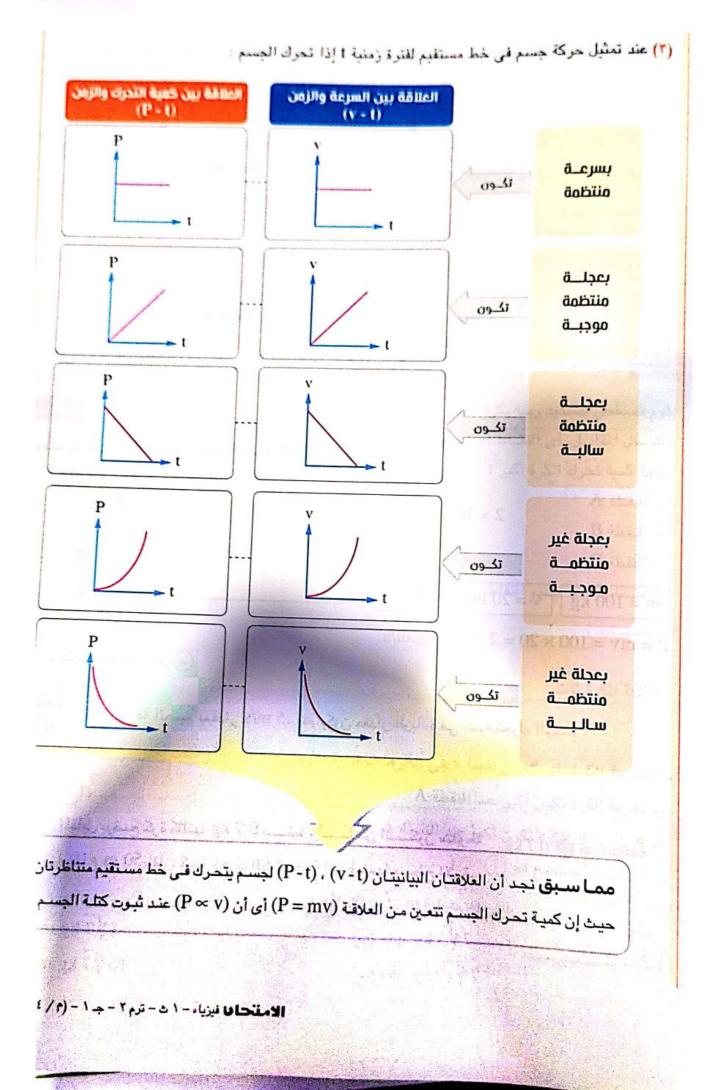
(١) كمية التحرك كمية متجهة

لأنها حاصل ضرب كمية قياسية (الكتلة) في كمية متجهة (السرعة المتجهة)، واتجاهها هو نفس اتجاه سرعة الجسم.

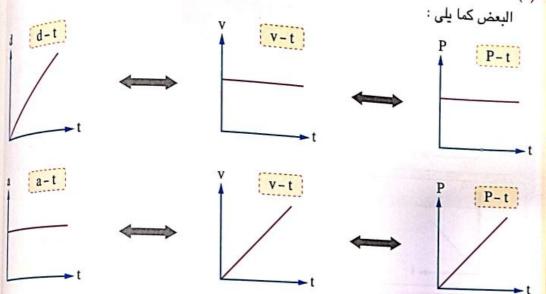
(٢) تبعًا للعلاقة (P = mv) فإن :

كمية التحرك

لجسم متحرك لا تساوی صفر مهما قلت كتلته



لجسم ساكن تساوى صفر مهما


بان سرحة الجسم الساتنة تساوى صفر P = M × 0 = 0

سرصة الجسم المتحرّق لا تساوى صغر فتُلُون كمية التحرّق لا تساوى صفر

(٤) عند تحرك جسم في خط مستقيم لفترة زمنية معينة يمكن استنتاج العلاقات البيانية الأتية من بسل

مثال

الحـــ

جسم كتلته 100 kg يتحرك بسرعة 20 m/s، فإن كمية تحركه تساوى

5 kg.m/s (-)

0.2 kg.m/s (i)

 2×10^3 kg.m/s (3)

 10^3 kg.m/s \odot

m = 100 kgV = 20 m/sP = ?

 $P = mv = 100 \times 20 = 2 \times 10^3 \text{ kg.m/s}$

الاختيار الصحيح هو (٤)

ماذا الزيادة في كمية تحرك الجسم؟ والدت سرعة الجسم بمقدار 8 m/s كم يكون مقدار الزيادة في كمية تحرك الجسم؟

مثاله (۱)

الشكل المقابل يوضح كرة كتلتها 0.7 kg تسقط رأسيًا من السكون سقوطًا 0.7 kg حرًا من ارتفاع m 50، فإن كمية تحرك الكرة لحظة اصطدامها بسطح الأرض 50 m (g = 10 m/s² : علمًا بأن)

 $5\sqrt{7}$ kg.m/s (1) 7√5 kg.m/s ⊕

10√7 kg.m/s ⊝ 7 10 kg.m/s (3)

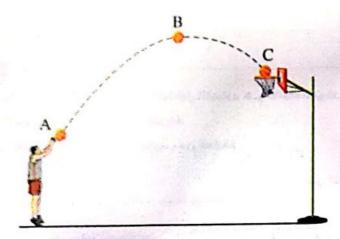
$$m = 0.7 \text{ kg}$$
 $v_1 = 0$ $d = 50 \text{ m}$ $g = 10 \text{ m/s}^2$ $P = ?$

$$v_4 = \sqrt{0 + (2 \times 10 \times 50)} = 10\sqrt{10}$$
 m/s

 $v_i^2 = v_i^2 + 2 \text{ gd}$

$$P = mv_s = 0.7 \times 10\sqrt{10} = 7\sqrt{10} \text{ kg/m/s}$$

٠٠ الاختيار الصحيح هو (١)


مأذا كان المطلوب حساب كمية تحرك الكرة بعد 2 5 من لحظة صفوطها، فما إجابتك ا

مثال

يقوم شخص بتسديد رمية بكرة السلة كما بالشكل المقابل، أي النقاط التالية تكون عندها كمية تحرك الكرة أكبر ؟

- (i) النقطة A
- (ب) النقطة B
- C النقطة
- () متساوية عند جميع النقاط

الحسل 😡

كتلة الكرة ثابتة.

الطريق التعليمي EDUCAdonal altreeq

- : سرعة الكرة تقل كلما ارتفعنا لأعلى لتأثرها بجاذبية الأرض.
 - .. سرعة الكرة تكون أكبر عند النقطة A
 - . كمية تحرك الكرة تكون أكبر عند النقطة A
 - ن الاختيار الصحيح هو 1

ماذا علمت أن النقطة B تمثل أقصى ارتفاع تصل إليه الكرة، فهل كمية تحرك الكرة عند النقطة والمراق المراق ال

: P = mv

: P x V

الشيكل الغابيل يوضح كبرة كالنها g 200 موضوعة على منصدة أقفية ملاصفة لمائط رأمسى، فإذا دفعت الكرة لتتحسرك عموديا على الحائط وكان مقدار سسرعتها لحظة اصطدامها به 0.7 m/s ومقدار سيرعتها لحظة ارتدادها عن 0.4 m/s، فإن مقدار التغيير في كمية تحيرك الكرة نتيجة التصادم يساوى

- 0.22 kg.m/s (1)
- 0.14 kg.m/s (-)
- 0.08 kg.m/s (-)
- 0.06 kg.m/s (3)

🚅 وسيلة مساعدة

- إذا افترضنا أن اتجاه حركة الكرة قبل التصادم هـ و الاتجاه الموجب للحركة، فإن اتجاه حركة الكرة بعد التصادم هو الاتجاه السالب للحركة.
 - التغير في كمية تحرك الكرة يحسب من العلاقة ،

$$\Delta P = P_{\text{(بعد التصادم)}} - P_{\text{(بعد التصادم)}}$$

$$v_1 = 200 \text{ g}$$
 $v_1 = 0.7 \text{ m/s}$ $v_2 = -0.4 \text{ m/s}$ $\Delta P = ?$

$$v_2 = -0.4 \text{ m/s}$$

$$\Delta P = ?$$

 $P_1 = mv_1 = 200 \times 10^{-3} \times 0.7 = 0.14 \text{ kg.m/s}$

 $P_2 = mv_2 = 200 \times 10^{-3} \times (-0.4) = -0.08 \text{ kg.m/s}$

كمية تحرك الكرة قبل التصادم:

كمية تحرك الكرة بعد التصادم:

التغير في كمية تحرك الكرة نتيجة التصادم:

 $\Delta P = P_2 - P_1 = -0.08 - 0.14 = -0.22 \text{ kg.m/s}$

: الاختيار الصحيح هو (1)

ماذًا كان التصادم مرنًا وارتدت الكرة بنفس السرعة التي اصطدمت بها بالحائط، هل يزداد أم يقل لو مقدار التغير في كمية تحرك الكرة؟

سيارة نقل كتلتها m دون حمولة، عند تحركها بسيرعة منتظمة v تكون كمية تحركها أا، فإذا حُملت السيارة بحمولة كتلتها m وتحركت بسرعة v ألى كمية تحركها تصبح

$$\frac{1}{2}$$
 P (j)

$$\frac{3}{2}$$
 P \odot

السيارة بالحمولة

$$m_{(4)=2} = m_2 = 2 \text{ m}$$

$$v_{(il)} = v_2 = \frac{1}{2} v$$

السيارة دون حمولة

$$m_1 = m$$

$$v_1 = v$$

$$P_1 = P$$

* كتلة السيارة بالحمولة :

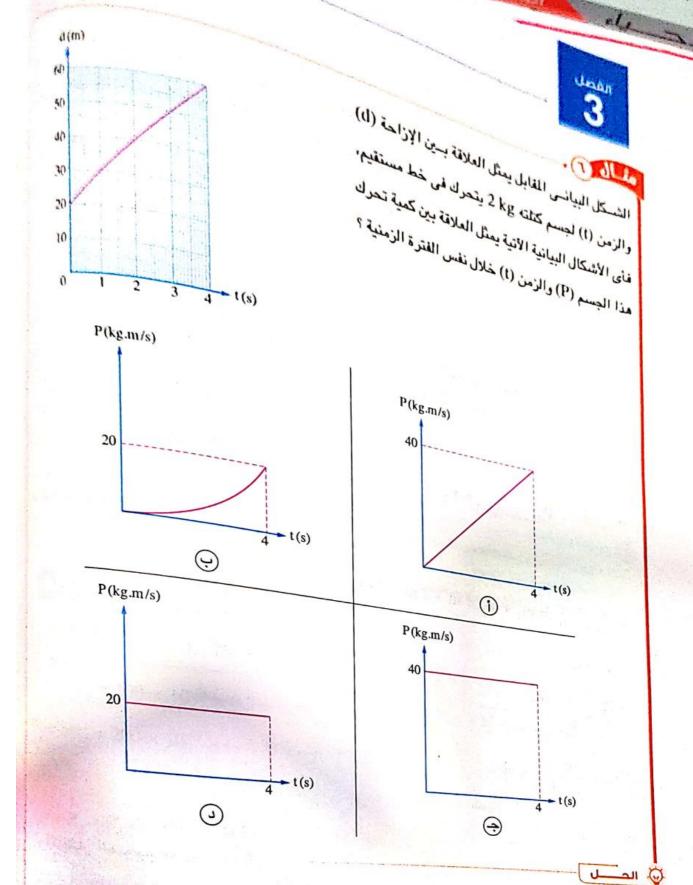
$$m_{(il)} = m_1 + m_2 = m + 2 m = 3 m$$

$$P = mv$$

$$\therefore \frac{P_1}{P_2} = \frac{m_1 v_1}{m_{\text{(ilumul)}} v_2}$$

$$\frac{P}{P_2} = \frac{mv}{3m \times \frac{1}{2}v} = \frac{2}{3}$$

$$P_2 = \frac{3}{2} P$$

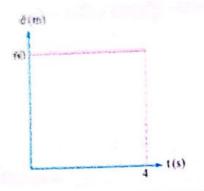

التكامل مع الرياضيات = ٢

مكنك مراجعة التناسب الطردي بند (٦) صفحة (١٥).

:. الاختيار الصحيح هو ج

ماذا كانت كمية تحرك السيارة في الحالتين متساوية، ما النسبة بين سرعتي السيارة في هذه الحالة ؟

- : العلاقة البيانية بين الإزاحة (d) والزمن (t) للجسم ممثلة بخط مستقيم يميل على الأفقى.
 - .: سرعة هذا الجسم منتظمة خلال الفترة الزمنية الممثلة.
 - ن. كمية تحرك الجسم ثابتة خلال هذه الفترة أي تمثل بخط مستقيم موازي لمحور الزمن.


التكامل مع الرياضيات التي

بمكنك مراجعة كيفية حساب ميل الخط المستقيم

الاختيار الصحيح فو ()

 $v = \text{slope} = \frac{\Delta d}{\Delta t} = \frac{60 - 20}{4 - 0} = 10 \text{ m/s}$

 $\therefore P = mv = 2 \times 10 = 20 \text{ kg.m/s}$

كائت العلاقة البيائية بين موضع الجسم (d) والزمن (t) كما بالشكل المقابل، فما مقدار كمية تحرك الجسم خلال الفترة الممثلة بيانيًا ؟

🕦 اختبــر نفسك

ماذا

اختر الإجابة الصحيحة من بين الإجابات المطاة ،

- المائرة على مدرج مطار وتتباطأ سرعتها تدريجيًا، فإن اتجاه كمية تحرك الطائرة يكون في اتجاه
 - (أ) السرعة
 - (ج) قوة الاحتكال

- (ب) العجلة
- (١) عجلة الجاذبية الأرضية d(m)
- الشكل البياني المقابل يعبر عن العلاقة بين إزاحة جسم كتلت 4 kg يتصرك في خط مستقيم والزمن، فإن مقدار كمية تحرك الجسم خلال تلك الفترة يساوى
 - 8 kg.m/s (i)
 - 2 kg.m/s (=)

- 4 kg.m/s (-)
- 1 kg.m/s (1)

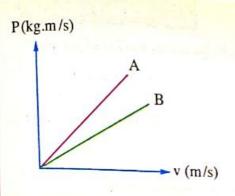
2 m

الما أي جسمين من الأجسام التالية لهما نفس كمية التحرك ؟

c,a 🕘

→ 2 v m m

(c) (b)


d, c (=)

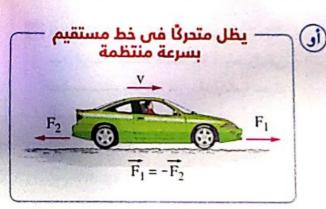
2 m (e)

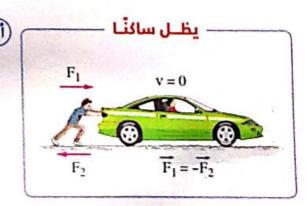
(d) e.b 🔾

2 m

2

- ☑ يمثل الشكل البيانى المقابل العلاقة بين كمية التحرك (P) والسرعة (v) لسيارتين B ، A تتحركان فى خط مستقيم، أى من الاختيارات التالية صحيح ?
 - (آ) كتلة السيارة A تساوى كتلة السيارة B
 - (ب) كتلة السيارة A أصغر من كتلة السيارة B
 - کتلة السيارة A أكبر من كتلة السيارة B
 - () لا يمكن تحديد الإجابة


قانون نیوتن الثانی Newton's Second Law


•قانون نيوتن الثاني

- القوة المحصلة المؤثرة على جسم ما تساوى المعدل الزمني للتغير في كمية تحرك هذا الجسم.
 - (1)
- إذا أثرت قوة محصلة على جسم فإنها تكسبه عجلة تتناسب طرديًا مع القوة المحصلة المؤثرة عليه وعكسيًا مع كتلته.

* شرح قانون نيوتن الثاني :

عند دراستك لقانون نيوتن الأول للحركة علمت أنه إذا أثرت على جسم قوتان متساويتان في المقدار ومتضادتان في الاتجاه تكون محصلتهما مساوية للصفر ($\Sigma | \widetilde{F} = 0$) فيحافظ الجسم على حالته الحركية بحيث :

يتدرك الجسم بعجلة منتظمة F_2 F_1 F_1 F_2 F_1 F_2

أما إذا كانت القوة المحصلة المؤثرة على الجسم ثابتة ولا تساوى الصغر ($0 \neq \overline{F} \neq 0$) فإن سرعته تتغير بانتظام أى أث يتحرك بعجلة منتظمة وتكون العجلة دائمًا في نفس اتجاه القوة المحصلة، فإذا :

الكتلة التى تتأثر بقوة أكبر تتحرك بعجلة أكبر

الكتلة الأكبر تتحرك بعجلة أقل

ای ان العجلة تتناسب عكسيًا مع الكتلة عند ثبوت القوة المحصلة

 $(a \propto \frac{1}{m})$

العجلة تتناسب طرديًا مع القوة المحصلة عند ثبوت الكتلة $(a \propto F)$

الصيغة الرياضية لقانون نيوتن الثانى

$$F = \frac{\Delta P}{\Delta t} = \frac{\Delta (mv)}{\Delta t} = \frac{mv_f - mv_i}{\Delta t} = m \frac{(v_f - v_i)}{\Delta t} = m \frac{\Delta v}{\Delta t}$$

$$F = ma$$

$$a = \frac{F}{m}$$

مقدار القوة المحصلة التي إذا أثرت على جسم كتلته $1 \, \mathrm{kg}$ اكسبته عجلة مقدارها $1 \, \mathrm{m/s^2}$ في نفس إنجاه الثوة. -النيوتن

الامتحان نيزياء - ١ ٥ - ترم ٢ - جد ١ - (م / ٥) ٢٣

العوامل التي تتوقف عليها عجلة تحرك جسم

القوة المحملة المؤثرة على الجميم: تتناسب عجلة تصرك جسم طرديًا مع القوة المصلة المؤثرة عليه عند تتناسب عجلة تصرك كلة الجسم : ثبوت كتلة الجسم. تسلم وم ليسطد مسب slope = $\frac{\Delta a}{\Delta F} = \frac{1}{m}$ البسه عند تبوت النوة المصلة المؤثرة عليه.

والغمالي (

slope = $\frac{\Delta a}{\Delta(\frac{1}{m})}$ = F

- (٢) يمكن قياس القوة باستخدام الميزان الزنبركى.

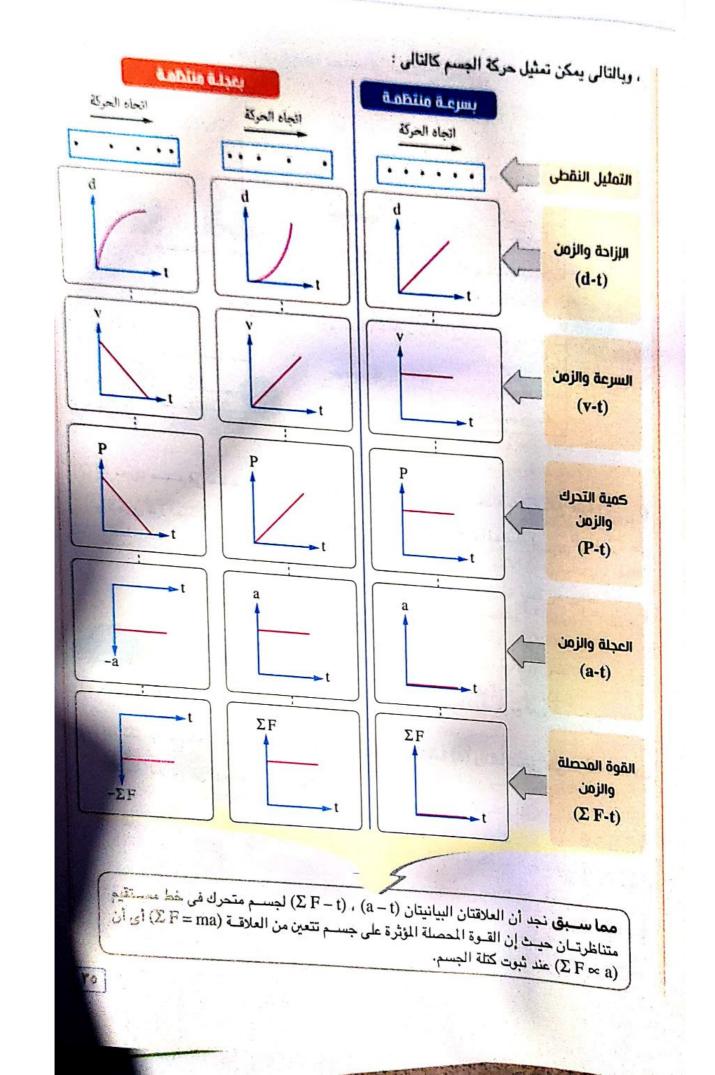
 - (٢) إذا كانت القوة المحصلة المؤثرة على جسم:

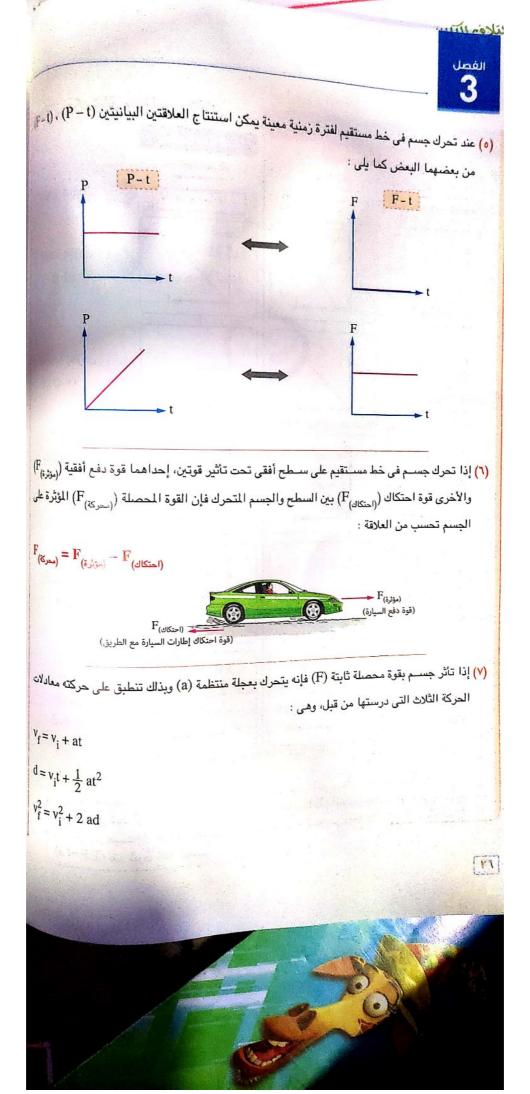
فى نفس اتجاه الحركة

تزداد السرعة بمرور الزمن وكذلك تزداد كمية التحرك

(۱) القرة (F) كمية متجهة النصا حاصل ضرب كمية قياسية (الكتلة) في كمية متجهة (العجلة).

عكس اتجاه الحركة




تقل السرعة بمرور الزمن وكذلك تقل كمية التحرك

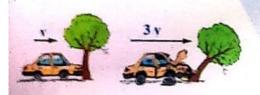
(٤) إذا تحرك جسم في خط مستقيم خلال فترة زمنية معينة (t) :

بعجلة منتظمة بسرعة منتظمة فإن مقدار القوة المحصلة المؤثرة على الجسم $\Sigma \overrightarrow{F} \neq 0$ $\Sigma \overrightarrow{F} = 0$ وبالتالى يطبق على حركة هذا الجسم قانون نيوتن الأول قانون نيوتن الثاني

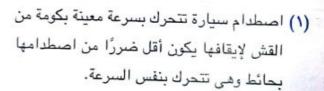
75

الممسوحة ضوئيا بـ CamScanner

🞧 تطبيقات حياتية على قانون نيوتن الثاني :


التي تيمًا لقانون نيوتن الثاني $(F = m \frac{\Delta v}{\Delta t})$ عند تصايم جسم متحرك بجسم أخر ساكن فإن الغوة (F) التي يؤائر أو يتأثر بها الجسم ؛

بزيادة كُتلة الجسم المتحرك (m) عند ثبوت باقى العوامل، فعشر اصطدام شاحنة كبيرة بكامل حمولتها بجسم ساكن يكون أكثر تدميرًا من اصطدامها بنفس الجسم الساكن وهي غير محملة وتتحرك بنفس السرعة.



بزيادة التغيير في سرعة الجسيم (Δ۷) عند ثبوت باقى العوامل، فمثلًا:

- (١) اصطدام سيارة بجسم يكون أقل تدميرًا من اصطدام سيارة لها نفس الكتلة بنفس الجسم ولكنها تتحرك بسرعة أكبر.
- (٢) عند سقوط شخص من مكان مرتفع على الأرض فإن حدة إصابت تزداد بزيادة الارتفاع الذي ىسقط منه.

تقل بزيادة زمن التأثير (زمن التغير في كمية التحرك Δt) عند ثبوت باقى العوامل فيقل المعدل الزمني للتغير في كمية تحرك الجسم مما يقلل من القوة المؤثرة عليه، فمثلًا:

(٢) ستقوط بيضة من ارتفاع معين على وسادة لا يجعلها تنكسر بينما تنكسر عند سقوطها من نفس الارتفاع على الأرض.

(٣) تُستخدم الوسائد الهوائية في السيارات لحماية السائق عند حدوث تصادم.

(٤) سقوط شخص من مكان مرتفع في الماء يكون أقل إصابة من سقوطه على الأرض.

تحركت سيارة كتلتها 1000 kg من السيكون بعجلة منتظمة لتكتسب سرعة 20 m/s خلال زمن 5 s، فإن النوز المحصلة المؤثرة على السيارة تساوى

4000 N 🕣

8000 N (1)

250 N ③

1000 N 🕣

 $v_i = 0$ $v_f = 20 \text{ m/s}$ t = 5 s

 $a = \frac{v_f - v_i}{t} = \frac{20 - 0}{5} = 4 \text{ m/s}^2$ $F = ma = 1000 \times 4 = 4000 \text{ N}$

الاختيار الصحيح هو (٠)

ماذ] أشرت نفس القوة المحصلة على شاحنة ساكنة كتلتها 2500 kg، فكم يكون مقدار إزاحتها

 $-a = 4 \text{ m/s}^2$ $F = 20 \text{ kg.m/s}^2$

أثرت قوة أفقية مقدارها 20 kg.m/s² على جسم كتلته 3 kg موضوع على سطح أفقى فتحرك الجسم بعجلة منتظمة مقدارها 4 m/s² ، فإن مقدار قوة الاحتكاك بين الجسم والسطح يساوى

8 N(1)

20 N 🕞

12 N 😌 32 N (3)

 $\left|\mathbf{F}_{(aix)}\right| = 20 \text{ kg.m/s}^2$ $\left|\mathbf{m} = 3 \text{ kg}\right|$ $\left|\mathbf{a} = 4 \text{ m/s}^2\right|$ $\left|\mathbf{F}_{(aix)}\right| = ?$

 $F_{(\text{ext})} = F_{(\text{ext})} - F_{(\text{ext})}$

 $F_{(aec)} = F_{(aec)} - F_{(aec)} = F_{(aec)} - ma = 20 - (3 \times 4) = 8 \text{ N}$

الاختيار الصحيح هو (1)

هاذا القوة الأفقية المؤثرة على الجسم للضعف، على تزداد عجلة تحرك الجسم للضعف؟

TA

تؤثر قوة مقدارها N على مكعب خشب كتلته m فتكسب عجلة معلومة (a)، وعندما تؤثر الغوة نفسها على مكعب أخر كتلته m_2 تكسيه عجلة $3n_1$ ، فإن النسبة بين كتلة المكعب الأول وكتلة المكعب الثاني $(\frac{m_1}{m_2})$

 $\frac{1}{3} \odot$

+ 😔

 $\frac{3}{1}$ ①

F = 1 N

$$a_2 = 3 a_1$$

$$\frac{m_1}{m_2} = ?$$

$$\therefore m = \frac{F}{a}$$

∵ F ثابتة.

يمكنك مراجعة التناسب العكسى بند (٦) صفحة (١٥).

 $\therefore \frac{\mathbf{m_1}}{\mathbf{m_2}} = \frac{\mathbf{a_2}}{\mathbf{a_1}} = \frac{3}{1}$

.. الاختيار الصحيح هو (1)

ماذا اثرت قوة F على الجسم الذي كتلته m₂ فأكسبته عجلة مقدارها a₁، فكم يكون مقدار القوة F ؟

كرة تنس كتلتها 0.06 kg ضربت بمضرب حيث كان زمن التلامس بين المضرب والكرة 4 ms فانطلقت الكرة بسرعة 55 m/s فإن متوسط القوة المؤثرة على كرة التنس بواسطة المضرب خلال فترة التلامس يساوى

1320 N 🔾

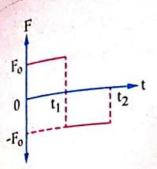
825 N (=)

13.2 N 💬

0.825 N (1)

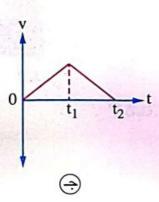
m = 0.06 kg

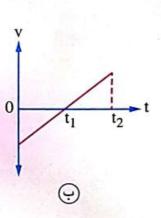
 $\Delta t = 4 \text{ ms}$

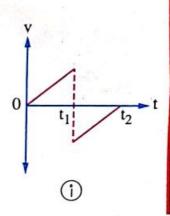

 $\Delta v = 55 \text{ m/s}$

 $H = \frac{\Delta P}{\Delta t} = \frac{m\Delta v}{\Delta t}$

$$= \frac{0.06 \times 55}{4 \times 10^{-3}} = 825 \text{ N}$$

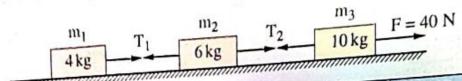

الاختيار الصحيح هو ج


ماذا كانت شبكة المضرب مرتخية فزاد زمن تلامس المضرب مع الكرة، هل كانت الكرة منتطاق لو بسرعة أكبر ؟



الشكل البياني المقابل يمثل العلاقة بين القوة المحصلة (F) المؤثرة على سبيارة تتحرك من السكون في خط مستقيم والزمن (t)، فأى الأشكال البيانية الأتية يمكن أن يمثل العلاقة بين السرعة (V) والزمن (t) لهذه السيارة خلال نفس الفترة الزمنية ؟

 $\Sigma F = ma$


- $t = t_1$ إلى t = 0 : $t = t_1$ إلى الفترة من
- " السيارة تتأثر بقوة محصلة ثابتة موجبة.
- السيارة تتحرك بعجلة منتظمة موجبة (تتزايد سرعتها بانتظام).
- .. تمثل العلاقة بين السرعة (v) والزمن (t) للسيارة بخط مستقيم ميله موجب،
 - $t = t_2$ إلى $t = t_1$: $t = t_2$ الفترة من
 - .٠ السيارة تتأثر بقوة محصلة ثابتة سالبة.
 - .. السيارة تتحرك بعجلة منتظمة سالبة (تتناقص سرعتها بانتظام).
- .. تمثل العلاقة بين السرعة (v) والزمن (t) للسيارة بخط مستقيم ميله سالب.
 - الاختيار الصحيح هو

ماذا كان المطلوب هو تحديد الشكل البياني الذي يمثل العلاقة بين كمية تحرك السيارة (P) والزمن (t)، ما إجابتك ؟

7 2

في الشكل التالي ثلاثة مكعبات متصلة معًا بحبلين مهملي الكتلة وموضوعة على سيطح أفقى أملس، فإذا أشرت قوة أفقية (F) مقدارها 40 N على المكعب m₃ تحركت المكعبات الثلاثة، فإن مقدار قوتى الشد

T ₂	T ₁	
24 N	16 N	1
20 N	16 N	9
24 N	8 N	⊕
20 N	8 N	<u> </u>

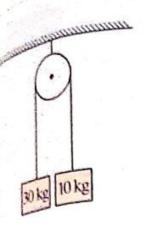
$$m_1 = 4 \text{ kg}$$
 $m_2 = 6 \text{ kg}$ $m_3 = 10 \text{ kg}$

😥 وسيلة مساعدة

. تؤثر القوة ${f F}$ على المكعب ${f m}_3$ فقط ولكنها تتسبب في سحب الثلاثة مكعبات

 $:: \Sigma F = ma$

$$\therefore a = \frac{F}{m_1 + m_2 + m_3} = \frac{40}{4 + 6 + 10} = 2 \text{ m/s}^2$$


$$T_1 = m_1 a = 4 \times 2 = 8 N$$

$$T_2 = (m_1 + m_2) a = (4 + 6) \times 2 = 20 N$$

:. الأختيار الصحيح هو 🕒

ماذاً علمت أن أقصى قوة شد يتحملها الحبلين هما $T_1 = 14 \, \text{N}$ ، $T_2 = 35 \, \text{N}$ ، $T_1 = 14 \, \text{N}$ أقمس قوة أفقية (F) يمكن أن تؤثر على المكعب m₃ ولا تتسبب في قطع أي من الحبلين ؟

الشكل المقابل يوضع كتلتين (30 kg ، 10 kg) متصلتين معًا بخيط مهمل الكتلة يمر على بكرة ملساء، فإن مقدار

العجلة التي يتحرك بها الثقلان يساوى

 $(g = 10 \text{ m/s}^2)$

5 m/s² (-)

 $1 \text{ m/s}^2 (1)$

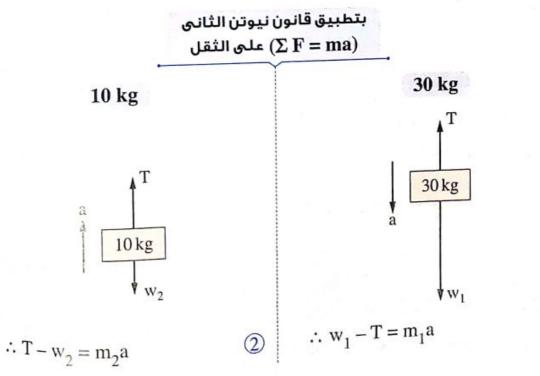
 30 m/s^2 (3)

 $10 \text{ m/s}^2 \oplus$

$$m_1 = 30 \text{ kg}$$

$$m_2 = 10 \text{ kg}$$

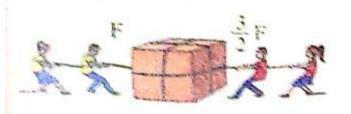
$$g = 10 \text{ m/s}^2$$


وسيلة مساعدة

- بتحديد القوى المؤثرة على كل ثقل وتطبيق قانون نيوتن الثاني نجد أن كل من الثقلان يتحركان تحت تأثير ورتيهما وقوة الفير في الخيط.
 - يتحرك الثقلان بنفس مقدار عجلة التحرك لأنهما معلقان في نفس الخيط.

 $m_1 > m_2$

- m_1 يتحرك الثقل m_2 لأعلى بينما يتحرك الثقل ...
 - ت البكرة ملساء.
 - قوة الشد في الخيط والمؤثرة على كل ثقل متساوية.



1

اختر الإجابة الصحيحة من بين الإجابات المعطاة ،

احسر الرجاب العيادة الهوائية على قائد السيارة عند حدوث تصادم بالنسبة لكل من زمن تصادم قائد السيارة ومعدل التغير في كمية تحركه ؟

معدل التغير في كمية التحرك	زمن التصادم	
فزداد	يزداد	0
يقل	يزياد	9
يزداد	رلقي	(3)
رلقي	لقن	9

- قَبِانُ عَلِيهِ الْاسِ () قَبِانُ قَدِيسِ اللهِ () قَبِانُ عَلِيهِ اللهِ () قَبِانُ عَلِيهِ اللهِ () قَبِانُهُ عَلِيهِ اللهِ () قَبِانُهُ عَلِيهِ اللهِ ()
- * يؤثر شخص بقوة ٢ على صندوق ساكن موضوع على سطح افقى مهمل الاحتكاك تحسل سرد الم الله المحتكاك تحسل سرد الم الله يعد زمن ١، فإذا أعاد الشخص التجربة بقوة 2 F فإنه يصل إلى نفس السرعة ٧ بعد رسل مد رسل مد

10

 $\frac{t}{2}$

210

410

الكتلة والوزن Mass and Weight

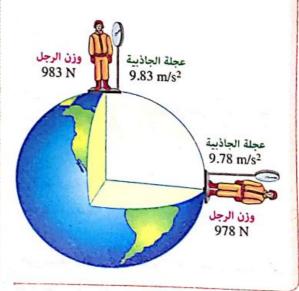

* يختلف مفهوم الكتلة (m) عن مفهوم الوزن (w)، والجدول التالي يوضع أوجه المقارنة بينهما :

الوزن (w)	الكتلة (m)	
قوة جذب الأرض للجسم	مقدار ممانعة الجسم لأى تغيير فى حالته الحركية	المفهوم
كمية مشتقة متجهة، اتجاهها نحو مركز	كمية أساسية قياسية	Add Assets
w = mg	$m = \frac{F}{a}$	نوع الكمية الفيزيائية
النيوتن (N)	a	العلاقة الرياضية
MLT ⁻²	الكيلوجرام (kg)	وحدة القياس
يتغير بتغير عجلة الجاذبية الأرض	ML ⁰ T ⁰	صيغة الأبعاد
يتغير بتغير عجلة الجاذبية الأرض مكان لآخر	ثابتة مهما تغير المكان	التأثر بالمكان

<u> كالحظات</u>

(١) يتغير وزن الجسم من مكان لآخر على سطح الأرض ولكن كتلته تظل ثابتة، لتغير عجلة الجاذبية الأرضية تغيرًا طفيفًا من

مكان لآخر على سطح الأرض (w = mg).



(٢) يختلف وزن رائد الفضاء على سطح القمر عنه على

للختلاف عجلة الجاذبية على سطح القمر عنها على

سطح الأرض،

سطع الأرض.

شخص كتلته 70 kg داخل سيارة تتحرك المقيًا بعجلة منتظمة 4 m/s² ، فإن وزنه يساوي

(g = 9.8 m/s² : علمًا بأن

39.2 N ①

686 N 🕞

العسال

280 N 🕞

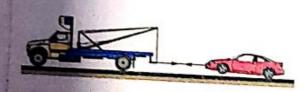
700 N 🔾

 $a = 4 \text{ m/s}^2$ $g = 9.8 \text{ m/s}^2$ w = ?

وسيلة مساعدة

يتوقف وإن الشخص على كللته وعجلة الجاذبية المؤثرة عليه ولا يتوقف على عجلة تحرك السيارة (عجلة تحرك الشخص).

 $w = mg = 70 \times 9.8 = 686 \text{ N}$


الاختيار الصحيح هو

ماذا الشخص يقود عربة تتحرك بعجلة 4 m/s² على سطح القمر، فما الكميات الفيزيانية لو التي يمكن أن يتغير مقدارها ؟

الشكل المقابل يوضح ونش يسحب سيارة بعجلة منتظمة 3 m/s² ، فإذا كانت القوة المحصلة المؤثرة على السيارة N 3000 فإن كتلة ووزن السيارة هما

 $(g = 9.8 \text{ m/s}^2 : علمًا بأن (g = 9.8 m/s^2)$

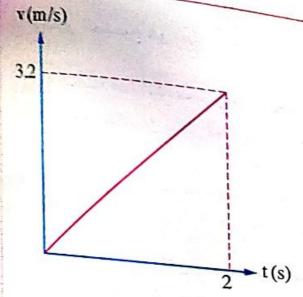
وزن السيارة	كتلة السيارة	
306 N	3000 kg	1
9800 N	3000 kg	9
306 N	1000 kg	(-)
9800 N	1000 kg	(3)

الفصل

F= 3000 N

 $a = 3 \text{ m/s}^2$

 $g = 9.8 \text{ m/s}^2$


 $: 3000 = m \times 3$

.. F = ma

m = 1000 kg

 $_{\rm W}$ = mg = 1000 × 9.8 = 9800 N

ماذا كانت كلة الونش 2 ton وقوى الاحتكاك ضد حركة الونش والسيارة M 500 وسيحب الونش عادا السيارة بنفس العجلة، كم يكون مقدار القوة التي يؤثر بها محرك الونش في هذه الحالة؟ الاختيار الصحيح هو ②

الشكل البياني المقابل يمثّل العلاقة بين السرعة (v) والزمن (t) لجسم كتلته 4 kg يسقط سقوطًا حرًا من ارتفاع ما على سطح القمر، فإن وزن الجسم على سسطح القصر يسساوىعلى

4 N 😔

3.2 N ① 12.2 N 🔾 6.4 N 🕞

m = 4 kg? = (الجسم على سطح القسر)

🕥 وسيلة مساعدة -لحساب وزه الجسم لابد أولًا من حساب عجلة الجاذبية على سطح القمر.

 $g_{(iij)} = \text{slope} = \frac{\Delta v}{\Delta t} = \frac{3.2 - 0}{2 - 0} = 1.6 \text{ m/s}^2$

 $W_{\text{(قدر)}} = mg_{\text{(الجميم على منطح القبر)}} = 4 \times 1.6 = 6.4 \text{ N}$

التكامل مع الرياضيات

يمكنك مراجعة كيفية حساب ميل الخط المستقيم بند (٧) صفحة (١٦).

.. الاختيار الصحيع هو ج

ماذا كان المطلوب حساب كمية تحرك الجسم بعد 1 s من لحظة سقيطه، ما إجابتك ؟

العلاقة بين القوة والعجلة

لغرض من التجربة

• استنتاج العلاقة بين العجلة التي يتحرك بها جسم والقوة المحصلة المؤثرة عليه.

فكرة التجربة

• حساب العجلة (a) التي تتحرك بها عربة صغيرة عند سحبها باستخدام قوة محصلة (F) ناشئة عن أثقال $a = \frac{F}{m}$

معلومة الكتلة (m)، من العلاقة:

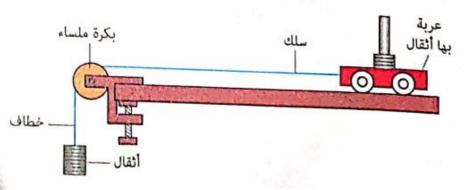
• رسم العلاقة البيانية بين العجلة والقوة المحصلة لاستنتاج العلاقة بينهما.

الأدوات

• عربة صغيرة.

• بكرة،

• أثقال معلومة الكتلة.


• شريط مترى.

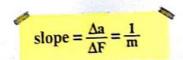
• سلك.

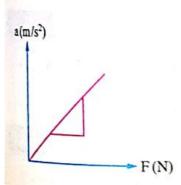
• ساعة إيقاف.

الخطوات

(١) ركب الأدوات (كما في الشكل).

- (٢) أضف انقالًا كلن كل منها g 5 بشكل تعريجي إلى الخطاف حتى تبدأ العربة في الحركة بسرعة منتقن
 - وذلك يعنى أن هذه الأنقال قد ألفت تأثير قرة الاحتكاك.
 - (٢) أضف ثَتَلَا كُلُت g 10 (gk (0.01 kg) إلى الخطاف.
- (٤) تس المسافة (b) التي سنتحركها العربة واحسب الزمن (1) اللازم لقطع هذه المسافة باستخدام ما الله المسافة المسافقة المسافقة
 - (a) كرر الخطوة السابقة ثلاث مرات واحسب متوسط الزمن. إينان
 - (١) احسب القوة المحصلة السببة العجلة (الناتجة عن الأثقال) من العلاقة :
- F=mg (٧) احسب العجلة التي تتحرك بها العربة من المعادلة الثانية الحركة : 1= 20
- (A) كرر الخطوات السابقة وفي كل مرة أضف ثقلًا g 10 للخطاف مع تسجيل النتائج في الجدول التالي:


العجلة (m/s²)	السانة (m)	(الزمن) (s ²)	الزمن (s)	القوة المحملة (N)	الكاا (kg)
	***************************************			0.1	0.01
	***************************************			0.2	0.02
***************************************			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.3	0.03


(١) ارسم العلاقة البيانية بين القوة المحصلة (F) على المحور الأفقى والعجلة (a) على المحور الرأسي.

الاستنتاح

وبرسم العلاقة البيانية بين العجلة والقوة المحصلة نحصل على خط مستقيم يدر بنقطة الأصل.

أى أنه: عجلة حركة الجسم تتناسب طرديًا مع القوة المحملة المؤثرة عليه.

و تحليل

قيم نفسك إنكترونيا

e.	DIVEST	Section 2	200	Peer .	-
Č.	رك	100	v	1	
9-3	_		10		
u.		State of the last	L6		43
•	0025000				_

راحته يمثل في المعدل في إذاحته يمثل

ن الوزن

القوة

أ القت طائرة مكافحة الحرائق وهي تطير أفقيًا بسرعة ثابتة بحمولتها على غابة مشتعلة ثم أكملت بنفس سرعتها،

فإن كمية تحرك الطائرة بعد إلقاء حمولتها

(ب) تقل

أ تزداد

ن تصبح صفرًا

ن الثانى 15 kg وسرعته 20 m/s وسرعته \$ kg فإذا كانت كتلة الثانى 15 kg فإن الثانى التحرك كتلة الثانى المحمد التحرك التحرك

سرعته تساوى

5.55 m/s 😔

0.15 m/s (1)

20 m/s 🔾

في كرة بولينج كتلتها 4.6 kg تتحرك بسرعة v على مضمار، فما السرعة التي تتحرك بها كرة جولف كتلتها

46 g ليكون لها نفس مقدار كمية تحرك كرة البولينج ؟

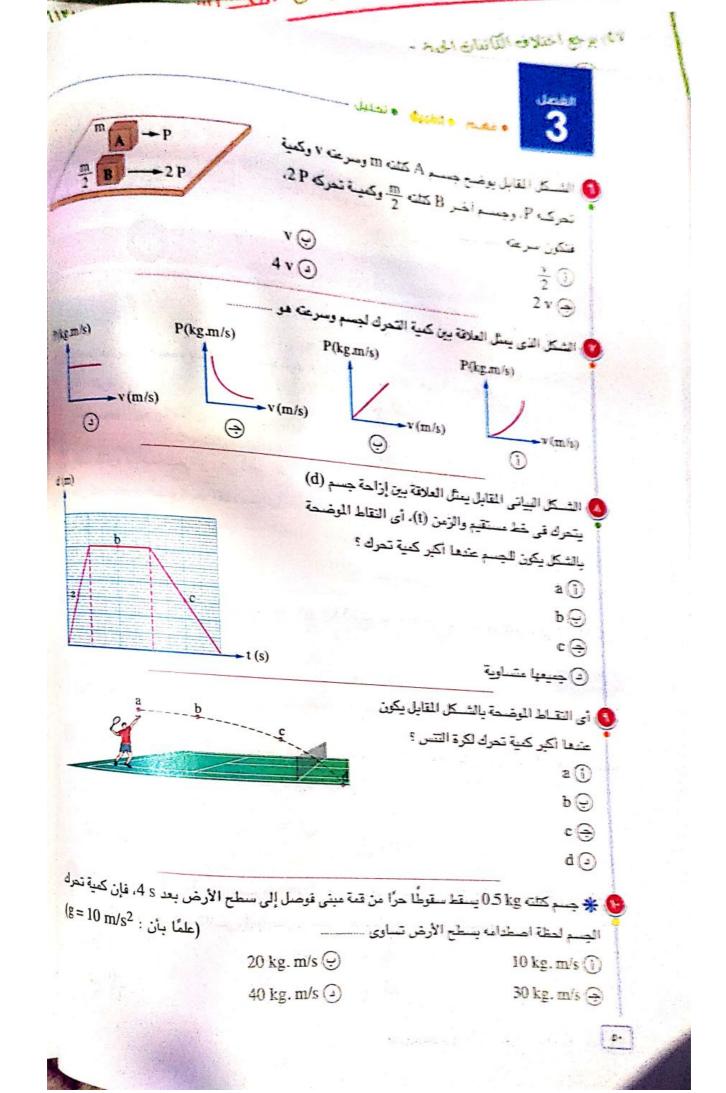
5 v 😔

0.01 v (i)

100 v 🔾

🎂 * نسر كتلته 10 kg يطير بسرعة 20 m/s، فإذا اقتنص فريسة كتلتها 1 kg وطار بها بنفس سرعته، فإن 10 v 🕞

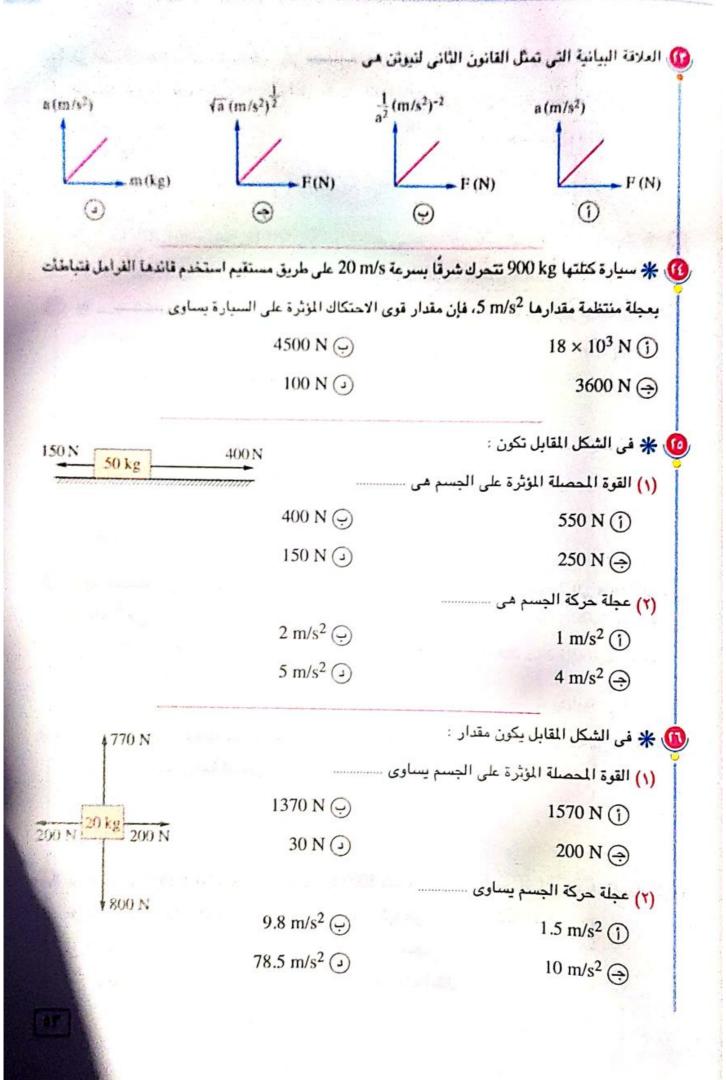
النسبة بين كمية تحرك النسر وكمية تحرك النسر والفريسة معًا على الترتيب تساوى

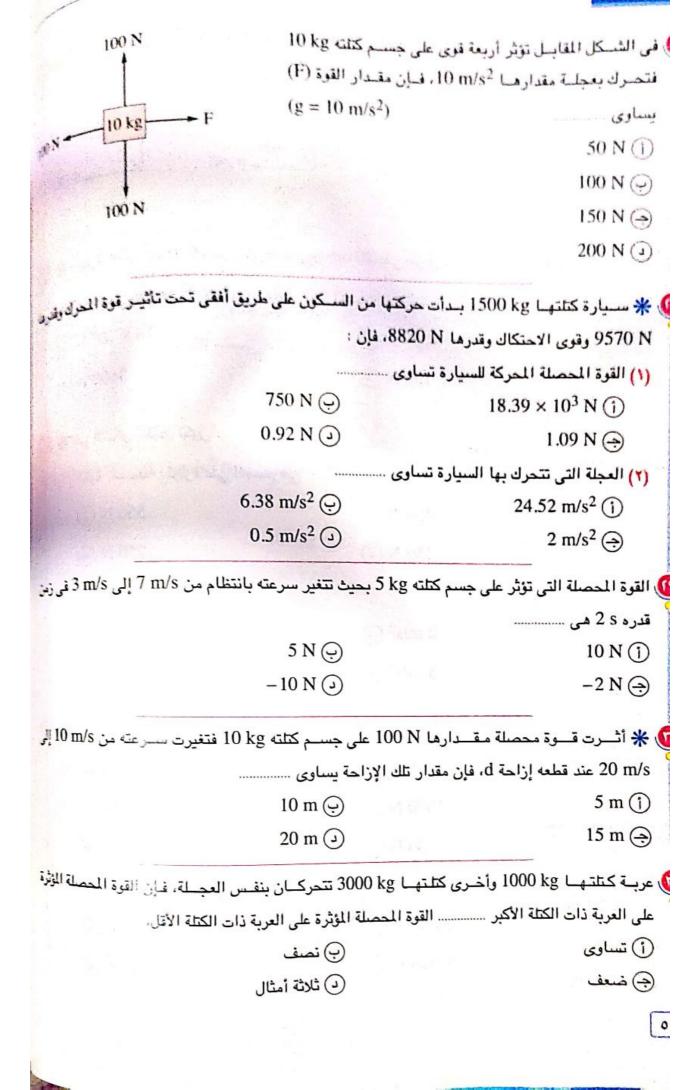

 $\frac{1}{10}$ \odot

10

 $\frac{10}{1}$ (2)

10 3


الامتحان فيزياء - ١ ٥ - ترم ٢ - جـ ١ - (٩ / ٧)



0.5 نسقط سفوطًا حرًا نحو سطح	الشكل المقابل يوضع كرة كتلتها kg
ولها لسطح الأرض نساوي	الأرض، فإن كمية تحرك الكرة لحظة وص
	$(g = 10 \text{ m/s}^2)$
5 kg.m/s 🔾	3 kg.m/s ①
9 kg.m/s (3)	6 kg.m/s (-)
	قائون نيوتن الثانى
جسم والمعدل الزمنى للتغير في سرعته تساوى	النسبة بين القوة المحصلة المؤثرة على
() كتلة الجسم	 کمیة تحرك الجسم
عجلة الجسم	 طاقة الجسم
م ساكن له كتلة ثابتة، فإن الجسم	عندما تؤثر قوة محصلة ثابتة على جس
(ب) يتحرك بسرعه مست	العظل ساكنًا
(د) يتحرك بعجلة متزايدة	 پتحرك بعجلة منتظمة
ة منتظمة 20 m/s، فإن القوة المحصلة المؤثرة عليها تساوى	
50 N ⊕	سيارة كتلتها ٢٥٥٥ محرف بسرت
0 🔾	$2 \times 10^4 \mathrm{N}$
ر 5 0 در ال من تحرك بعجلة مقدارها	0.02 N ⊕
كتلته 0.5 kg فإن الجسم يتحرك بعجلة مقدارها	، إذا أثرت قوة محصلة N 2 على جسم
$4 \text{ m/s}^2 \text{ (3)}$	0.25 m/s^2
	2.5 m/s ² (-)
2 n ، فإن القوة المحصلة المؤثرة عليه تساوى	سره کلته 10 kg يتحرك بعجلة 10 kg
	20 N ①
1 N ③	
ا كانت عجلة الجاذبية على سطح القمر تساوي 62 m/s². أ فإن رنب	ا کان دور کان
	ر القدر بساوی سادی
225 N 🔾	المجس على سطح القمر يساوى
450 N 🔾	138.9 N ①
	364.5 N (3)

			Ŧ	
	16.			
	JL.		UI	
		Ç	ĕ	
ġ,				

and the second second	-	
ية الأرضية 9.8 m/s² فإن :	الماذب	الكتمال و مصم و تطبيق و تطبيل
		الارض عيث
5.1)	N 🕞	🗘 * جسم كلف 30 kg على سلع الأرض يساوى -
500 1	-	5 N ①
50 k	g (-)	(r) كلة المسلم على سطح القبر تساوى
490 k	g ②	30.67 kg ①
القي بساوي سيادي	-	81.5 kg 🕞
(: 01)	يصس ملد ن	
زبية على سطح الرهن)	إ عجلة الجا	سم وزنه N (120 على سمع) على التي = -
100	NO 6	م جسم وزنه N (120 على سطح الأرض، فإن ود الله من القمر = راعمًا بأن : عجلة الجاذبية على سطح القمر = 5
	N ①	120 N ①
(-10 m/c ²) . (; 2 , /2		60 N ⊕
نتكتسب عجلة 2 m/s ، فإن : (10 m/s²) و	3000 N a	المحمد ال
		نتحرك سيارة أفقيا تحت نالير فوه المعالية
		(۱) كتلة السيارة تساوى
	(g 😔	$9 \times 10^3 \mathrm{kg}$
30 k	cg 🗿	300 kg ⊕
		(۲) وزن السيارة يساوى
100	N 🕣	30 N (i)
104	N 🗿	$3 \times 10^3 \mathrm{N}$
، خــلال فتــرة زمنيــة (t) غنّصبحت كميــة تعرك	بسم ساكن	سیست مقدارها 500 N علی ج
		250 kg.m/s فإن t تساوى
0.2	2 s 😔	0.1 s (i)
2	2 s 🗿	0.5 s ⊕
m ₂ = 1 kg ، m ₁ فاكتسبت الكتلة (m ₂ = 1 kg ، m	بن (5 kg ن	🐠 * أثرت قوتان متساويتان على كتلتين مختلف
الالعجاة عالم	20، فإن مقدا	معدارف مق والحلة m/s عجلة مقدارها m/s2 (
	′s² ⊕	0.25 m/s ² 1)
100 m/		20 m/s ² ⊕
100 110		

الممسوحة ضوئيا بـ CamScanner

		1 1
بها جسم كتلته 4 kg عند تأثرهما	سم كتلته 2 kg والعجلة التي يتحرك ،	النسبة بين العجلة التي يتحرك بها جس بنفس القوة المحصلة على الترتيب هي
	4⊕	$\frac{1}{4}$ ()
	$\frac{2}{1}$ ①	$\frac{1}{2}$
الجسم الأول كتلته 5 kg واكتسب	ن على جسمين مختلفين فإذا كان	* أثرت قوتان محصلتان متساويتا
48 m خـــــــــــــــــــــــــــــــــــ	عة الجسم الثاني من السكون إلى s/	عجلة مقدارها 8 m/s ² وتغيرت سر
		الجسم الثاني تساوى
	2.5 kg 😔	0.4 kg (i)
	7.5 kg 🕘	5 kg 🕣
مر که P خان رون ایرفانه بعد مورد	ون بعجلة منتظمة a فأصبحت كمية ت	برادا تحرك جسم كتلته m من السك #
		زمن 2 t من بداية الحركة تصبح كمية
	2 P 😔	4 P 🕦
e de la companya de l	P	P 🚗
		و این این داد وا
		جسمان ساكنان موضوعان على سط منهما بقوة، فإذا كانت كتلة الجسم ا
and the galaxy.	3 1 . 3 .	The second secon
The same defined that		(۱) تساوی آ بساوی ۲ ₂
	$\frac{2}{1}$ \odot	$\frac{1}{2}$ ①
	$\frac{1}{4}$ ①	$\frac{1}{1} \oplus$
one the section of the section of	1945 day and 1	
and the second of		عند نفس اللحظة تساوى $\frac{P_1}{P_2}$ (۲)
	$\frac{2}{1}$ \odot	$\frac{1}{2}$ ①
	$\frac{1}{4}$ ②	$\frac{1}{1} \odot$

(A)	كتلتها m تقف	الشكل المقابل يوضح ثلاث حالات لسيارة
(A)	ترتيب الحالات	لإظهار إشارة المرور اللون الأحمر، فإن
	كن أن تتحرك	الشلاث من حيث أقصى قيمة للعجلة التي يه
(B) m		بها السيارة في كل حالة هو
0 0		
		A < B < C (1)
2 m	The second second	A > B > C 😔
(C) 2 m		$A = B = C \bigoplus$
		$A = B > C \bigcirc$
يصطدم بها السائق مع عجلة القاري	القوة التي يمكن أن	تعمل الوسادة الهوائية في السيارة على تقليل
		عن طريق زيادة
رك السائق	⊕ کمیة تح	 التغير في كمية تحرك السائق
مرك السائق		 جن التغير في كمية تحرك السائق
A A SA	3 0	رج رم التغير في حميه تكرن التعالق
نقها على الفرامل لتتوقف بعد مضى 10s	20 m/s ضغط ســا	🚜 سىيارة كتلتها 1000 kg تتحرك بسرعة
		من لحظة الضغط على الفرامل، فإن :
ى	لال تلك الفترة يساو	(١) مقدار التغير في كمية التحرك للسيارة خ
2×10^{4}	kg.m/s 🧓	2×10^5 kg.m/s (i)
2×10^3	kg.m/s 🔾	10 ⁴ kg.m/s ⊕
	السيارة يساوى	(٢) مقدار محصلة قوى الاحتكاك المؤثرة على
5 ×	$10^3 \mathrm{N} \odot$	$2 \times 10^3 \mathrm{N}$
	10 ⁵ N ⊙	$2 \times 10^4 \mathrm{N}$
6N141.3 3-15 1 - 2-11		1. 2 kg 1 .555 ā ā ā a l.ā a S ā
		تحركت قطعة خشبية كتلتها 2 kg على م
نطعة الخشبية تساوى		فإذا كان مقدار قوى الاحتكاك يساوى N 2
	2 m/s ² 💬	6 m/s ² (1)
- 4	4 m/s ² (3)	-3 m/s^2

- انزلق جسم يتحرك بسرعة 20 m/s على سطح أفقى خشن فتناقصت سرعته بسبب الاحتكاك حتى * توقف تمامًا بعد أن قطع مسافة m 40 m، فإذا كانت كتلة الجسم 8 kg فإن قوة الاحتكاك بين الجسم والسطح تساوی

16 N ① -16 N ⊕

- 40 N 😔
- -40 N 🔾

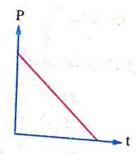
سيارة تتحرك في خط مستقيم على الفرامل لتهدئة سرعتها بانتظام، فإذا اعتبرنا أن اتجاه	
س ياره سحرك في خط مستعيم سي سرى و . رة هو الاتجاه الموجب، فإن كمية تحرك السيارة والقوة المحصلة المؤثرة عليها بعد الضغط على	ن ضغط سائق عدال ال
	القرامل

The same and the s		0.5
القوة المحصلة المؤثرة على السيارة	كمية تحرك السيارة	
موجبة	موجبة	(1)
سالبة	سالبة	9
سالبة	موجبة	<u>⊕</u>
موجبة	سالبة	(1)

والزمن الشكل البياني المقابل العلاقة بين كمية التحرك والزمن لجسم يتدرك في خط مستقيم على سطح أفقى أملس تحت تأثير قوة ثابتة، فإن القوة المحصلة المؤثرة على

الجسم تساوى

6 N (1)

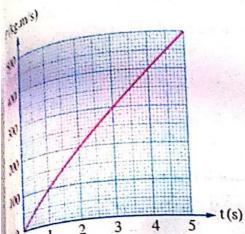

15 N 🕞

- 10 N 😔
- 18 N 🔾

الشكل البياني المقابل يمثل العلاقة بين كمية تحرك جسم والزمن،

فتكون القوة المحصلة المؤثرة على الجسم

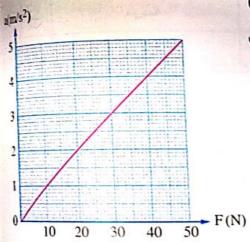
- أ منعدمة
- (ب) في نفس اتجاه الحركة
- (في عكس اتجاه الحركة
- (عمودية على اتجاه الحركة


P(kg.m/s)

60

40

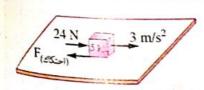
20

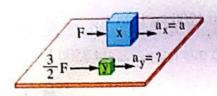

الامتحان فيزياء - ١ ٥ - ترم ٢ - جـ ١ - (٩ / ٨)

(F) جسم كتلته ۱6 kg تؤثر عليه قوة محصلة ثابتة والشكل البياني المقابل يمثل تغير كمية تحرك الجسم (P) مع الزمن (١)، فإن مقدار واتجاه القوة المحصلة المؤثرة

على الجسم هما

اتجاه ۲	مقدار F	
في عكس اتجاه حركة الجسم	100 N	1
في نفس اتجاه حركة الجسم	100 N	9
فى عكس اتجاه حركة الجسم	1250 N	(3)
فى نفس اتجاه حركة الجسم	1250 N	0


- (F) جسم كتلته m أثرت عليه عدة قوى محصلة مختلفة (F) كل على حدة فتغيرت عجلة تحرك الجسم (a) كما في الشكل $(g = 9.8 \text{ m/s}^2)$ البياني المقابل، فإن :
 - (۱) كتلة الجسم (m) تساوى
 - 0.01 kg (1)
 - 0.1 kg 😔
 - 10 kg ج
 - 100 kg 🔾
 - (٢) وزن الجسم يساوى
 - 0.098 N (i)
 - 98 N ج


- 0.98 N 😔
- 980 N 🔾

ش من الشكل المقابل مقدار قوة الاحتكاك

- يساوى
- 8 N 😔
- 6 N 1
- 39 N 🕘
- 9 N 🕞

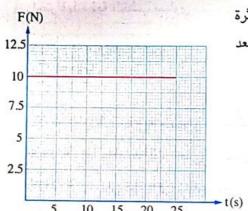
الشكل المقابل يوضح جسم x كتلته m تؤثر عليه قوة f محصلة f تكسبه عجلة منتظمة g وجسلم آخر g كتلته g تؤثر عليه قوة محصلة g فتكسبه عجلة كتلته g

منتظمة ...

 $\frac{3}{2}$ a \odot

6 a (3)

 $\frac{1}{3}$ a (1)


3 a (=)

 16×10^3 kg.m/s \odot

 8×10^3 kg.m/s ①

 $8\sqrt{2} \times 10^3$ kg.m/s ①

 $4\sqrt{2} \times 10^3 \text{ kg.m/s}$

الشكل البياني المقابل يمثل العلاقة بين القوة المحصلة (F) المؤثرة على جسم ساكن والزمن (t)، فإذا أصبحت سرعة الجسم بعد مرور s 20 من بداية الحركة 2 m/s فإن :

(١) التغير في كمية تحرك الجسم بعد مرور s

يساوى

0.5 kg.m/s (i)

2 kg.m/s 😔

200 kg.m/s (=)

250 kg.m/s 🗅

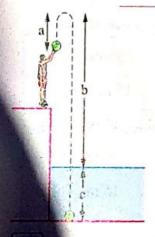
(٢) كتلة الجسم تساوى

0.25 kg (1)

100 kg ج

1 kg 😔

125 kg (3)

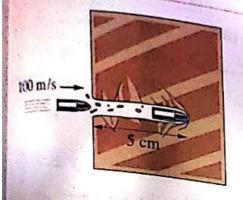

قذف شخص كرة معدنية ملساء رأسيًا إلى أعلى من فوق كوبرى يعبر مجرى مائى فارتفعت الكرة حتى وصلت إلى أقصى ارتفاع لها (مرحلة a) ثم هبطت إلى سطح الماء (مرحلة d) ثم غاصت فى الماء (مرحلة c)، فما الترتيب الصحيح لمقدار العجلة التى تحركت بها الكرة خلال المراحل الثلاث ؟

c < b = a (-)

c = b < a(i)

b < c < a (3)

b < c = a


المسكون على طريق مستقيم أفقى بتأثير قوة أفقية ثابتة أو السكون على طريق مستقيم أفقى بتأثير قوة أفقية ثابتة أو السكون على المدين مقدار قوة الاحتكال المدين المدين المدين مقدار قوة الاحتكال المدين الم * تبدأ عربة كتلتها kg المحرق من السمالة m 10 فيكون مقدار قوة الاحتكاك المؤثرة على العيل المؤثرة على العيل المؤثرة على العيل مسافة m 7500 N فيلغت سرعتها 7500 N

2000 N 🕞

6000 N 🗿

1500 N 🕦

3000 N ⊕

ومامسة كتلتها g 15 اخترقس قطعة من الخسب لسافة 5 cm حتى توقفت، فإذا كانت سرعتها لحظة اصطدامها بالخشب m/s، فإن مقدار القوة المحصلة المتوسيطة التي أثرت على الرصاصة أثناء اختراقها قطعة الخشب يساوى

750 N 🕞

3000 N 🔾

0 (1)

* سقطت كرة معدنية من مبنى سقوطًا حرًا على أرض رملية فكانت سرعتها لحظة اصطدامها بالأرض s/m/s، إذا غاصت الكرة في الرمل وتوقفت بعد s 0.01 وكان متوسط قوة مقاومة الرمل لحركة الكرة

1.5 kg 🕞

N 3000 – ، فإن كتلة الكرة تساوى تقريبًا

2.5 kg 🔾

l kg 🕦

2 kg ج ﴿ جسم سماكن موضوع على سطح أفقى أثرت عليه قوة محصلة أفقية مقدارها يساوى نصف مقدار وزنه (علمًا بأن : عجلة الجاذبية الأرضية = 10 m/s² فإن :

(۱) سرعته بعد ثانیتین تساوی

10 m/s 🕞

5 m/s (1)

20 m/s 3

15 m/s ج

(٢) الإزاحة التي يقطعها الجسم خلال ثانيتين تساوى

10 m 😔

5 m (i)

20 m 🔾

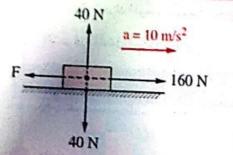
15 m ج

- 🔆 سيارة كتلتها 725 kg تتحرك بسرعة 72 km/h، ضغط سائقها على الفرامل لمدة 2 s فتأثرت بقوة احتكاك مقدارها N 10³ × 2، فإن :
 - (١) التغير في كمية تحرك السيارة خلال تلك الفترة يساوي
 - 10³ kg.m/s (1)

 4×10^3 kg.m/s \odot

 -10^3 kg.m/s \bigcirc

- -4×10^3 kg.m/s (3)

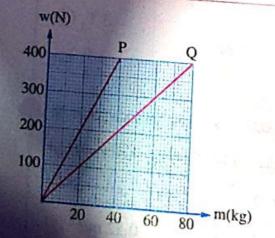

 - (٢) سرعة السيارة بعد زوال قوة الفرامل مباشرة تساوى
 - 25.52 m/s (-)

77.52 m/s 1

8.96 m/s (2)

160 N 🕞

14.48 m/s 🚓


- (1) الشكل المقابل يوضع جسم كتلته 4 kg يتحرك بعجلة 10 m/s² في الاتجاه الموضع، فإن مقدار $(g = 10 \text{ m/s}^2)$ القوة F يساوى
 - 120 N ①
 - 200 N 🕞

- 250 N 🔾
- وزنه W يسقط من السكون سقوطًا حرًا من قمة مبنى ارتفاعه d ليصل إلى سطح الأرض بعد زمن t.
 - فإن كمية تحرك الجسم لحظة اصطدامه بسطح الأرض تساوى
 - wt 😔

wd 🕦

 $\frac{\mathbf{w}}{\mathbf{d}}$

 $\odot \frac{w}{t}$

🐠 🛠 الشكل البياني المقابل يوضع العلاقة بين وذن وكتلة مجموعة من الأجسام عند وضع كل منها على كوكبين Q, P، فاإذا تم نقل جسم يزن Q ، P على الكوكب P إلى الكوكب Q، فإن

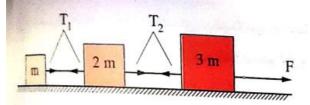
وزن الجسم على الكوكب Q (N)	كتلة الجسم على الكوكب (kg) Q	1
325	130	0
1300		(1)
325	130	9
1300	65	(3)
1000	65	0

الذيكل القابل بوضع كالمن مثلامسات الكالمة فنكون مصطة اللهوى المؤثوة على الكالمة

1420

2 N نم بالآل

2 N in 181 (4)


2 N نسادى 2 N الإجابة عديد الإجابة عديد الإجابة

F_f 2m F

 $2 F \odot \frac{F}{3} \odot$

zero ①

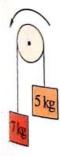
F 🤿

3 T₁ (1)

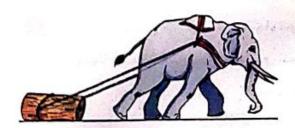
 $\frac{F}{3}$

2 T₁ 😔

F 🔾


1.03 m/s² 😔

پ ثقالان متصالان بحبل مهمال الكتلة يتحرك حول بكرة ملساء في الاتجاه الموضح بالشكل المقابل، فإن العجلة التي يتحرك بها (g = 10 m/s²)


0.52 m/s² 1

 $2 \text{ m/s}^2 \odot$

1.67 m/s²

😘 🛠 يجر فيل ساقًا خشبية كتلتها 0.5 ton على سطح أفقى بسرعة ثابتة بواسطة حبل يصنع زاوية °60 مع الأفقى كما في الشكل، إذا علمت أن قوة الاحتكاك بين الساق والأرض N 200 فإن:

(١) قوة الشد في الحبل تساوى

500 N (1)

100 N (=)

 $2.5 \times 10^{-3} \,\mathrm{N}$ (3)

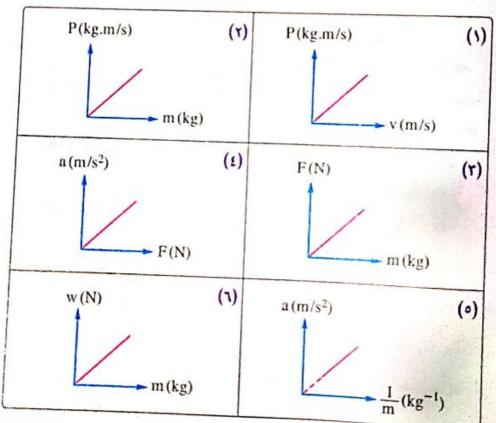
400 N (-)

(٢) قوة الشد في الحبل اللازمة كي تكتسب الساق عجلة قدرها 2 m/s² تساوى

1000 N ①

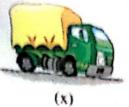
1200 N 🕞

1600 N 🕞


2400 N 🔾

أسئلــة المقــال

س يمكن القول بأن قانون نيوتن الأول هو حالة خاصة من قانون نيوتن الثاني، وضع ذلك.


اكتب العلاقة الرياضية التي يمثلها كل شكل بياني وما يساويه ميل الخط المستقيم في كل حالة :

وحيث (P) كمية التحرك، (m) الكتلة، (v) السرعة، (F) القوة المحصلة، (a) العجلة، (w) الزيزية

van 4 og leike illine

سيارتان x ، y تتحركان في نفس الانجاء تحت تأثير نفس القوة المحصلة، فإذا كانت كتلة السيارة و إن سيارتان x ، كتلة حمولة السيارة x ، أي من السيارتين تتحرك بعجلة أكبر ؟
 كتلة حمولة السيارة x ، أي من السيارتين تتحرك بعجلة أكبر ؟

(y)

فسر لماذا قامت شركات السيارات حديثًا بإضافة وسادة هوائية إلى السيارات.

احرم) علی اقتناء

إ الامتحان

ه الأحياء

للصف 🥤 الثانوى

اختر إجابتين من بين الإجابات المعطاة ،

**********	VI	44.1	1.	المقا		h	- 1:55	
**********	الرص	ىحو	حر	سعوطا	جسم	سعوط	اساء	١

نزداد كمية تحركه

ب تزداد كتلته

تظل عجلة حركته ثابتة

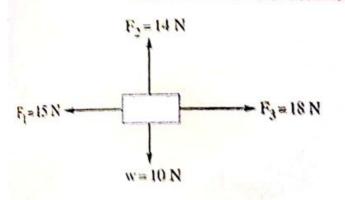
ن تقل سرعته

- عزداد وزنه
- الصيغة الرياضية لقانون نيوتن الثاني هي

$$F = \frac{v\Delta m^2}{\Delta t} \odot$$

$$F = \frac{m\Delta P}{\Delta t}$$

$$F = \frac{\Delta(mv)}{\Delta t} \ \Box$$

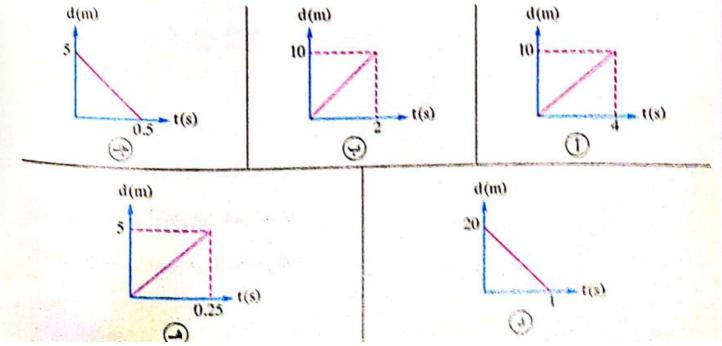

$$F = \frac{m\Delta v^2}{\Delta t} \$$

- F = ma (4)
- وحدة kg.m.s⁻¹ تكافئ
- J.s/m (-)

J.s (j

N.s 🔾

- N ج
- N/s 🖎
- جسم كتلته 10 kg تم تعجيله ليتحرك في خط مستقيم بحيث تتغير سرعته بانتظام من 54 km/h إلى
 - 108 km/h خلال s 10، فإن القوة المحصلة التي أثرت على الجسم
 - 1.5 N تساوى
 - (ب) تساوى N 15 N
 - ج تساوى التغير في كمية تحركه خلال 1 s
 - أكبر من معدل التغير في كمية تحركه
 - أقل من معدل التغير في كمية تحركه


12 N

تؤثر عدة قوى على جسم كما بالشكل، أي العبارات الأثبة صحيحة بالنسبة الجسم $(g=10 \text{ m/s}^2)$

(1)

- 1 kg الجسم gx 1
- (ع) كتلة الجسم gk 100
- (A) مقدار عجلة حركة الجسم 0.5 m/s
 - ال مقدار عجلة حركة الجسم 1 m/s2
 - (عجلة حركة الجسم 5 m/s

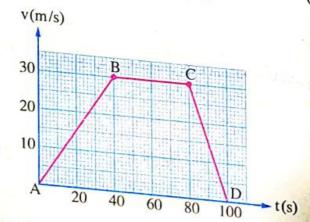
الأشكال البيانية التالية توضيح منحنى (الإزاحة - الزمن) لخمسة أجسام لها نفس الكتلة، فيكون الشكين البيانيين الممثلين لحالة الجسمين اللذين لهما أكبر مقدار لكمية تحرك هما

الممسوحة ضوئيا بـ CamScanner

جسم كتلته m ووزنه F يسقط سقوطًا حرًا من ارتفاع h ليصل إلى سطع الأرض بعد مرور زمن 1، فإذا كانت كمية تحرك الجسم لحظة اصطدامه بسطح الأرض P، فأى العلاقات الرياضية الآتية صحيحة ؟ (علمًا بأن: (g) عجلة الجاذبية الأرضية، مقاومة الهواء مهملة)

$$F = m\sqrt{2 ght}$$

$$P = \sqrt{2 \text{ mgh}}$$


$$F = \frac{m\sqrt{2 gh}}{t}$$

$$P = 2 \text{ mgh}$$

$$P = m\sqrt{2 gh} \ \triangle$$

اختر من القائ<mark>مة</mark> ما يناسب الفراغات :

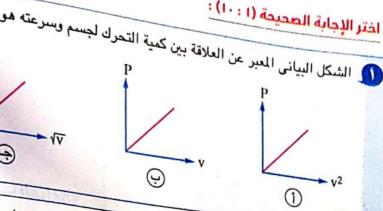
الشكل البياني التالى يمثل تغير سرعة جسم كتلت ه 80 kg خــلال s 100، فإن القوة المحصلة المؤثرة على الجسم في المرحلة BC هي(1)..... وفي المرحلة CD هي(ب).....

-) القوة المحصلة التي تؤثر على جسم ساكن كتلته 30 kg :
 - (1) لتكسبه عجلة قدرها 3 m.s⁻² تساوى
- (ب) لتكسبه سرعة قدرها 8 m.s⁻¹ في زمن قدره 6 s تساوى

120 N 60 N 0 -60 N-120 N

90 N

120 N


150 N

على الفصل الثالث

.

اختبار

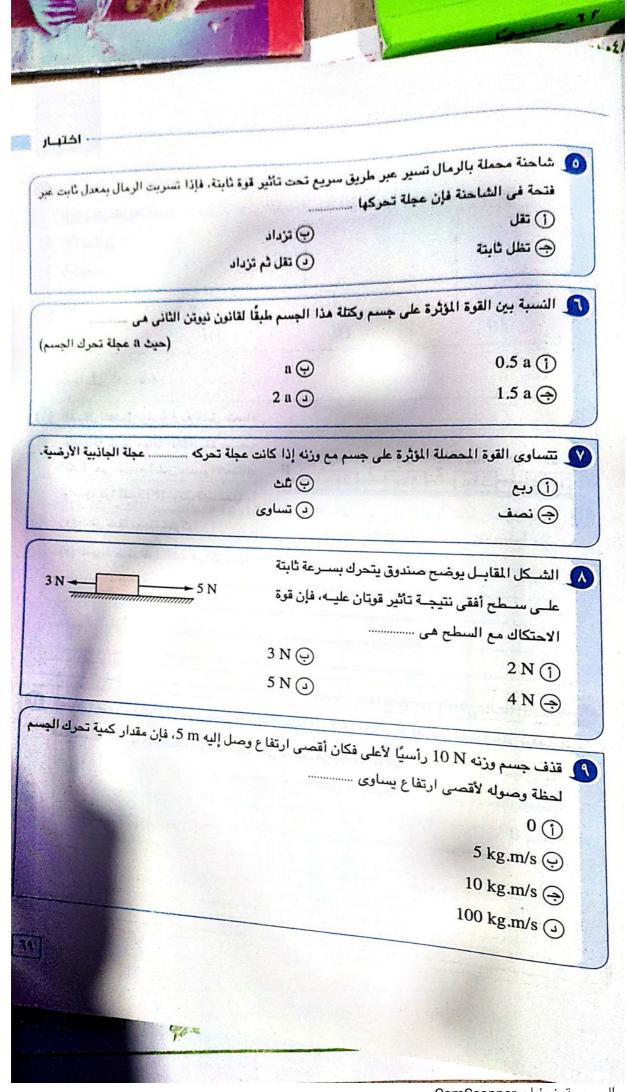
• اختر الإجابة الصحيحة (١٠:١):

الأرض سطح القمر، فإن وزنه على سطح الأرض سلطح الأرض الأرض سلطح الأرض ا (علمًا بأن: عجلة الجاذبية الأرضية = (10 m/s²

392 N 😔

60 N 🔾

400 N 🕦


66 N 🕞

- اذا أثرت قوة أفقية N 500 على سيارة ساكنة فحركتها مسافة ما للأمام بعجلة منتظمة، فهذا يعنى أن المراد المرد المراد المراد المراد المراد المراد ا قيمة قوى الاحتكاك
 - أكبر من N أكبر من
 - ب أصغر من N 500
 - ج تساوی N 500 (ج
 - ن لا يمكن تحديد الإجابة
- تستخدم صواريخ صغيرة لتغيير سرعة الأقمار الصناعية، فإذا أثر أحد هذه الصواريخ على قمر صناعي كتلته 7200 kg بقوة دفع N 3500 N، فإن الفترة الزمنية التي يجب أن يؤثر بها الصاروخ على القمر الصناعي ليزيد سرعته بمقدار 0.63 m/s هی
 - 1.052 s ⊕

0.864 s 🕦

1.487 s 🔾

1.296 s ج

الفصل **3**

6	، 2000 تتحركان بنفس العجالة، فإن القوة المحمر	
1	1000 وأخدى كتلتها 2000 kg تتحركان بنفس العجلة، فإن القوة المحصر المعجلة، فإن القوة المحصر المعربة ذات الكتلة الأقل.	Olea
-	1000 والمحال القوة المحصلة المؤبرة على العربي القوة المحصلة المؤبرة على العربي	س عربة كتلتها 🕦
	الكتلة الأخبر	المؤثرة على العربة ذات

- (أ) تساوى
- ب نصف
- ج ضعف
- ن ثلاثة أمثال

، أجب عما يأتي (١١ : ١٧) :

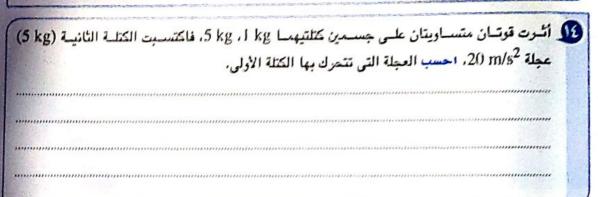
الشكل المقابل يوضح أربع كتل متصلة بواسطة خيوط مهملة الكتلة، يتم سحب الاحتاج السطح أملس عديم الاحتكاك

I STATE OF THE STA	الكتار على سطح أملس عديم المحلف
	بواسطة قوة أفقية (F)، رتب تصاعديًا ،
	(١) الكتل طبقًا لعجلة تحركها.
at the state of the state of	(٢) الخيوط طبقًا لقوة الشد في كل منها.
The second	
a eller fleeday to	
P. S.	

لمنافس بشده حتى توقف بعد أن	ل لاعب كرة قدم كتلته 85 kg يجرى بسـرعة 5 m/s ، فإذا قام لاعب من الفريق الم
	قطع مسافة m 1.25 m، احسب متوسط القوة التي تسببت في إيقاف اللاعب.

الرسع، الحكمان البيانية التالية عركة مجموعة من الأجسام لها نفس الكتلة وجميعها مرسومة بنفس مقياس الرسع، الحكمان عده الانفكال البيانية يعبر عن الجسم الذي له أكبر كمية تحرك الامع التغسير.

الرسع، الحكمان هذه الانفكال البيانية يعبر عن الجسم الذي له أكبر كمية تحرك الامع التغسير.

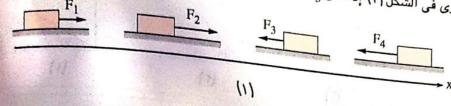

(1)

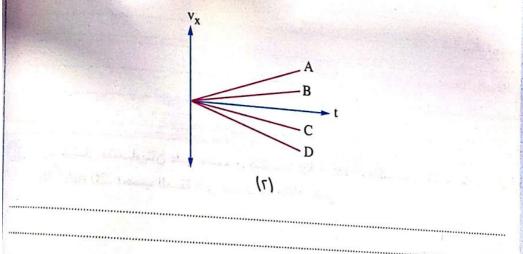
(2)

(1)

(2)

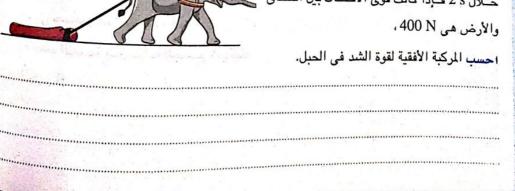
(30)




الشكل البياني المقابل يوضح تغير العجلة مع تغير مقدار القدوة المحصلة المؤشرة العصلة المؤشرة العسم B، A، B، A وكتلة الحسب النسبة بين كتلة الجسم A وكتلة الجسم B

٧٥) يرجع اختلاف ١١٠٠٠

الفصل


الشكل (١) يوضع أربع حالات في كل منها تؤثر قوة أفقية على نفس الكتلة وتحركها من السكون $^{5}F_{2} = F_{4} = 2F_{1} = 2F_{3}$ أي القوى في الشكل (١) إذا كان

سطح یجر فیل ساقًا خشبیة کتلتها 1 ton علی سطح أفقى بسرعة تتغير بانتظام من 1 m/s إلى 4 m/s

خلال 2 s فإذا كانت قوى الاحتكاك بين الساق والأرض هي 400 N،

مّوانين الحركة الدائرية.

الجاذبية الكونية والحركة الدائرية.

• تعتبر الحركة في دائرة من أهم أنواع الحركة الشائعة في الطبيعة، كحركة الأرض حول الشمس. والقمر سبر سرب برسيسي، وسيمر حول الأرض، وحركة بعض الألعاب في الملاهي وغيرها، لذا سنخصص هذا الباب لدراسة الحركة في حون سرس، حجر الله العديد من الأمثلة والتطبيقات الحياتية والتكنولوجية ذات الصلة الأراق ووصف كيفية حدوثها ودراسة العديد من الأمثلة والتطبيقات الحياتية والتكنولوجية ذات الصلة بها واستنتاج العلاقات الرياضية المستخدمة في وصفها.

الاستنحان نيزياء - ١ ٥ - ترم ٢ - جـ ١ - (١٠ /٠)

الفصل

قوانين الحركة الدائرية

اختـبـــار ^{على} الفصـل الأول

نواتج التعلم المتوقعة

بعد دراسة هذا الفصل يجب أن يكون الطالب قادرًا على أن:

- يستلتج قوانين الحركة في دائرة.
- يستنتج قيمة العجلة المركزية ويحدد مفهومها،
 - –يىستنتج قانون القوة الجاذبة المركزية.
 - يحسب قيمة القوة الجاذبة المركزية.

- يتعرف أنواع القوة الجاذبة المركزية.
- يتعـرف التطبيقـات الحياتيــة والتكنولـوچيــة
 للقوة الجاذبة المركزية.

الممسوحة ضوئيا بـ CamScanner

 من خلال دراستك لقانون نيوتن الثاني تعلمت أنه : ای عندما تؤثر قوة محصلة على أ فان جسم متحرك

ويعتمد التغيير الصادث في السرعة المتجهة على اتجاه القوة المحصلة المؤثرة بالنسبة لاتجاه الوي عمودي على اتجاه الدركة

فإذا كان اتجاه القوة المحصلة:

عكس اتجاه الحركة

س سس به مقدار سرعة الجسم في يقل مقدار سرعة الجسم في يظل مقدار سرعة الجسم في يظل مقدار سرعة الجسم المتحرك.

◄ لا يتغير اتجاه حركة الجسم.
 ◄ لا يتغير اتجاه حركة الجسم.

 ◄ عندما يزيد قائد الدراجة عندما يضغط قائد الدراجة النارية ◄ عندما يميل قائد الدراجة على الفرامل فإن القوة المحصلة تكون في عكس اتجاه الحركة فتقل سرعتها.

النارية من حرق الوقود فإنها تتأثر بقوة محصلة فى نفس اتجاه الحركة فتزداد سرعتها.

تتولد قوة محصلة عمودية ع

◄ يتغير اتجاه حركة الجسم.

* مما سبق يتضح أن :

لكى يتحرك جسم حركة دائرية منتظمة (في مسار دائري بسرعة مقدارها ثابت) لابد أن تؤثر عليه باستمرار قوة محصلة مقدارها ثابت وعمودية على اتجاه حركته وفي اتجاه مركز الدائرة يطلق عليها القوة الجاذبة المركزية،

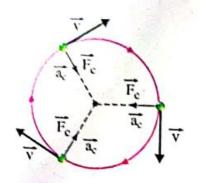
> الحركة الدائرية المنتظمة حركة جسم في مسار دائرى بسرعة ثابتة المقدار ومتغيرة الاتجاه

القوة الحاذية المركزية القوة التي تؤثر باستمرار في اتجاه عمودي على اتجاه حركة الجسم فتجعله يتحرك فی مسار دائری

77

قواليــن الدركــة الدائريــة

العجلــة العركــزيــة


العجلة المركزية Centripetal Acceleration

مندما تؤثر قوة محصلة ($\Sigma \vec{F} = \vec{F_c}$) عمودیًا علی اتجاه حرکة جسم کتلته m وسرعته \vec{v} فإنه یتحرك فی مسار دائری نصف قطره r، ویکون :

- مقدار السرعة (V) ثابت على طول محيط المسار الدائرى.
- اتجاه السرعة متغير باستمرار على طول محيط المسار الدائرى، وتغير اتجاه السرعة يعنى اكتساب الجسم عجلة أثناء حركت الدائرية تسمى العجلة المركزية (āc) ويكون اتجاهها في نفس اتجاه القوة الجاذبة المركزية.
- إذا أتم هذا الجسم دورة كاملة فى نفس المسار الدائرى خلال زمن T يطلق عليه الزمن الدورى فإن السرعة (٧) التى يتحرك بها يطلق عليها السرعة المماسية، وتحسب من العلاقة :

واتجاهها دائمًا في اتجاه المماس للمسار الدائري عند موضع الجسم في تلك اللحظة.

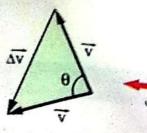
- إذا أتم الجسم عدد N من الدورات الكاملة خلال زمن t، فإن الزمن
 إذا أتم الجسم عدد N من العلاقة :
 الدورى لحركته يعطى من العلاقة :
- التردد (f) هو معدل دوران الجسم (عدد الدورات التي يكملها الجسم
 في الثانية الواحدة) ويحسب من العلاقة :

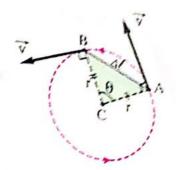
· العجلة المركزية

العجلــة التــى يكتســبها الجســم فى الحركة الدائرية بســبب التغير فى اتجاه السرعة.

. الزمن الدوري

الزمن اللازم لعمل دورة كاملة في المسار الدائري.


$$v = \frac{2 \pi r}{T}$$


$$f = \frac{N}{t} = \frac{1}{T}$$

YY.

ه إذا تمرك جسم في مسار دائري من النقطة Λ إلى النقطة B كما بالشكل فإن انجاه السرعة (\widetilde{v}) يتغير بن Vود، محرت جسم عن مسار دامرى من المعد ١٠٠٠ و التغير في السرعة (ΔV) ينتج عن تغير اتجاهها ققط النقطة بولكن مقدار السرعة يظل ثابتًا، وبذلك فإن التغير في السرعة (ΔV)

- من تشابه المثلث (CAB) مع مثلث السرعات :

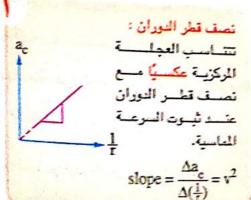
$$\frac{\Delta l}{r} = \frac{\Delta v}{v}$$

$$\Delta v = \frac{\Delta l}{r} v$$

$$a_c = \frac{\Delta v}{\Delta t} = v \cdot \frac{\Delta l}{\Delta t} \cdot \frac{1}{r}$$

- إذا انتقل الجسم من A إلى B خلال فترة زمنية Δt فإن:

$$\forall v = \frac{\Delta I}{\Delta t}$$


$$a_c = \frac{v^2}{r}$$

العلاقة التي تربط العجلة المركزية بكل من السرعة المماسية ونصف قطر الدوران

السرعة الماسية :

تتناسب العجلسة المركزية طردياً مسع مريع السرعة المعاسية عند ثبوت نصف قطر الدوران.

slope = $\frac{\Delta a_c}{\Delta s^2} = \frac{1}{r}$

كرة مثبتة بنهاية حبل تتحرك بانتظام في دائرة أفقية نصف قطرها 0.6 m، فإذا قطعت الكرة دورتين كاملتين في الثانية الواحدة فإن السرعة المماسية للكرة والعجلة المركزية لها هما

10.74	
السرعة الماسية	
1.89 m/s	1
1.89 m/s	9
7.54 m/s	(-)
7.54 m/s	0
	1.89 m/s 1.89 m/s 7.54 m/s

$$r = 0.6 \text{ m}$$
 $N = 2$ $t = 1 \text{ s}$ $v = ?$ $a_c = ?$

$$T = \frac{t}{N} = \frac{1}{2} s$$

$$\mathbf{v} = \frac{2\,\pi\mathbf{r}}{\mathbf{T}} = \frac{2 \times \frac{22}{7} \times 0.6}{\frac{1}{2}}$$

= 7.54 m/s

$$\mathbf{a_c} = \frac{\mathbf{v}^2}{\mathbf{r}} = \frac{(7.54)^2}{0.6}$$

= 94.75 m/s²

الاختيار الصحيح هو 🕒

ماذا السرعة الماسية التي تدور بها الكرة إلى أربعة أمثالها، عاذا يحدث للعجلة المركزية؟ لو

يدور جسم في مسار دائري أفقى بسرعة خطية منتظمة بحيث يكمل نصف دورة خلال S ، قادا كانت إزاحته خلال نصف دورة m 2 فإن عجلته المركزية تساوى

1.1 m/s² (•)

 0.35 m/s^2 1

 6.6 m/s^2

4.4 m/s² (=)

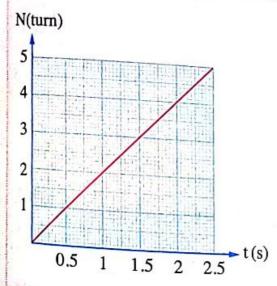
$$N = 0.5$$
 $t = 3 s$ $d = 2 m$ $a_c = ?$

$$d = 2r$$

$$d=2r$$
 \Rightarrow $r=\frac{d}{2}=\frac{2}{2}=1$ m

$$T = \frac{t}{N} = \frac{3}{0.5} = 6 \text{ s}$$

$$v = \frac{2 \pi r}{T} = \frac{2 \times \frac{22}{7} \times 1}{6} = 1.05 \text{ m/s}$$


$$a_c = \frac{v^2}{r} = \frac{(1.05)^2}{1} = 1.1 \text{ m/s}^2$$

إزاحـة الجسـم خــلال نصــف دورة تســاوى قطــا

المسار الدائسة

الاختيار الصحيح هو

عة ضعف سرعته الأولى وفى مسار قطره ضعف قطر المسار الأول، لو ماذا يحدث للعجلة المركزية ؟

جسم يتحرك في مسار دائري أفقى نصف قطره 1 m بسرعة ثابتة، والشكل البياني المقابل يوضيح عدد الدورات التي يصنعها الجسم بمرور الزمن، فإن السرعة المماسية للجسم والعجلة المركزية التي يتحرك بها هما

	11/200	
العجلة المركزية	السرعة الماسية	
158 m/s ²	12.57 m/s	1
9.9 m/s^2	12.57 m/s	9
158 m/s ²	3.14 m/s	(-)
9.9 m/s ²	3.14 m/s	<u> </u>

r = 1 m

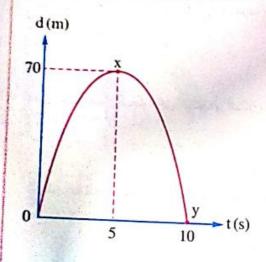
$$a_c = ?$$

slope =
$$\frac{\Delta N}{\Delta t} = \frac{5-0}{2.5-0} = 2 \text{ turn/s}$$

التكامل مع الرياضيات

يمكنك مراجعة كيفية حساب ميل الخط المستقيم بند (٧) صفحة (١٦).

الحسل ا


$$T = \frac{1}{N} = \frac{1}{\text{slope}} = 0.5 \text{ s}$$

$$v = {2 \pi r \over T} = {2 \times {22 \over 7} \times 1 \over 0.5} = 12.57 \text{ m/s}$$
 , $a_c = {v^2 \over r} = {(12.57)^2 \over 1} = 158 \text{ m/s}^2$

٠٠. الاختيار الصحيح هو (1)

ماذا الجسم في نفس المسار الدائري بمعدل 4 دورات لكل ثانية، ماذا يحدث للعجلة المركزية ؟

مثال

الشكل البياني المقابل يمثل العلاقة بين الإزاحة (d) والزمن (t) لجسم يدور في مسار دائري أفقى بسرعة منتظمة، فإن العجلة المركزية التي يتحرك بها الجسم

 0.7 m/s^2 (i)

تساوى

- 1.4 m/s^2
- $13.8 \text{ m/s}^2 \oplus$
- 55.3 m/s² (3)

• من الشكل البياني يتم الجسم دورة كاملة (عند النقطة y) بعد 10 s

$$T = 10 \text{ s}$$

• أقصى إزاحة لجسم يدور في مسار دائري تكون بعد قطعه لنصف دورة (عند النقطة X) وتساوي قطر هذا المسار الدائري.

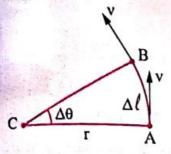
: 5 s se *

$$d = 2r$$

$$r = \frac{d}{2} = \frac{70}{2} = 35 \text{ m}$$

$$v = \frac{2\pi r}{T} = \frac{2 \times \frac{22}{7} \times 35}{10} = 22 \text{ m/s}$$

$$a_c = \frac{v^2}{r} = \frac{(22)^2}{35} = 13.8 \text{ m/s}^2$$


ر. الاختيار الصحيح هو 🕣

ماذا ماذا $(\frac{P_x}{P_y})$ y · x منه النسبة بين مقدارى كمية الحركة للجسم عند الموضعين $(\frac{P_x}{P_y})$ علمت أن كتلة الجسم $(\frac{P_x}{P_y})$ و ماذا ما النسبة بين مقدارى كمية الحركة للجسم عند الموضعين $(\frac{P_x}{P_y})$ و ماذا ما تناب الخصوص و المحتود الموضعين و النسبة بين مقدارى كمية الحركة للجسم عند الموضعين و المحتود الم

معلومة إثراثية

إذا تحرك جسم بسرعة مماسية ٧ على محيط دائرة نصف قطرها ٢ $\Delta \theta$ الى النقطة A إلى النقطة B ليقطع مسافة $\Delta \ell$ وزاوية قدرها (ω) في زمن قدره Δt فإن المقدار ($\frac{\Delta heta}{\Delta t}$) يعرف بالسـرعة الزاوية

$$\omega = \frac{\Delta \theta}{\Delta t}$$

ومن المعروف أن قيمة الزاوية بالتقدير الدائرى تساوى النسبة بين طول القوس ونصف قطر المسار.

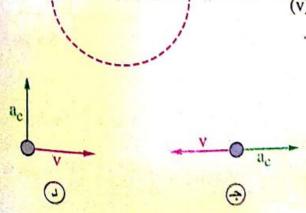
$$\Delta \theta = \frac{\Delta \ell}{r}$$

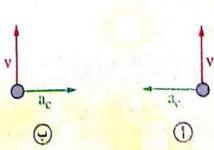
$$\therefore \omega = \frac{\Delta \ell / r}{\Delta t} = \frac{\Delta \ell}{\Delta t} \times \frac{1}{r} = \frac{v}{r}$$

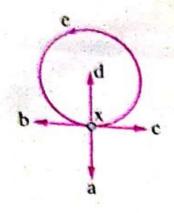
$$\therefore v = \omega r$$

(r) السرعة المماسية (v) = السرعة الزاوية (ω) × نصف القطر (r)

$$v = \frac{2 \pi r}{T}$$


$$\therefore \omega r = \frac{2 \pi r}{T}$$


$$\therefore \omega = \frac{2\pi}{T}$$


اختبــر نفسك

اختر الإجابة الصحيحة من بين الإجابات المعطاة ،

N جسم مربوط فی خیط یدور فی مسار دائری أفقی في اتجاه دوران عقارب الساعة، عندما يكون الجسم عند الموضع x يكون اتجاهى السرعة المماسية (٧) والعجلة المركزية (a_c) ممثلان بالشكل

* أمسك طفل بخيط فى نهايته حجر وحركه ليدور فى مستوى أفقى كما هو موضع باتجاه السهم c على الرسم، فإذا ترك الطفل الخيط فجأة والحجر عند الموضع x فإن الحجر لحظة إفلاته يتحرك


في الاتجاه

xa 😔

xd 1

xc ①

xb 🕣

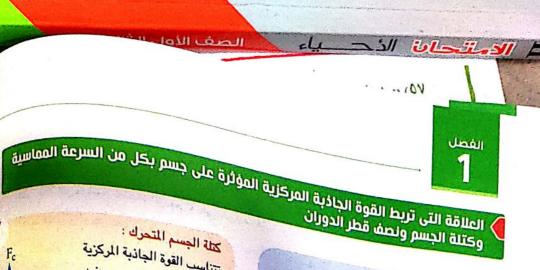
* الشكل المقابل يمثل لعبة العجلة الدوارة في الملاهي، فإذا جلس طفلان متساويان في الكتلة في مكانين مختلفين بحيث كان بعد الطفل الثاني عن المركز ضعف بُعد الطفل الأول عن المركز ودارت اللعبة بسرعة ثابتة، فإن:

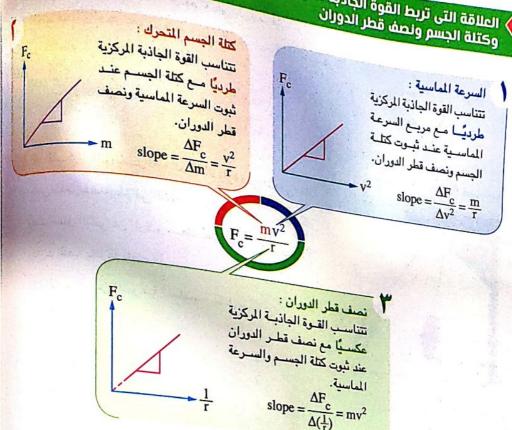
(۱) النسبة بين السرعة المماسية لكل من الطفلين $\left(\frac{v_1}{v_2}\right) = \cdots$

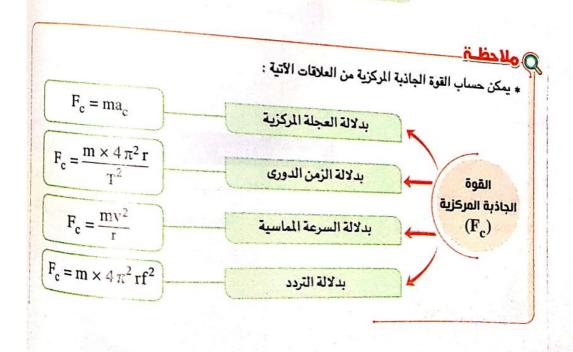
 $\frac{1}{2}$ \odot

10

 $\frac{1}{4}$ (3)


 $\frac{2}{1}$


 $\frac{1}{2}$ \odot


 $\frac{1}{1}$ ①

1/4 (3)

 $\frac{2}{1}$

جسم كتلته 0.5 kg يتحرك على محيط دائرة أفقية نصف قطرها 2 m بسرعة خطية ثابتة مقدارها 10 m/s. فإن العجلة المركزية التي يتحرك بها الجسم والقوة الجاذبة المركزية المؤثرة عليه هما

القوة الجاذبة المركزيا	العجلة المركزية	
25 N	25 m/s ²	1
50 N	25 m/s ²	0
25 N	50 m/s ²	10
50 N	50 m/s ²	(3)

		A STATE OF THE STA	
m = 0.5 kg $r = 2 m$		A STATE OF THE PARTY OF THE PAR	
1 = 2 m	v = 10 m/s	2 - 2	F - 2
$a = \frac{v^2}{(10)^2}$	10 111/3	$a_c = ?$	$\mathbf{F}_{\mathbf{c}} = ?$
a = _ = (10)-			

$$a_c = \frac{v^2}{r} = \frac{(10)^2}{2} = 50 \text{ m/s}^2$$

$$F_c = ma_c = 0.5 \times 50 = 25 \text{ N}$$

ماذاً لم نتمكن من زيادة مقدار القوة الجاذبة المركزية عن N 25 وزادت سرعة الجسم إلى 20 m/s ماذاً .: الاختيار الصحيح هو ج فما التغير الواجب إحداثه لنصف القطر حتى نحافظ على الجسم متحركًا في مسار دائرى ؟

حجر كتلته g 600 مربوط في خيط طوله cm ويدور في مسار دائري أفقى بسرعة 3 m/s : (١) فإن مقدار القوة الجاذبة المركزية يساوى

10.8 N 😔

108 N 🔾

8 N (1)

(٢) إذا كانت أقصى قوة شد يتعملها الضيط هي N 8، فإن النيط

(أ) لا ينقطع، وتقل القوة الجاذبة المركزية حتى تصبح 1/8 لا ينقطع، ويستمر الحجر في حركته في مساره الدائري ولكن بسرعة أقل

﴿ ينقطع، ويتحرك الحجر لحظة انقطاع الخيط تجاه مركز المسار الدائرى

() ينقطع، ويتحرك الحجر لحظة انقطاع الخيط مماسًا للمسار الدائرى

$$m = 600 g$$
 $r = 50 cm$

$$V = 3 \text{ m/s}$$
 $F_c = ?$

$$F_c = m \frac{v^2}{r} = 600 \times 10^{-3} \times \frac{(3)^2}{50 \times 10^{-2}} = 10.8 \text{ N}$$

- (٢) سينقطع الفيط ويتحرك الحجر في خط ستقيم باتجاه المعاس للمسار الدائري الذي كان يسلكه لعظة انقطاع الضيط وذلك لأن القوة الجاذبة المركزية المطلوبة لحركة الحجر في المسار الدائري بهذه السرعة أكبر من أقصى قوة شد يتصلها الخيط،
- ماذا علمت أن أقصى قوة شد يتحطها الخيط 8 N ، ما أقصى سرعة خطية منتظمة يمكن أن يتحرك لو بها الحجر في هذا المسار الدائري دون أن ينقطع الخيط؟

إذا علمت أن الأرض كتلتها kg × 10²⁴ kg وتدور حول الشمس في مدار نصف قطره m 1.5 × 1.5 وتتم دورة كاملة كل 365.25 يوم، فإن القوة الجانبة المركزية التي تؤثر بها الشمس على الأرض تساوى

 $5.1 \times 10^{24} \,\mathrm{N}$ (i)

 $3.14 \times 10^{20} \,\mathrm{N}$

 $3.6 \times 10^{22} \,\mathrm{N}$

$F_c = ?$

$m = 6 \times 10^{24} \text{ kg}$ $r = 1.5 \times 10^{11} \text{ m}$ T = 365.25 day $\forall \mathbf{F_c} = \frac{mv^2}{r} \quad , \quad \mathbf{v} = \frac{2\pi r}{r}$

$$\therefore \mathbf{F_c} = \frac{\mathbf{m} \times \left(\frac{2 \pi \mathbf{r}}{T}\right)^2}{\mathbf{r}} = \frac{\mathbf{m} \times 4 \pi^2 \mathbf{r}}{T^2}$$

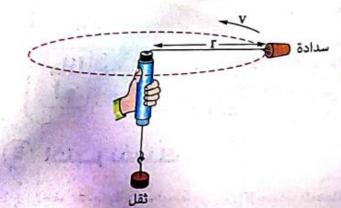
$$\therefore \mathbf{F_c} = \frac{6 \times 10^{24} \times 4 \times \left(\frac{22}{7}\right)^2 \times 1.5 \times 10^{11}}{(365.25 \times 24 \times 60 \times 60)^2}$$
$$= 3.3 \times 10^{22} \text{ N}$$

التكامل مع الرياضيات 😘

يمكنك مراجعة خواص الأسس بند (٥) صفحة (١٤).

.: الاختيار الصحيح هو ج

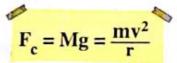
عاذاً كان المطلوب حساب العجلة الركزية التي تتحرك بها الأرض نتيجة تأثير جاذبية الشمس عليها، لو اما إجابتك ؟

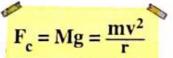

الغرض من التجربة

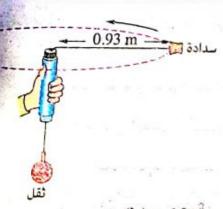
أثبات صحة علاقة القوة الجاذبة المركزية.

الأدوات

- سدادة مطاطية كتلتها m
- ساعة إيقاف.


• ثقل كتلته M


• أنبوبة معدنية أو بلاستيكية.


الخطوات

- (١) اربط السدادة المطاطية في الخيط.
- (٢) مرر الخيط خلال الأنبوبة المعدنية أو البلاستيكية.
 - (٣) اربط الطرف الأخر للخيط بثقل كتلته M
 - (٤) حرك قطعة المطاط في مسار دائري أفقي.
- (ه) قس الزمن الدورى (T) باستخدام ساعة إيقاف.
- $F_c = F_T = Mg$: احسب القوة الجاذبة المركزية (قوة شد الخيط) والتي تساوى وزن الثقل من العلاقة المركزية (٦)
 - $\frac{mv^2}{r}$: ومنها احسب قيمة $v = \frac{2\pi r}{T}$ ومنها احسب قيمة (۷)

الاستنتاج

في الشكل المقابل، إذا أديرت سدادة مطاطية كتلتها 13g في مسار دائري أفقى نصف قطره 0.93 m لتصنع 50 دورة في زمن قدره S 59، فإن كتلة الثقل المعلق في الطرف الأخر للخيط تساوى

 $(\pi = 3.14 \text{ , } g = 10 \text{ m/s}^2 \text{ : (علمًا بأن : })$

- 34 g (1)
- 66 g (=)

- 34 × 10⁻³ g ⊖
- 66 × 10 3 g (3)

$$m = 13 g$$
 $r = 0.93 m$ $N = 50$ $t = 59 s$ $g = 10 m/s^2$ $\pi = 3.14$ $M = ?$

$$T = \frac{1}{N} = \frac{59}{50} = 1.18 \text{ s}$$

$$T = N$$
 50
 $V = \frac{2\pi r}{T} = \frac{2 \times 3.14 \times 0.93}{1.18} = 4.95 \text{ m/s}$

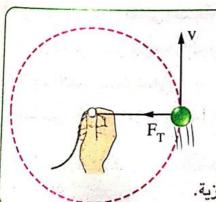
$$F_{c} = m \frac{V^{2}}{T} = 13 \times 10^{-3} \times \frac{(4.95)^{2}}{0.93} = 0.34 \text{ N}$$
 القوة المركزية :

$$F_c = \frac{0.34}{10} = 0.034 \text{ kg} = 34 \text{ g}$$
 : كتلة الثقل

٠٠ الاختيار الصحيح هو (1)

ماذا تم تغيير الثقل بنخر كتلته g 68 مع بقاء نصف قطر مسار السدادة ثابتًا، فما أقصى مقدار للسرعة الخطية التي يمكن أن تصل إليها السدادة ؟

اختبــر نفسك



اختر الإجابة الصحيحة من بين الإجابات المعطاة ،

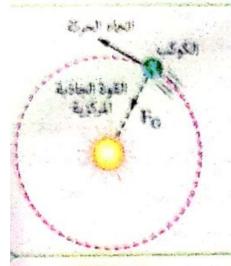
- 0.47 m/s 😔 0.22 m/s 🕦
- 216.6 m/s (14.7 m/s (14.7 m/s)

أنواع القوى الجاذبة المركزية Types of Centripetal Forces

تعبر القوة الجاذبة المركزية عن أى قوة تؤثر عموديًا على مسار حركة الجسم وتجعله يتحرك فى مسار دائرى
 بسرعة ثابتة، وفيما يلى سوف نتعرف على أمثلة لها :

- عند إدارة جسم باستخدام حبل أو سلك تنشئ فى الحبل أو السلك قوة شد عمودية على اتجاه حركة الجسم تجعله يتحرك فى مسار دائرى بسرعة ثابتة.

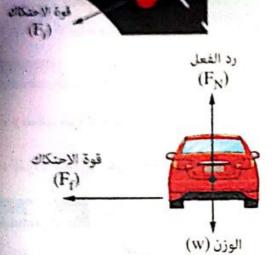
أى أن : قوة الشد في الحبل (FT) تعمل كقوة جاذبة مركزية.


(F_T)

قوة الشد

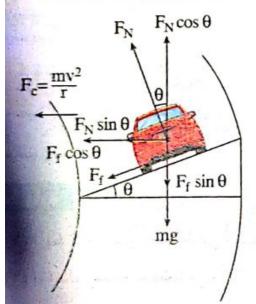
قوة التجاذب المادى (F_G)

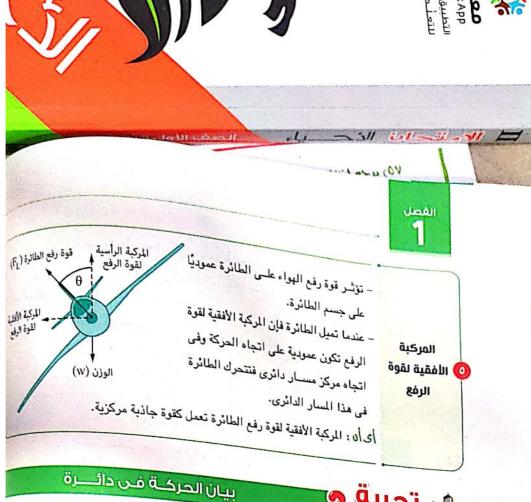
- توجد بسين أى كوكب والشمس قدوة تجاذب عدودية على اتجاء حركة الكوكب تجعله يتحرك في مسار دائرى حول الشمس.


أى أنه الشوة التجانب المادي (F_G) في هذه الحالة تعمل كقوة جاذبة مركزية.

قوة الاحتكاك (F_r)

- عندما تدير إطارات السيارة للانحراف في مسار منحنى يسارًا مثلًا فإن السيارة ثميل إلى الاستمرار في الحركة في خط مستقيم بفعل القصور الذاتي (تجاه يمين المنحني) فتعمل قوة الاحتكاك بين إطارات السيارة والطريق عموديًا على مستوى الإطار نحو مركز المسار المنحني.


أى أه : قوة الاحتكاك (F_f) بين إطارات السيارة والطريق تعمل كقوة جاذبة مركزية.


مجموع المركبتين الكل الأفقيتين لكل من قوة رد الفعل وقوة الاحتكاك باتجاه مركز الدوران

عندما تتحرك سيارة في مسار دائري يميل على
 الأفقى بزاوية θ فإنها تتأثر بأكثر من قوة، منها:

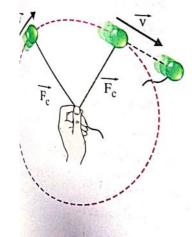
- قوة رد الفعل (F_N) والتي تؤثر عموديًا على السيارة وبتحليل متجه قوة رد الفعل فإن المركبة الأفقية لرد الفعل تكون عمودية على اتجاه الحركة وفي اتجاه المركز.
- قوة الاحتكاك (F_f) وبتحليل متجه قوة الاحتكاك فإن المركبة الأفقية لقوة الاحتكاك تكون عمودية أيضًا على اتجاه الحركة.

اى أن القوة الجاذبة المركزية التى تجعل السيارة تتحرك فى مسار منحنى = مجموع المركبة الأفقية لقوة الاحتكاك ($F_{cos} \theta$) باتجاء مركز الدوران.

الغرض من التجربة

- وصف حركة جسم يتحرك في مسار دائري.
 - إدراك مفهوم القوة الجاذبة المركزية.

فكرة التجربة


• القوة الجاذبة المركزية تازم لدوران جسم في مسار دائري.

الأدوات

- . كرة تنس.
- . خيط (طوله حوالي 120 cm).
 - ، قلم رصاص،

الخطوات

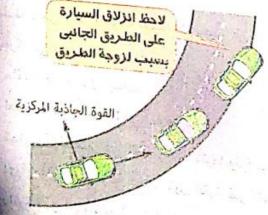
- (١) اربط كرة التنس بأحد طرفى الخيط.
- (٢) امسك الخيط بإحكام عند نقطة تبعد عن الكرة مسافة مناسبة (r) بحيث يمثل طول الخيط بين موضع يدك والكرة نصف قطر المسار الدائري للكرة.
- (٢) أدر الكرة بسرعة مناسبة بحيث تتحرك على محيط دائرة أفقية.

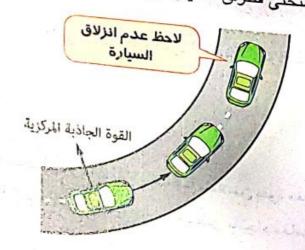
(٤) كرر الخطوة السابقة باستخدام أطوال مختلفة من الخيط وسجل وصف الحركة في الجدول التالي :

وصف المركة	طول الخيط
	25 cm
	50 cm
uisanninamain	75 cm
	100 cm

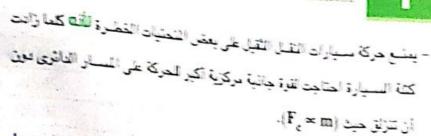
(٥) اترك الخيط فجأة من يدك وسجل الاتجاء الذي تتحرك فيه الكرة.

الاستنتاج


- و لكى تتحرك الكرة في مسار دائري لابد من جذب الخيط للداخل لتستمر الكرة في الدوران في مسارها (وجود قوة شد تعمل كقوة جاذبة مركزية).
- عند ترك الخيط (غياب القوة الجاذبة المركزية) تنطلق الكرة بسبب القصور الذاتي في خط مستقيم على امتداد مماس المسار الدائري الذي كانت تسلكه لحظة الإفلات وذلك بسرعة ثابتة في المقدار والاتجاه يطلق عليها السرعة الماسية.


أهــم التطبيقــات على الحركة الدائرية

(١) تصميم منحنيات الطرق:


- يلزم حساب القوة الجاذبة المركزية عند تصميم منحنيات الطرق والسكك الحديدية لكي تتحرك السيارات والقطارات في مسار منحنى دون أن تنزلق.

- إذا تحركت سيارة على طريق منحنى لزج فإن قوى الاحتكاك قد تكون غير كافية لدوران السيارة في المسار المنحنى فتنزلق السيارة وتزحف الإطارات على الطريق الجانبي ولا تستمر في المسار المنحني.

- بعدد مهندسو الطرق سرعة معينة للحركة عند المنحنيات لا ينبغى تجاوزها الله كما الزيالية مسرعة السيارة احتاجت القوة جانبة مركزية أكبر الحركة على المسار المنتخى دون أن تتزلق خارج منا المسار حيث $(F_c \propto v^2)$.

- ينبغى السير بسرعة صغيرة على النحنيات الخطرة لتجنب خطورتها الله كما قل نصف قطر النحتى احتاجت السيارة لقوة جانبة مركزية أكبر لتدور فيه $F_c \propto \frac{1}{r}$ دون أن تنزلق حيث ($F_c \propto 1$).

(٢) عند تحريك داو معلوه إلى منتصفه بالماء حركة دائرية رأسية بسرعة كافية فسإن المساء لا ينسكب سن الدي للَّن القصور الذاتي يعمل على حركة الماء في اتجاه معاس العمسار الداشري، فيعنَّع جنار العالم اليَّاء من الانكاب فتدور الياد في المسار الدائري وتبقى داخل الداو، وهذا يحتاج إلى حد أدنى من السرعة الداوعة أعلى نقطة في مساره الدائري.

- (٢) يستقاد من غاهرة حركة الأجسام بعينًا عن المسار الدائري عندما تكون القوة الجانبة المركزية غير كفَّة الحركة في المسار الدائري في:
 - ماكينة صنع غزل البناء.
 - لعبة البراميل الدوارة في الملامع.
- تجفيف الملابس في الغسالات الأتوماتيكية حيث نجد أن جزيئات الماء ملتصفة بالملابس بقوة معينة وعاد موران المجلف بسرعة كبيرة تكون القوة نحير كافية لإبقاء الجزيئات في مدارها فتنطلق باتجاه معاس محبخ دائرة الدوران وتتفصل عن الملابس.

* عند استعمال حجر المسن الكهربائي تنطلق شظايا المعدن المتوهجة باتجاهات مستقيمة هي اتجاهات السرعات الماسية

🌀 اختبــر نفسك

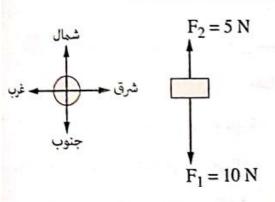
اختر الإجابة الصحيحة من بين الإجابات المعطاة،

العركة في مسار منحنى زلق فإنها قد تخرج عن هذا المسار ويرجع ذلك المسار ويرجع ذلك

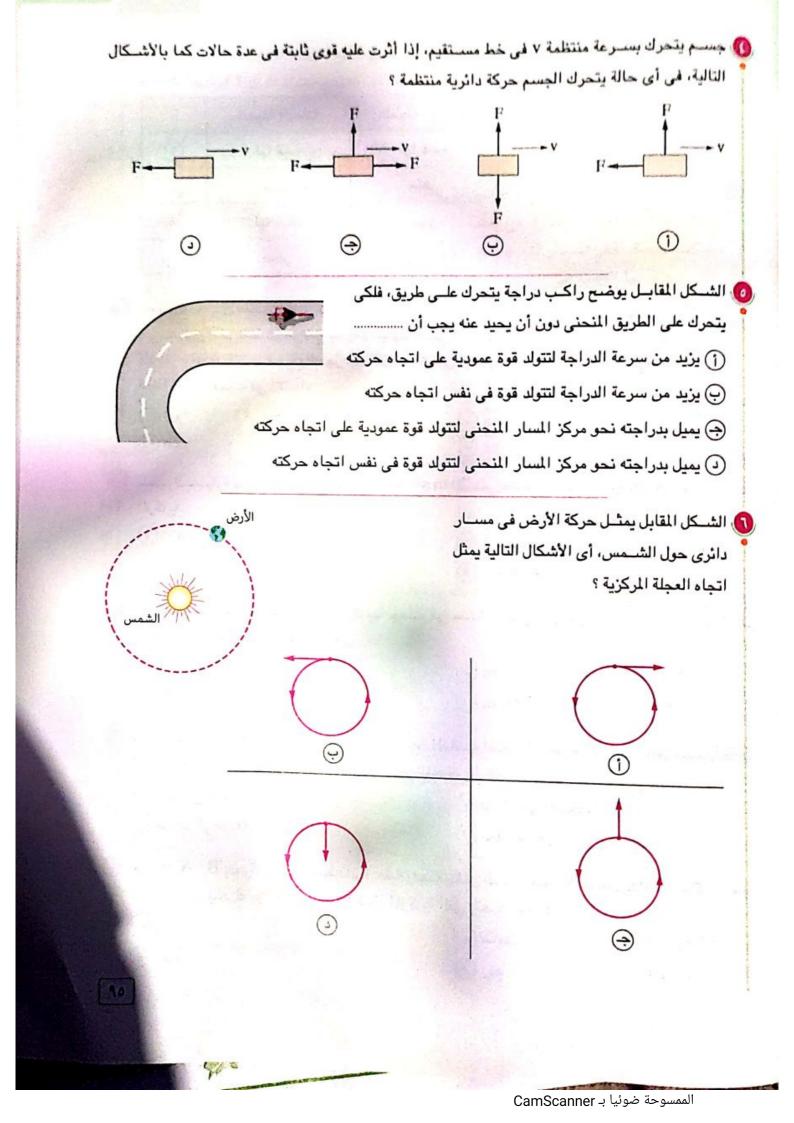
- أ نقص قوة الاحتكاك
 - ب نقص السرعة
 - ج نقص الكتلة
- ن زيادة نصف قطر المسار الدائري

آ سيارة تسير على طريق منحنى نصف قطره (r) يميل مستواه على المستوى الأفقى بزاوية (θ)، فإنه بزيادة مقدار الزاوية (θ) يزداد مقدار

- أ المركبة الرأسية لوزن السيارة
- ب المركبة الأفقية لقوة الاحتكاك
- 会 المركبة الأفقية لقوة رد الفعل
- المركبة الرأسية لقوة رد الفعل


أسئلـــة الاختيــــار مـــن متعـــدد

قيم نفسك إلكتوي


العجلة المركزية

🕦 جسم يتحرك بسرعة منتظمة في اتجاه ما، فإذا أثرت قوة على هذا الجسم في عكس اتجاه حركته ماذا يحري لكل من مقدار واتجاه سرعة الجسم ؟

اتجاه السرعة	مقدار السرعة	
لا يتغير	يقل	1
لا يتغير	يزداد	9
يتغير	يظل ثابتًا	⊕
لا يتغير	يظل ثابتًا	(3)

- الثرق بسرعة ثابتة، فإذا أثرت الشرق بسرعة ثابتة، فإذا أثرت الشرق بسرعة ثابتة الشرق الشر عليه قوتان رأسيتان F_2 ، F_1 كما بالشكل المقابل فإن سرعته
 - أ تتغير مقدارًا فقط
 - بتغير اتجامًا فقط
 - 🚓 تتغير مقدارًا واتجاهًا
 - (٤) تظل ثابتة
- 🕡 عندما يتحرك جسم حركة دائرية منتظمة يكون اتجاه القوة الجاذبة المركزية المؤثرة على الجسم ..
 - أ فى نفس اتجاه حركة الجسم
 - (عمودي على اتجاه حركة الجسم
 - 🚓 عكس اتجاه حركة الجسم
 - الماس لسار حركة الجسم

عند تصرك جسم حركة دائرية منتظمة، أى الاختيارات الأتية صحيحة بالنسبة لكل من العجلة الخطبة

العجلة المركزية	زية ؟	والعجلة المركزية ؟	
لها قيمة	العجلة الخطية		
صفر	لها قيمة	1	
صفر	صفر	9	
لها قيمة	لها قيمة	<u>-</u>	
ء 4 ليدود	صفر	(3)	

x a	ے لیدور	ر صفر
d	نهايت حجر وحرب الشكل،	أمسك طفل بخيسط فسى
James Mala	ع بانجاه الموضع X فإن الحجر	أمسك طفل بخيط فى فى مستوى أفقى كما هو موضو فإذا ترك الطفل الخيط فجأة والم
The state of the s	xa 💬	فاذا ترك الطفل الخيط فجاه والد لحظة إفلاته يتحرك في الاتجاه -
	70	لحظة إفلاته يتحرك في الم
ف قطره m 100 فتحن العج	رد) xc (ع) منحنی نص	$\frac{xd}{yb}$

تتحسرك سسيارة بسسرعة خطية تابتـة مقدارها 20 m.s⁻¹ في منحنى نصف قطـره m 100 فتكون العجة

5 m.s⁻² 💬 المركزية 4 m.s⁻² (3) 0.25 m.s⁻² (i)

إذا كانت السرعة المماسية التي يتحرك بها جسم في مسار دائري أفقى هي 7 m/s وقد أتم 4 دورات في دقيقتين فإن نصف قطر المسار يساوى 25.2 m 😔

30.6 m 🔾

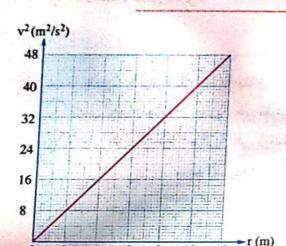
س جسم يتحرك حركة دائرية منتظمة، إذا زادت السرعة المماسية له إلى الضعف وزاد نصف قطر المسار الدائرى

إلى الضعف فإن ذلك يعنى أن العجلة المركزية التي يتحرك بها الجسم (ب) تزداد إلى الضعف

ن تظل کما هی

المركزية التي يتحرك بها A العجلة المركزية التي يتحرك بها B

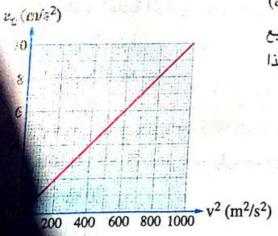
وي ع () تساوى


ج) نصف

20 m/s² 💬

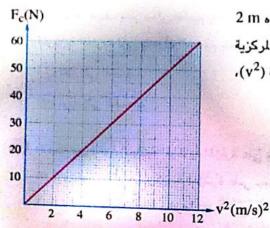
5 m/s² (i)

80 m/s² (3)

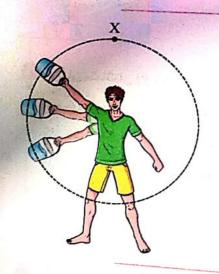

 $40 \text{ m/s}^2 \oplus$

- 2 m/s^2 (1)
- 4 m/s² (-)
- $6 \text{ m/s}^2 \oplus$
- 8 m/s^2

- 4.47 m/s (1)
- 5.58 m/s (-)
- 3.13 m/s (=)
- 9.8 m/s (1)


- 100 m 🕦
- 175 m (-)
- 200 m (=)
- 250 m 🔾

الامتحان فيزياء - ١ ٥ - ترم ٢ - جـ ١ - (م/


وتنام فاذا كان أحد الكرار	710		
منتصم عرادة من ال كن در	ار دائری افعی	﴿ ﴿ فَى أَحِد أَلِعَابِ المَلاهِي تَدُورِ الْكُرَاسِي فَى مُسْدِ	
استلقامه والمساد من المركور، قايهما يتعرل	کان کلاهما علی	خی أحد ألعاب الملاهی تدور الكراسی فی مسد خی أحد ألعاب الملاهی تدور الكراسی فی مسد خی مسد من المركز وأخر علی بُعد m 2 من المركز وأ	
2 11 2 2 m 16 2 11		1.5 m من المركز واحر على بعد ١٠٠٠ -	
ى الذى يبعد m 2 من المركز	ب الكرس	بسرعة مماسية أكبر ؟	
معرفة الزمن الدورى لتحديد الإجابة	، مخت 🔈	(1) الكرسى الذي يبعد 1.5 m من المركز	
Company of the state of the sta	lier.	ج كلاهما له نفس السرعة	
	e Name 2	القوة الجاذبة المركزية	
<u>ـة</u> فيما يلى هى	ارة غير الصحيد	القوة الجاذبة المركزية العبد المركة دائرية منتظمة، فإن العبد المركة دائرية ما المركة دائرية منتظمة المركة دائرية منتظمة المركة دائرية منتظمة المركة دائرية من المركة دائرية منتظمة المركة دائرية دائرية المركة دائرية دائرية دائرية دائرية المركة دائرية دائري	
Barrier Harris	لحركة	مندما يتحرك جسم حركة داترية منتقد المرية	
4		(أ) تعمل القوة الجادبة المركزية على تعادة السرعة (ب) تعمل القوة الجاذبة المركزية على زيادة السرعة	
		مربع السرعة الماسية ﴿ عَجِلَةَ الحَرِكَةَ = نَصِفَ قَطْرِ الْسَارِ الدَّائرِي	
		رب عجه العرب نصف قطر السار الدائري	
ائری ایکانی	، قطر المسار الد	 نصف السرعة الماسية = √ العجلة المركزية × نصف 	
	220	رق السرعة الماسية - ١	
ة منتظمه TU m/s فتحون القوة الجاذبة	6πm بسرع	کتلته 6 kg یتحرك حول مرکز دائرة محیطها	
	A. SAMPLE	المركزية المؤثرة على الجسم هي	
143,044,		50 N (1)	
1) Ily 1600 and the 4	100 N (3)	200 N 🖨	
2 m بسرعــة خطية ثابتــة مقدارهــا	ية نصف قطرها	🗽 🛠 جسم كتلته kg 5 يتحرك على محيط دائرة أفق	
		5 m/s ، فإن :	
		(١) العجلة المركزية التي يتحرك بها الجسم تساوي	
2.5	m/s ² (-)		
		10 m/s^2	
	m/s^2	12.5 m/s ² ⊕	
The state of the s	ىى	(٢) القوة الجاذبة المركزية المؤثرة على الجسم تساوي	
in the light was to be a	0.6 N (-)	12.5 N (i)	
Secretary Secretary	0.5 N ③	62.5 N ⊕	
	0.511	92.5 11 (-)	
روب القوة التي التي القوة التي القوة التي التي القوة التي التي التي التي التي التي التي التي			
تحافظ على الحركة الدائرية للسيارة تساوى N 2140 فإن السرعة المماسية للسيارة تساوى تقريبًا			
		_ 1	
	35 m/s ⊕	20 m/s (1)	
in the S	50 m/s 🕘	40 m/s 😩	
		1	

 ا ومثبت من الطرف الآخر ويدور في دائرة أفقية، فإذا كانت 	(0 m مجر كتلته 4 kg مربوط بطرف خبط طوله 0 m
	عرد الملك في العلط ١٩ ١٥٥ تكون الما م
ي ملى 20 m/s ب	10 m/s (i) 100 m/s (ج)
400 m/s ①	100 m/s ⊕
	(A) Farm III
ى بها فى طريق منحنى نصف قطره m 30 بســرعة 2 m/s،	🐧 شخص کتلته 50 kg يرکب دراجة ويتصرا
جة والشخص معًا N 10 فإن كتلة الدراجة تساوى	فإذا كانت قوة الجذب المركزية المؤثرة على الدرا
75 kg ⊕	100 kg 🛈
25 kg ③	50 kg ⊕
نصف قطره m 40 بسرعة مماسية مقدارها 13.2 m/s، إذا	🗽 🛠 راکب دراجة يتحرك في مسار دائري أفقى
سى مسارها الدائرى تساوى 377 N فإن كتلة الدراجة	
10	والراكب معًا تساوى
90.3 kg ⊕	100.1 kg 🕦
70.6 kg ①	86.5 kg 🕞
ور فی مسار دائری أفقی نصف قطره 1.5 m بحیث یصنع	ـــــــــــــــــــــــــــــــــــــ
$(\pi = 3.14 : علمًا بأن)$	3 دورات في الثانية، فإن :
	(١) السرعة الخطية (المماسية) تساوى
21 m/s 🕞	3.14 m/s (1)
28.26 m/s 🔾	25 m/s 👄
	(٢) العجلة المركزية تساوى
532.4 m/s ² 🔾	240 m/s ² (i)
721 m/s ² ③	654.6 m/s ²
	(٣) قوة شد الخيط للجسم تساوى
1568.7 N 💬	1064.8 N ①
858 N 🔾	1004.8 N (1)

🗥 🛠 جسے کتلته m يتحرك في مسار دائري نصف قطره 2 m والشكل البياني المقابل يمثل العلاقة بين القوة الجاذبة المركزية المؤثرة على هذا الجسم ومربع سرعته المماسية (${
m Y}^2$)، فإن كتلة الجسم تساوى

- 2.5 kg (1)
 - 5 kg 😛
- 10 kg ج
- 720 kg 🗿

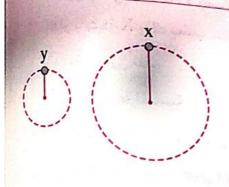
الشكل المقابل يمثل شخص يقوم بإدارة دلو به ماء في مستوى رأسى، فإن الماء لا ينسكب من الدلو عندما يمر الدلو بالنقطة X وذلك بسبب

- أ نقص وزن الماء
- أن السرعة المماسية للماء كافية لذلك
- انعدام محصلة القوى المؤثرة على الماء
- () أن اتجاه محصلة القوى المؤثرة على الماء إلى أعلى

مربوط في خيط طوله 10 cm ويدور بسرعة 3 m/s في مستوى أفقى : عجر كتلته g 600 مربوط في خيط طوله على 10 ويدور بسرعة (١) فإن القوة الجاذبة المركزية تساوى

32 N 🕞 18 N ① 540 N 🔾

- (٢) ما الذي تتوقع حدوثه إذا كانت أقصى قوة شد يتحملها الخيط N 30 ؟
- ① يرتخى الخيط وتقل القوة الجاذبة المركزية حتى تصبح N 30 N
- لا ينقطع الخيط ويستمر الحجر في حركته في مساره الدائري ولكن بسرعة أقل
 - ﴿ ينقطع الخيط ويتحرك الحجر لحظة انقطاع الغيط تجاه مركز المسار الدائرى
 - () ينقطع الخيط ويتحرك الحجر لحظة انقطاع الخيط مماسًا للمسار الدائرى

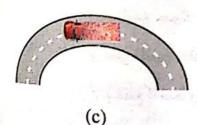

القوة الجاذبة المناه معار مسلم المسلم المسل المركزية الازمة لكي يتحرك الجسيم بنفس السرعة (V) في مساره الدائري الجديد

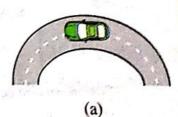
() تقل إلى الربع (أ) تقل إلى النصف

تفريا القوة الجاذبة المركزية المؤثرة على جسم يتحرك بسرعة مقدارها 5 m/s في دائرة أفقية قطريا السبه بين العوة الجادبه المرحرية المؤشرة على جسم أخر له نفس كتلة الجسم الأول ويتحرك بسرعة مقدارها 4 m 10 m/s في دائرة أفقية قطرها 8 هي

 $\frac{1}{3}$ Θ $\frac{2}{3}$ ①

1 1

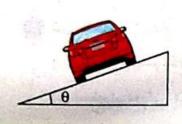

کرتان متماناتان (x ، y) مربوطتان کل منهما بخیط وتتحرکان فی مستوى أفقى حركة دائرية منتظمة لها نفس الزمن الدورى، فإذا كان نصف قطر مسار الكرة X ضعف نصف قطر مسار الكرة Y فإن النسبة بين قوتى الشد في خيطى الكرة $\left(\frac{T_x}{T_u}\right)$ تساوى

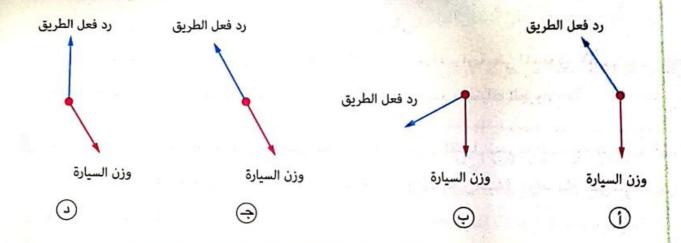

140 40

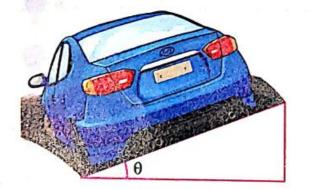
 $\frac{1}{2}$ (i)

²/₁ ⊕

وم الشكل التالى يوضح ثلاث سيارات c ، b ، a تتصرك في ثلاثة طرق أفقية منحنية بنفس مقدار السرعة، فإذا كانت كتلة كل من السيارتين b ، a هي m وكتلة السيارة c هي m و وقطر مسار السيارتين c ، a مساوى ويساوى نصف قطر مسار السيارة b، فإن الترتيب الصحيح لهذه السيارات من حيث إمكانية تعرضها لخطر الانزلاق هو


(b)

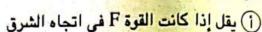

b < a < c (1)


c<a<b (=)

a < b < c ⊕ c < b < a 3

- ه السبب المحتمل لخروج سيارة عن مسارها إذا دخلت طريق منحني أفقي ؟
 - (1) زيادة قوة رد فعل الطريق على السيارة
 - (ب) نقص قوة الاحتكاك بين إطارات السيارة والطريق
 - ﴿ زيادة قوة الاحتكاك بين إطارات السيارة والطريق
 - () نقص قوة الجاذبية الأرضية المؤثرة على السيارة
 - سيارة تسير على طريق منحنى نصف قطره (r) يميل مستواه على المستوى الأفقى بزاوية (θ)، أى الاختيارات الآتية يمثل اتجاه كل من قوة جذب الأرض للسيارة (وزن السيارة) ورد فعل الطريق على السيارة ؟

- المركبتين الرأسيتين لقوة الاحتكاك وقوة رد الفعل
- ب المركبتين الأفقيتين لقوة الاحتكاك وقوة رد الفعل
- المركبتين الرأسية لقوة الاحتكاك والأفقية لقوة رد الفعل
- المركبتين الأفقية لقوة الاحتكاك والرأسية لقوة رد الفعل


أسئلــة المقــال

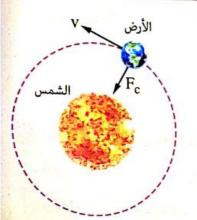
- عند تدوير حجر مثبت في نهاية خيط في مسار دائري أفقى، ما اتجاه القوة المحصلة المؤثرة عليه، وما تأثيرها ؟ وما اتجاه الحركة إذا انقطع الخيط ؟
- أى نقطة على سلطح الأرض يكون لها أكبر سرعة خطية بالنسبة لمحود دوران الأرض، النقطة التي تقع عنو خط الاستواء أم تلك التي تقع عند مداري الجدى أو السرطان ؟ ولماذا ؟
 - 🕜 فسر العبارات التالية :
 - (١) رغم أن الجسم الذي يتحرك حركة دائرية منتظمة يتأثر بعجلة إلا أن سرعته الخطية ثابتة المقدار.
 - (٢) استمرار دوران الأرض حول الشمس في نفس مدارها.
 - (٣) * عندما تنعطف السيارة عند منحنى أفقى تحافظ على سيرها في المنحنى ولا تحيد عنه.
 - * عدم انزلاق السيارة التي تتحرك في مسار منحني أفقى،
 - (٤) عدم انزلاق السيارة التي تتحرك في طريق منحنى يميل مستواه بزاوية على المستوى الأفقى.
 - (٥) من الضرورى تقدير القوة الجاذبة المركزية القصوى عند تصميم منحنيات الطرق.
- ك أكد مدرب تعليم قيادة السيارات على المتدربين أنه يجب تقليل سرعة السيارة قبل دخولها لمنحنى وذلك للحفاظ على سلامة السيارة وسلامة قائدها، من خلال دراستك لمفهوم الحركة في دائرة ما سبب ذلك ؟
- ٥ بدأت سيارة الحركة في مسار منحني زلق فلاحظ سائقها أن السيارة تنحرف عن المسار المنحني، فسر ذلك.
 - ما النتائج المترتبة على صغر قطر المنحنيات في الطرق السريعة بالنسبة للسيارات التي تتحرك عليها ؟

Control of the Contro

اختر إجابتين من بين الإجابات المعطاة ،

الشكل المقابل يوضع سيارة تتحرك بسرعة ٧ في اتجاه الشرق، فإذا أثرت عليها قوة F، فإن مقدار سرعتها

- بزداد إذا كانت القوة F في اتجاه الشرق
- (ج) يزداد إذا كانت القوة F في اتجاه الغرب
 - (د) يقل إذا كانت القوة F في اتجاه الغرب



يظل ثابتًا دائمًا

(ب) مقدارها يزداد بمرور الزمن

(د) اتجاهها مماس للمسار الدائري

- السرعة الخطية لجسم يتحرك حركة دائرية منتظمة
 - أ مقدارها ثابت
 - (ج) اتجاهها في عكس اتجاه الحركة
 - (م) اتجاهها عمودي على المسار الدائري

- الشكل المقابل يعبر عن حركة الأرض حول الشمس في مسار دائري، فيكون اتجاه العجلة المركزية
 - (F_c) في نفس اتجاه القوة
 - (F_c) عمودي على اتجاه القوة (F_c)
 - (v) للأرض عن نفس اتجاه السرعة الماسية (v) للأرض
 - (v) عكس اتجاه السرعة الماسية (v) للأرض
 - عمودى على اتجاه السرعة الماسية (٧) للأرض
 - - (ب) السرعة الماسية للجسم يساوى 4 m/s
 - (ج) السرعة الماسية للجسم يساوى 16 m/s
 - (ك) كمية تحرك الجسم يساوى 20 kg.m/s
 - (ه) كمية تحرك الجسم يساوى 80 kg.m/s

F_c(N)
240
200
160
120
80
40
0 0.5 1 1.5 2 2.5 3 T (m⁻¹)

الامنتحان فيزياء - ١ ث - ترم ٢ - ج ١ - (٩/ ١٤) [١٠٥]

- و عندما يتحرك جسم حركة دائرية منتظمة على محيط دائرة نصف قطرها ٢ فإن
 - القوة المركزية تعمل على تغيير اتجاه السرعة
 - الحركة تكون بسرعة ثابتة مقدارًا
 - 🕣 مقدار سرعة الجسم = العجلة المركزية × ٢
 - العجلة المركزية تكون في نفس اتجاه الحركة
 - اتجاه السرعة الخطية في اتجاه مركز المسار الدائري

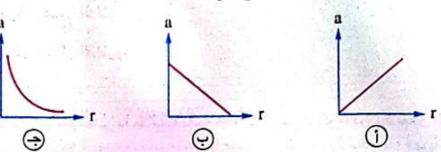
اختر من القائمة ما يناسب الفراغات ،

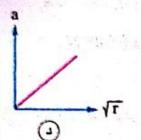
يقوم فتى بإدارة دلو به كمية من الماء فى مستوى رأسى، ما الكميتان اللتان يكون بينهما زاوية تساوى الصفر فى جميع مواضع الدلو فى المسار الدائرى ؟

(١) الكمية الأولى

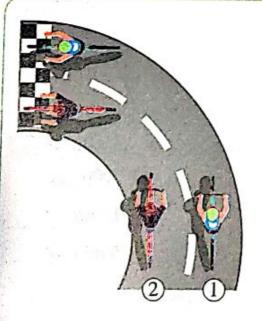
(ب) الكمية الثانية

القوة الجاذبة المركزية السرعة الماسية المركزية العجلة المركزية وذن الماء وذن الماء رد فعل الدلو على الماء

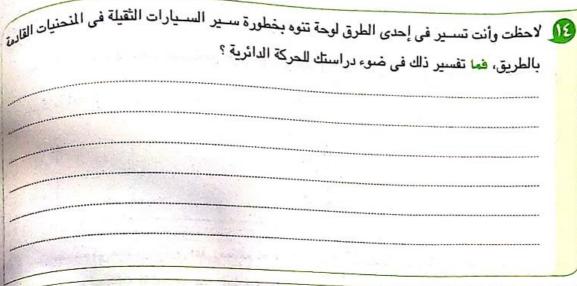

يتحرك جسم بسرعة ٧ مقدارها ثابت في مسار دائري أفقى منتظم، فإذا كانت الزاوية بين اتجاه السرعة اللحظية واتجاه العجلة المركزية للجسم هي θ والزاوية بين اتجاه القوة المركزية المؤثرة على الجسم واتجاه العجلة المركزية ملى θ_2 فإن :


(۱) الم تساوى

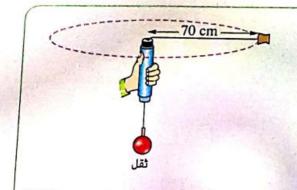
(ب) 0₂ تساوی


45° 60° 90°

180°


- - 10
 - $\frac{2}{1}$ \odot
 - $\frac{1}{4}$
 - $\frac{1}{8}$

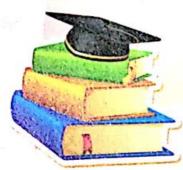
- الشكل المقابل يوضح دراجتين (1) ، (2) تتحركان بسرعتين ثابتتى المقدار في مضمار سباق دائرى أفقى، فإذا وصلت الدراجتان لنهاية السباق في نفس اللحظة، فأيهما يملك سرعة مماسية أكبر ؟
 - 1 الدراجة
 - (الدراجة (
 - کلاهما له نفس السرعة
 - () يجب معرفة الزمن الدورى لتحديد الإجابة


جسم كتلت عند 0.01 kg يتحرك في مسا يستغرق s 3 لعمل دورة كاملة، تكون القوة 0.066 N (1) في اتجاه مماس المسار الدا (2 6.585 N في اتجاه مماس المسار الدا
يستغرق 5 3 لعمل دورة كاملة، تكون القوة 0.066 N (1)
0.066 N (1) في اتجاه مماس المسار الدا
(ح) 0.066 N في اتجاه مركز المسار الدائر
(2 6.585 N في اتجاه مركز المسار الدائر
و یتحرك جسم فی مسار دائری منتظم بسر
فإن نصف قطر المسار يساوى
3.5 m (j)
10.5 m ⊕
zero (1) 0.4 kg.m/s (=)
ربط حجر فی خیط طوله 0.4 m وأدير فی مس تساوی m/s ²
$2 \pi^2 \bigoplus$
عسالة لعصر الملابس عجلتها المركزية 2 m/s² تدور 7000 دورة خلال
1 min (1)

الدنيب	1 -1 11 11 1	PD A : NALE : IL IL .
9- 1B . 1V . V	منهما فی مسار دادری انعی سند	یتحرك جسمان متماثلان B ، A كل
بإن النسبة بين القوة الجاذب	الزمن الدورى لهما $\left(\frac{\Lambda}{T_{\mathrm{B}}}\right)$ هى $\frac{1}{2}$ ، أ	بنفس السرعة، فإذا كانت النسبة بين ا
		الركزية لهما $\left(\frac{F_A}{F_B}\right)$ هي الركزية لهما
	†⊖	$\frac{2}{1}$ (i)
	$\frac{1}{8}$ \odot	$\frac{1}{2}$
ره بقوة مركزية تساوى عدد	نتظم نصف قطره 25 cm نتيجة تأثر	یدور جسم فی مسار دائری أفقی م
		أربعة أضعاف كتلته فتكون سرعته الم
The second second second	1 m/s 😔	0.5 m/s (j
Paragraph Ind.	0 10	1.5 m/s 🚗
		جِب عما يأتي (١١ : ١٧) :
	و تكون له عجلة، فسر ذلك.	آ قد يتحرك الجسم بسرعة عددية ثابتة
	, - 60-5	ال قد يتحرن الجسم بسرت عدد عب
		HARRIST N
در دور ه کاملهٔ خلال زمر		
	دائری منتظام تصلف تعرف الجنید 4 π ² mr	🕡 جسم کتلته m یتحرك فی مسار
r =	لجسم تتعين من العلاقة: T ²	أدبت أن القوة المركزية المؤثرة على ا
•••••		
ظم، إذا كان حاصل ضرب	يتحرك في مسار دائري أفقى منت	احسب السرعة الماسية لجسم
	$16 \text{ m}^2/\text{s}^2$	العجلة المركزية له في نصف قطر الم
HE NEEDS	سار مو ۱۰۰ ۰۰۰	العجلة المركزية له في نصف مصر
		283729
		10.00
		ACT OF THE PROPERTY OF THE PRO

ربط شخص كرة كتلتها 0.25 kg في أحد طرفي حبل ثم أداره في مستوى أفقي من الطرف الآخر الخرك الخرك الخركة بسرعة خطية 5 m/s فإذا كانت المسافة من مركز الكرة إلى مركز الدوران هي 1 m وكانت أقصى قوة شد يتحملها الحبل N 12، فهل ينقطع الحبل ؟ والذا ؟

ى جسىم كتلته g 43.75 يدور	فى الشكل المقابـــل
) أفقى نصف قطره 70 cm	فی مسار دائری
25 دورة خالال زمان 40 s،	بحيــث يصنـع 5
لل المعلق في الطرف الآخر	احسب كتلة الثق
$(g = 10 \text{ m/s}^2)$	الخيط.



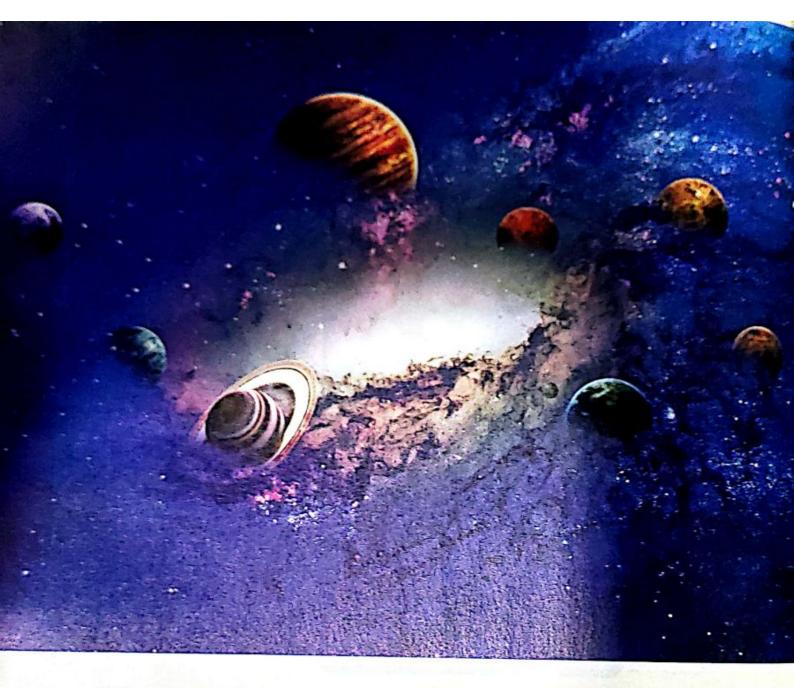
احرص على اقتناء

عتب الاملحان

في شرح جميــع المــواد

للصف 🥤 الثانوى

الفصل

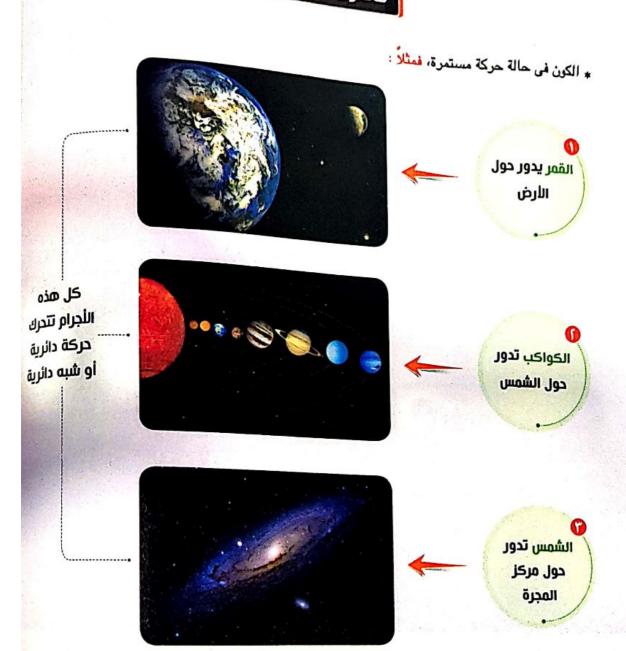

الجاذبية الكونية والحركة الدائرية

اختبار على الفصل الثاني

نواتج التعلم المتوقعة

بعد دراسة هذا الفصل يجب أن يكون الطالب قادرًا على أن :

- يستنتج قانون الجذب العام.
- يفسر دوران القمر حول الأرض في مسار ثابت تقريبًا.
- يستنتج العوامل التي تحدد سرعة قمر صناعي في مداره حول الأرض.
 - يتعرف استخدامات الأقمار الصناعية,

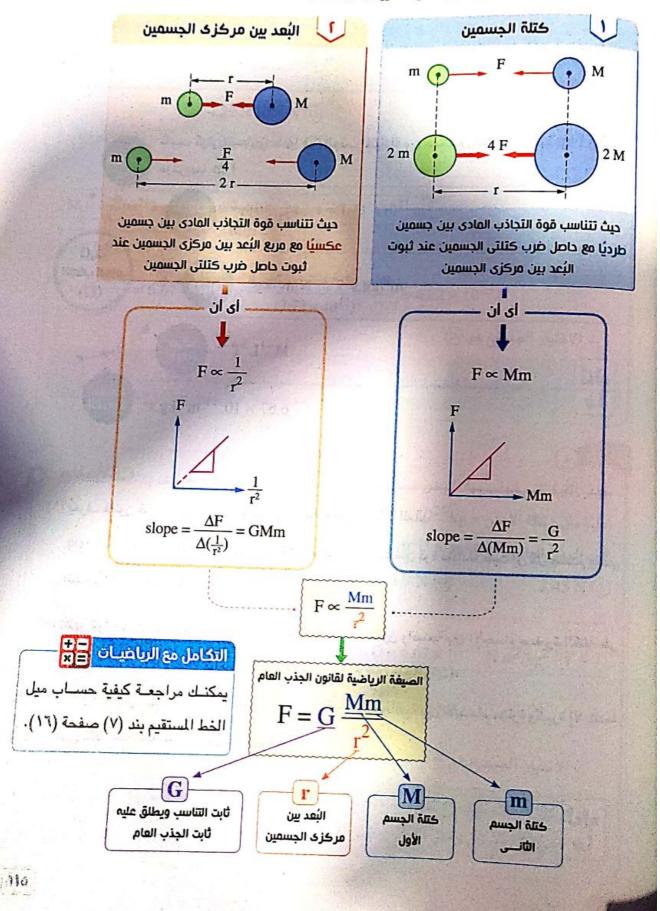

في هذا الفصل سوف نتعرف :

- ◄ قانــون الجــذب العــام.
- ◄ شـدة مجـال الجاذبيـة.

- ♦ السرعة المدارية للقمر الصناعي.
- ◄ أهميـــة الأقمـــار الصناعيـــة.

الامتنحان نيزيا، - ١ ٥ - ترم ٢ - جـ ١ - (١٠/١٠)

قانــون الجــذب العـــام



- * توصل العالم نيوتن إلى بعض الافتراضات الأساسية منها :
 - وجود قوة تجاذب مادى متبادلة بين القمر والأرض تسبب دوران القمر حول الأرض.

العالم نيوتن

تنشأ قوة التجاذب المادى بين أى جسمين ماديين وتتوقف على :

6 1 11 / F

وبناءً على ذلك وضع نيوتن قانون الجذب العام.

• قانون الجذب العام لنيوتن كل جسـم مـادى فى الكـون يجذب أى جسـم آخر بقوة تثلاسـب طرديًا مع حاصـل ضرب كتلتيهما وعكسـيًا مـع مربع النعر بين مركزيهما.

1 kg المنهوم المنافق المنهوم المنافق المنهوم المنافق المنهوم ا

ملاحظات

(١) يُعرف قانون قوى التجاذب بين الأجسام المادية بقانون الجذب العام،

ويرجع ذلك إلى عمومية هذا القانون فقوة الجذب بين أى جسمين قوة متبادلة حيث إن كل جسم يجذب الجسم الآخر نحوه بنفس القوة.

(٢) تظهر قوة التجاذب بوضوح بين الأجرام السماوية بينما لا تكون واضحة بين الأجسام صغيرة الكتلة على سطح الأرض (مثل شخصين يقفان بجوار بعضهما أو عربتين متجاورتين)،

ويرجع ذلك إلى صغر قيمة ثابت الجذب العام فلا تكون قوة الجاذبية بين الأجسام مؤثرة وكبيرة إلا عندما تكون كتلة أحد الجسمين أو كليهما كبيرة جدًا.

اذا علمت أن كتلة الشيمس kg لا 1030 × 2 وكتلة المشترى 1,89 × 1027 kg والبُعد بين مركزي الشيمس والمشترى $10^{11} \, \mathrm{m} \times 7.73 \times 10^{11}$ وثابت الجذب العام يساوى $10^{-11} \, \mathrm{N.m^2/kg^2}$ فإن قوة التجاذب المتبادلة بين الشمس والمشترى تساوى

- $3.26 \times 10^{57} \,\mathrm{N}$ (1)
- $3.26 \times 10^{35} \,\mathrm{N}$
- $4.22 \times 10^{45} \,\mathrm{N} \,\odot$
 - $4.22 \times 10^{23} \,\mathrm{N}$

 $M = 2 \times 10^{30} \text{ kg}$ $m = 1.89 \times 10^{27} \text{ kg}$ $r = 7.73 \times 10^{11} \text{ m}$

 $G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2$ F = ?

 $\mathbf{F} = \mathbf{G} \frac{\mathbf{mM}}{\mathbf{r}^2} = 6.67 \times 10^{-11} \times \frac{1.89 \times 10^{27} \times 2 \times 10^{30}}{(7.73 \times 10^{11})^2} = 4.22 \times 10^{23} \text{ N}$

.. الاختيار الصحيح هو 🕒

مأذا المطلوب مو السرعة الخطية التي يدور بها المشترى حول الشمس، ما إجابتك ؟

مثال

مقدار القوة التي تجذب بها الأرض جسمًا كتلته 1 kg موضوع على سطحها يساوى ، 6378 km = غلمًا بأن : كتلة الأرض $4 \, \mathrm{kg} \times 10^{24} \, \mathrm{kg}$ ، نصف قطر الأرض (علمًا بأن : كتلة الأرض

 $(6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2 = ثابت الجذب العام$

19.6 N 🔾

9.8 N ج

4.9 N () 2.45 N ()

m = 1 kg $M = 5.98 \times 10^{24} \text{ kg}$ $R = 6378 \times 10^3 \text{ m}$ $G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2$ F = ?

 $\mathbf{F} = \mathbf{G} \cdot \frac{\mathbf{mM}}{\mathbf{r}^2} = \mathbf{G} \cdot \frac{\mathbf{mM}}{\mathbf{R}^2} = \frac{6.67 \times 10^{-11} \times 1 \times 5.98 \times 10^{24}}{(6378 \times 10^3)^2} = 9.8 \text{ N}$

الاختيار الصحيح هو 🕣

ماذا كان الجسم موضوع على سطح القمر، فكم تكون قوة جذب القمر للجسم علمًا بأن كثلة القمر 18 لو من كتلة الأرض وقطر القمر 1 قطر الأرض ؟

مستعمر مساعمي كالنب kg الالالا بدور حول الأرض على ارتفاع من سسطح الأرض يعادل نصف قطر الارض غإن مقدار قوة الشمائب بين الأرض والقمر بساوى

 $5.98 \times 10^{24} \text{ kg}$: تصف قطر الأرض = 6380 km کتاة الأرض = $6380 \times 10^{24} \text{ kg}$

 $10^{-11} \text{ N.m}^2/\text{kg}^2 = 10^{-11} \text{ N.m}^2/\text{kg}^2$ المجلب العام

 $19.6 \times 10^3 \,\mathrm{N} \,\odot$

49×103N(1)

 $12.5 \times 10^{10} \,\mathrm{N}$

6.25 × 10 10 N (S)

m = 2000 kg

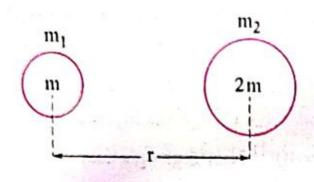
R = 6380 km

 $M = 5.98 \times 10^{24} \text{ kg}$

 $G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2$

. النقدر الصفاعي يدور حول الأرض على ارتفاع يعادل نصف قطر الأرض (R).

 $\therefore r = 2R$


$$\mathbf{F} = \frac{\mathbf{GmM}}{r^2}$$

 $=\frac{6.67\times10^{-11}\times2000\times5.98\times10^{24}}{(2\times6380\times10^3)^2}$

 $=4.9 \times 10^{3} \text{ N}$

ن الاختيار الصحيح هو 1

ماذا وضع القمر الصناعي في مدار على ارتفاع h من سطح الأرض فأصبحت قوة جذب الأرض له 1 لو مقدارها السابق، فعا نسبة الارتفاع h بالنسبة لنصف قطر الأرض ؟

فى الشكل المقابل إذا كانت قوة التجاذب بين الكتلتين (m ، 2 m) هـى F وأضيفت كتلة m إلى كل من الكتلتين فإن قوة التجاذب بينهما تصبح

- F (i)
- 2 F 😔
- 3 F ج
- 6 F 🔾

الحسل

$$m_1 = m$$
 $m_2 = 2 m$ $F_1 = F$ $F_2 = ?$

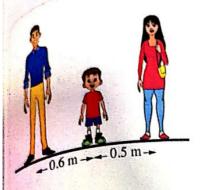
$$F = G \frac{m_1 m_2}{r^2}$$

$$F_1 = F = G \frac{m \times 2 m}{r^2}$$

$$\mathbf{F_2} = \mathbf{G} \, \frac{2 \, \mathbf{m} \times 3 \, \mathbf{m}}{\mathbf{r}^2} \tag{2}$$

$$\frac{\mathbf{F}}{\mathbf{F_2}} = \frac{2 \text{ m}^2}{6 \text{ m}^2} = \frac{1}{3}$$

$$F_2 = 3F$$


- * بعد إضافة الكتلة (m):
- بقسمة المعادلتين (1) ، (2):

ن. الاختيار الصحيح هو 🕣

ماذا الكميات r ، m2 ، m1 إلى الضعف، ماذا يحدث لقوة التجاذب المتبادلة بين الكتلتين ؟

. 6 114

في الشكل المقابل طغل برفقة والديب، فإذا كانت كتلة الطفل ووالدته ووالده هي 80 kg ، 65 kg ، 30 kg على الترتيب : (١) فإن مقدار واتجاه محصلة قوى التجاذب المادى المؤثرة

على الطفل والناشئة عن أبويه هما

 $(G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2)$ علمًا بأن:

اتجامها	مقدارها	
تجاه والده	8 × 10 ⁻⁸ N	1
تجاه والدته	8 × 10 ⁻⁸ N	9
تجاه والده	$9.6 \times 10^{-7} \mathrm{N}$	⊕
تجاه والدته	$9.6 \times 10^{-7} \mathrm{N}$	①

(٢) وضع تأثير القوتين المحسوبتين في (١) على مسار حركة الطفل.

$$m_1 = 30 \text{ kg}$$
 $m_2 = 65 \text{ kg}$ $m_3 = 80 \text{ kg}$ $r_{12} = 0.5 \text{ m}$ $r_{13} = 0.6 \text{ m}$

 $G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2$ $\Sigma F = ?$

(١) * قوة التجاذب المادى بين الطفل ووالدته :

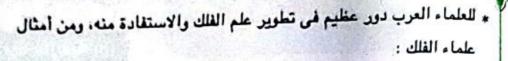
$$F_{12} = \frac{Gm_1m_2}{r_{12}^2} = \frac{6.67 \times 10^{-11} \times 30 \times 65}{(0.5)^2} = 5.2 \times 10^{-7} \,\mathrm{N}$$
 هوة التجاذب المادي بين الطفل ووالده:

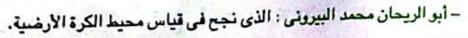
$$F_{13} = \frac{G \, m_1 m_3}{r_{13}^2}$$
$$= \frac{6.67 \times 10^{-11} \times 30 \times 80}{(0.6)^2}$$

 $=4.4 \times 10^{-7} \text{ N}$

$$\Sigma \mathbf{F} = \mathbf{F}_{12} - \mathbf{F}_{13}$$
$$= (5.2 \times 10^{-7}) - (4.4 \times 10^{-7})$$

 $=8\times10^{-8}\,\mathrm{N}$


ن محصلة قوى التجاذب المادى المؤثرة على الطفل $8 \times 10^{-8} \, \mathrm{N}$ وفي اتجاه والدته.



(٢) محصلة قوى النجانب بين الطفل وكل من والده ووالدته صغيرة جدًا وإذلك لا تخمطها أو تشعر بها وبالتالي لا تؤثر على مسار حركة الطفل.

ماذا تبادل الطفل ووالدته موضعيهما، هاذا يحدث لحصلة قرى التجاذب المادى المؤثرة على الطفل ؟

علماء افادوا البشرية

- على بن عيسى الأسطرلابي.
 - على البحتري.

7 اختبــر نفسك

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

أيهما يؤثر على الآخر بقوة تجاذب مادى أكبر (الأرض أم القمر) ؟

أ القمر

ب الأرض

ج كلاهما يجذب الآخر بنفس القوة

د القمر لا يجذب الأرض

* قمران B ، A متساويان في الكتلة يدوران حول كوكب، فإذا كان نصف قطر مداريهما 2 r ، r على	7
الترتيب، فإن مقدار قوة جذب الكوكب للقمر B مقدار قوة جذبه للقمر A	

أ أربعة أمثال

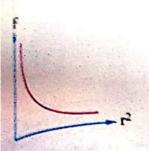
(ب) يساوى

ج نصف

ن ربع

إذا علمت أن كتلة الأرض 81 مرة قدر كتلة القمر وقطرها 4 أمثال قطر القمر، ما النسبة بين قوة جذب

الأرض لجسم موضوع على سطحها وقوة جذب القمر لنفس الجسم إذا وضع على سطحه (الأرض) [91


9 16 ©

81

81 3

مجال الجاذبية Gravitational Field

* ينص قانون الجذب العام على أن قوة الجاذبية بين جسمين ماديين تتناسب عكسيًا مع مربع البُعد بين مركزى الجسمين، وبالتالى فإن قوة الجاذبية تتناقص كلما زاد البُعد بين مركزى الجسمين حتى يصل البُعد بين مركزيهما إلى مسافة تكاد تتلاشى عندها قوى التجاذب بينهما، وخلال هذه المسافة يوجد حيز تظهر فيه أثر قوة الجاذبية ويطلق على هذا الحيز مجال الجاذبية،

استنتاج شدة مجال الجاذبية الأرضية (و)

* بفرض وضع جسم كتلته 1 kg في مجال الجاذبية الأرضية وعلى بُعد ٢ من مركز الأرض، فإن قوة جذب الأرض الجسم :

$$f=mg=1\times g=g$$

(2)

$$F = G \frac{mM}{r^2} = \frac{GM}{r^2}$$

$$g = \frac{GM}{r^2}$$

وإذا كان الجسم على سطح الأرض على ارتفاع h فوق سطح الأرض (r = R + h) $g = \frac{GM}{(R + h)^2}$ $g = \frac{GM}{R^2}$

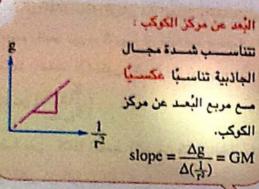
حيث : (M) كتلة الأرض (kg) × 10²⁴ kg)،

(R) نصف قطر الكرة الأرضية (8378 km تقريبًا).

The house he was

* مما سبق نلاحظ أن شدة مجال الجاذبية الأرضية عند نقطة ما تساوى عدديًا عجلة الجاذبية الأرضية عند تلك النقطة.

شدة مجال الجاذبية الأرضية
 قوة جذب الأرض لجسم كتلته 1 kg
 عند نقطة ما.


@ ملاحظة

* تختلف شدة مجال الجاذبية على سطح الأرض من موضع لآخر اختلافًا طفيفًا حيث إن كوكب الأرض ليس كرويًا تمامًا وإنما مفلطح عند القطبين، ومنبعج عند خط الاستواء بسبب دوران الأرض حول نفسها،

العوامل التي تتوقف عليها شدة مجال الجاذبية لكوكب عند نقطة

كتلة الكوكب:

تتناسب شدة مجال الماذبية تناسبًا طرديًا مع كتلة الكوكب عند ثبوت بعد النقطة عن مركز الكوكب. M slope = $\frac{\Delta g}{\Delta M} = \frac{G}{2}$

مثال

قمر صناعي كتلته 104 kg يدور حول الأرض على ارتفاع 600 km من سطحها، فإن : ($R = 6378 \; \text{km} \; \text{،} \; M = 5.98 \times 10^{24} \; \text{kg} \; \text{،} \; G = 6.67 \times 10^{-11} \; \text{N.m}^2/\text{kg}^2$: علمًا بأن

(١) شدة مجال الجاذبية الأرضية عند موضع القمر في مداره تساوى

7.25 N/kg 🔾

8.19 N/kg 🚓

9.8 N/kg (10 N/kg ()

(٢) وزن القمر الصناعي في مداره يساوي

10³ N (1)

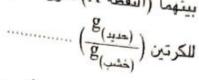
 $8.19 \times 10^4 \,\mathrm{N}$

 $7.25 \times 10^4 \,\mathrm{N} \,$ \bigcirc $1.22 \times 10^3 \,\mathrm{N} \,$ \bigcirc

 $m = 10^4 \text{ kg}$ h = 600 km R = 6378 km $M = 5.98 \times 10^{24} \text{ kg}$ $G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2$ g = ?

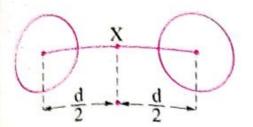
$$\frac{g}{r^2} = \frac{GM}{(R+h)^2} = \frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}{((6378 + 600) \times 10^3)^2} = 8.19 \text{ N/kg}$$

(1) الاختيار الصحيح هو 😞


 $w = mg = 3.19 \times 10^4 \text{ N}$

(4)

ن الاختيار الصحيح هو 🕡


ماذا كانت كتلة القمر الصناعي أقل من 104 kg، ماذا يحدث لشدة مجال الجاذبية الأرضية عند موشيم لو القمر في نفس المدار ؟

الشكل المقابل يمثل كرتان من الحديد والخشب لهما نفس الحجم والبُعد بين مركزيهما b، فإنه عند منتصف المسافة بينهما (النقطة X) تكون النسبة بين شدتى مجال الجاذبية

(علمًا بأن : كثافة الحديد أكبر من كثافة الخشب)

- أ أكبر من الواحد الصحيح
- (ج) تساوى الواحد الصحيح

(ب) أقل من الواحد الصحيح

ن تساوى الصفر

وسيلة مساعدة

- كتلة الكرة الحديدية ،
- كتلة الكرة الخشبية ،
- $m_{(\underline{u}\underline{u}\underline{\omega})} = \rho_{(\underline{u}\underline{u}\underline{\omega})} V_{ol}$
- $m_{(i)} = \rho_{(i)} V_{ol}$
- . حجم الكرتان متساوى

- : m (حديد) > m
- $g = G \frac{M}{2}$
- : g ∞ M
- ∵ m_(حدید) > m
- ن و_(عديد) > و

الاختيار الصحيح هو (1)

راد البُعد بين مركزى الكرتين للضعف، ماذا يحدث للنسبة $\left(\frac{g_{(aux)}}{g_{(aux)}}\right)$ عند منتصف المسافة بين الكرتين ؟ لو ين الكرتين ؟

· الكرتان على بُعد متساوى من النقطة X

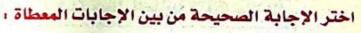
كركب كتلته ضعف كتلة الأرض وقطره ضعف قطر الأرض، فإن نسبة عجلة الجاذبية على سلطح هذا الكوكب إلى عجلة الجاذبية على سطح الأرض تساوى

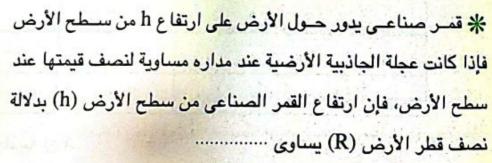
$$\frac{2}{1}$$
 ① $\frac{1}{2}$ ④

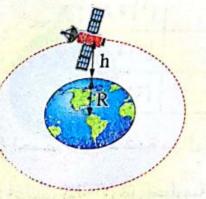
التكامل مع الرياضيات = ×

$$M_p = 2 M_e$$
 $R_p = 2 R_e$ $\frac{g_p}{g_e} = ?$

$$g = G \frac{M}{r^2}$$


$$\frac{g_p}{g_e} = \frac{M_p R_e^2}{M_e R_p^2} = \frac{2 M_e R_e^2}{M_e \times 4 R_e^2}$$


$$= \frac{1}{2}$$


:. الاختيار الصحيح هو ج

مأذا تم وضع جسم على سطح كل كوكب منهما فكان للجسمين نفس الوزن، فهل هذا يعنى أن لو الجسمين لهما نفس الكتلة ؟

8 اختبــر نفسك

2 R 😔

2.41 R (1)

0.414 R (J)

0.5 R (=)

الفرض من التجربة

، حساب كتلة الأرض بمعلومية نصف قطرها،

فكرة التجربة

 عساب شدة مجال الجاذبية من المعادلة الثانية للحركة : حيث : (d) الارتفاع الذي يسقط منه الجسم خلال زمن اليصل إلى سطح الأرض.

حساب ختلة الارض بمعلومية نصف قطرها

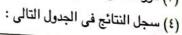
• حساب كتلة الأرض باستخدام العلاقة:

(r) البعد عن مركز الأرض والذي يمكن اعتباره في هذه التجربة نصف قطر الأرض (R). حيث : (G) ثابت الجذب العام، (M) كتلة الأرض،

الأدوات

. عدد ٢ بندول مختلفين في الكتلة.

. شريط مترى.


فالهلا

(١) علق كل بندول بحيث تكون المسافة بين كرة البندول والأرض

(d) متساوية وقيمتها كبيرة.

(٢) قص الخيط عند نقطة التعليق للبندول الأول وعين باستخدام ساعة الإيقاف زمن وصول كرة البندول لسطح الأرض.

(٢) كرر الخطوة السابقة للبندولين الآخرين.

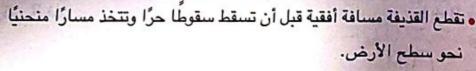
$(g = 2 d/t^2) = 1 + t + t$	198 HOLD DES AND DE	دون الله مي .	
$(g = 2 d/t^2)$ شدة مجال الجاذبية	الزمن (t)	الارتفاع (d)	الكرة
	1 v 22 v 2		الكرة (١)
			الكرة (٢)
			الكرة (٣)

. ساعة إيقاف.

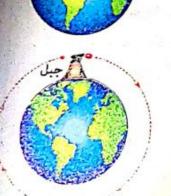
. مقص،

- (٥) احسب متوسط شدة مجال الجاذبية (g).
- $R = 6.38 \times 10^6 \text{ m}$ ونصف قطر الأرض بمعلومية متوسط شدة مجال الجاذبية (g) ونصف قطر الأرض (٦) وثابت الجذب العام (G = 6.67 × 10⁻¹¹ N.m²/kg²) مستخدمًا العلاقة :

$$g = \frac{GM}{R^2}$$


الأقمار الصناعية Satellites

، ظل ارتياد الفضاء حلم يراود عقول البشير لعدة قرون وقد اشتمل تحقيق هذا الطم على تطوير أجهزة الرصد والصواريخ التى تُقذف بمركبة فضائية لتدور حول الأرض أو تصل لكوكب أخر كالمريخ حتى تحقق الحلم يوم 4 أكتوبسر 1957م وتم إرسال القمر الصناعي (سبوتنيك) إلى الفضاء كأول تابع فضائى لكوكب الأرض، وقد أعقب ذلك إرسال أقمار أخرى والنجاح في الهبوط على سطح القمر، ولا يـزال استكشاف الفضاء يتواصل بنجاح كبير.


﴿ فَكُرَةَ إَطْلَاقَ القَمْرِ الصناعي

يمثل القمر الصناعي في مداره جسم يسقط سقوطًا حرًا نصو الأرض (لأن حركته تتأثر بالجاذبية فقط) وبالرغم من ذلك لا يقترب من سطح الأرض على الإطلاق، وقد فسر إسحاق نيوتن ذلك حيث تصور أنه عند إطلاق قذيفة مدفع من قمة جبل أفقيًا (مع إهمال مقاومة الهواء) :

• بزيادة السرعة التي تُقذف بها القذيفة تزداد المسافة الأفقية التي تقطعها قبل أن تصل إلى سطح الأرض وتتبع مسارًا أقل انحناءً.

• إذا بلغت سرعة انطلاق القذيفة حدًا معينًا بحيث يتساوى انحناء مسار القديفة مع انحناء سطح الأرض فإنها تدور في مسار شبه دائري ثابت حول الأرض وتصبح تابعًا للأرض مثل القمر الطبيعي لذلك يطلق عليها اسم القمر الصناعي وهذه السرعة يطلق عليها السرعة المدارية المقسر الصناعي.

والسرعة المدارية للقمر الصناعي

السرعة التي تجعل القمر الصناعي يدور في مسار منحني شبه دائري بحيث يظل بُعده عن سطح الأرض لُابِنَا.

* بفرض وجود قمر صناعى كتلته m يتحرك حول كوكب كتلته M بسرعة ثابتة v في مدار دائري نصف قطره r كما بالشكل فإن : - قوة التجاذب المادى بين الكوكب والقمر الصناعى

- قوة التجاذب المادى بين الكوكب والقمر الصناعى تكون عمودية على -مسار حركة القمر الصناعي فتعمل على تحريكه في مسار دائري :

أى أن : قوة التجاذب المادى بين الكوكب والقمر الصناعي هي نفسها القوة الجاذبة المركزية.

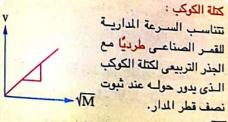
$$\therefore G \frac{mM}{r^2} = \frac{mv^2}{r}$$

$$\therefore v^2 = \frac{GM}{r}$$

$$v = \sqrt{\frac{GM}{r}}$$

r = R + h

$$v = \sqrt{\frac{GM}{R+h}}$$


وإذا كان الارتفاع الذي أطلق إليه القمر الصناعي للفضياء من سطح الكوكب h ونصف قطر الكوكب R فإن :

العوامل التي تتوقف عليها السرعة المدارية للقمر الصناعي

نصف قطر المدار :

تتناسب السرعة المدارية للقمر الصناعي عكسيًا مع الجذر التربيعي لنصف

 $\frac{1}{\sqrt{r}}$ slope = $\frac{\Delta v}{\Delta \left(\frac{1}{\sqrt{r}}\right)} = \sqrt{GM}$

slope =
$$\frac{\Delta v}{\Delta \sqrt{M}} = \sqrt{\frac{G}{r}}$$

ملاحظات

(۱) إذا تخيلنا توقف مفاجئ لقمر صناعى يدور حول الأرض (أصبحت سرعته تساوى صفر)، فإنه يتحرك في خط مستقيم نصو الأرض تحت تأثير الجاذبية الأرضية ويسقط على سطحها.

(٢) القمر الصناعى المتزامن مع دوران الأرض يكون زمنه الدورى مساوى للزمن الدورى لدوران الأرض حول نفسها أى يوم أرضى واحد (24 ساعة) وبالتالئ يظل القمر الصناعى فوق نقطة ثابتة من سطح الأرض.

(٣) يمكن استنتاج العلاقة بين نصف قطر مدار قمر صناعي (r) يدور حول كوكب ما والزمن الدودي الحركته (T) كالتالي :

$$v = \sqrt{\frac{GM}{r}} = \frac{2 \pi r}{T}$$

$$\therefore \frac{GM}{r} = \frac{4 \pi^2 r^2}{T^2}$$

$$\therefore T^2 = \frac{4 \pi^2 r^3}{GM}$$

$$T^2 \propto r^3$$

(٤) يمكن حساب السرعة المدارية (v) لقمر صناعي كالتالي :

الامقتحان فيزياء - ١ ٥ - ترم ٢ - جـ ١ - (١٠/١٠) | ١٢٩

(و) السرعة المدارية بعير صب على الأرض تتناسب عكسيًا مع الجذر التربيعي لنصف قطر النالي الماري المدارية العدارية (د) السرعة المدارية لقدر صناعي لا تعتمد على كلة القدر الصناعي . (د)

السرعة المدارية لغير صناعي حول الأرض تتناسب علام المدارية الغير الصناعي حول الأرض تتناسب على المدارية الغير الصناعي حول الأرض الموري المثا : السرعة المدارية الغير المدارية الموري المثارية المدارية العلاقة
$$V = \sqrt{\frac{GM}{T}}$$
 وذلك لان الزمن الدوري أبغما الدائري تبعًا للعلاقة $V = \sqrt{\frac{GM}{T}}$ وذلك لان المدارية المدار الدائري تبعًا للعلاقة $V = \sqrt{\frac{GM}{T}}$ وذلك لان شرة من نصف قطر المدار تبعًا للعلاقة $V = \sqrt{\frac{GM}{T}}$ وذلك لان شرة من نصف قطر المدار تبعًا للعلاقة $V = \sqrt{\frac{GM}{T}}$ وذلك لان شرة من نصف قطر المدار تبعًا للعلاقة $V = \sqrt{\frac{GM}{T}}$ وذلك لان شرة من نصف قطر المدار تبعًا للعلاقة $V = \sqrt{\frac{GM}{T}}$

 $T^2 = \frac{4 \pi^2 r^3}{GM}$ يعتمد على نصف قطر المدار تبعًا للعلاقة ($T^2 = \frac{4 \pi^2 r^3}{GM}$). $(g = \frac{GM}{r^2})$ مجال الجاذبية أيضًا تعتمد على نصف قطر المدار تبعًا للعلاقة مجال الجاذبية أيضًا تعتمد على نصف قطر المدار تبعًا للعلاقة $(g = \frac{GM}{r^2})$.

مثال

يدور القمر حول الأرض في مسيار دائري نصف قطره km م 3.85 × 3.85 ، فيإن السيرعة المدارية القر $(5.98 \times 10^{24} \text{ kg} = 5.98 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \cdot \text{s}^{-2}$ كتلة الأرض $(3.98 \times 10^{-14} \text{ kg})$ كتلة الأرض العام $(3.98 \times 10^{-14} \text{ kg})$

تساوی
$$6.67 \times 10^{-11} \, \mathrm{m}^3.\mathrm{kg}^{-1}.\mathrm{s}^{-2} = 1.02 \times 10^3 \, \mathrm{m/s}$$
 بأن : ثابت الجذب العام $1.02 \times 10^3 \, \mathrm{m/s}$

$$1.02 \times 10^3 \text{ m/s}$$
 (ب) الجذب العام = $^{2.5}$ الجذب العام = $^{2.5}$ الجذب العام = $^{2.04}$

$$2.04 \times 10^2 \text{ m/s}$$
 (i)

$$1.04 \times 10^6 \text{ m/s}$$

$$3.22 \times 10^4 \text{ m/s}$$

 $r = 3.85 \times 10^5 \text{ km}$

$$G = 6.67 \times 10^{-11} \text{ m}^3 \cdot \text{kg}^{-1} \cdot \text{s}^{-2}$$
 $M = 5.98 \times 10^{24} \text{ kg}$ $v = ?$

$$M = 5.98 \times 10^{24} \text{ kg}$$
 v =

$$v = ?$$

$$v = \sqrt{G \frac{M}{r}} = \sqrt{\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}{3.85 \times 10^5 \times 10^3}}$$

$$=1.02 \times 10^3 \text{ m/s}$$

.: الاختيار الصحيح هو (ب)

ماذا المطلوب هو الزمن الدورى لدوران القمر حول الأرض، ما إجابتك ؟

ثلاثة أقمار صناعية (A , B , C) كتلتها (3 m , 2 m , m) على الترتيب تدور في ثلاثة مدارات مختلفة حول الأرض أقطارها (٢ ، ٢ ، ٢) على الترتيب، أي قمر صناعي من هذه الأقمار يدور بسرعة أكبر في مداره ؟ (ب) القمر B (1) القمر A

جميعها لها نفس السرعة المدارية

(ج) القمر C

الحسل

$$m_A = 3 \text{ m}$$
 $m_B = 2 \text{ m}$ $m_C = m$ $r_A = 3 \text{ r}$ $r_B = 2 \text{ r}$ $r_C = r$

$$v = \sqrt{G \frac{M}{r}}$$

- السرعة المدارية للقمر لا تتوقف على كتلته.
 - ٠٠ الأقمار الثلاثة تدور حول الأرض.

$$\therefore \ v \propto \frac{1}{\sqrt{r}}$$

$$r_A > r_B > r_C$$

$$v_A < v_B < v_C$$

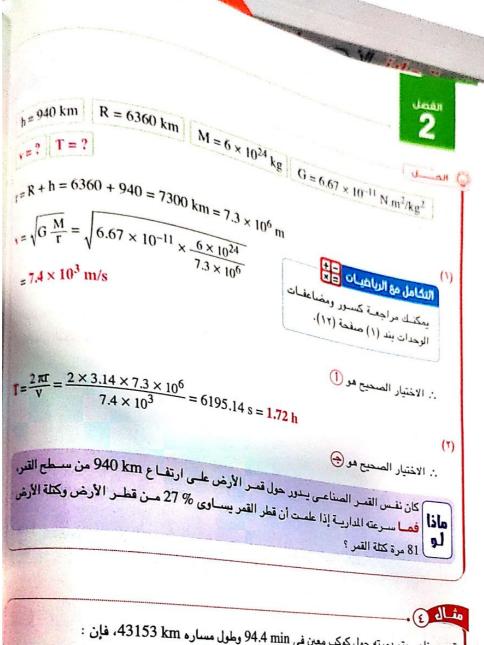
:. الاختيار الصحيح هو ج

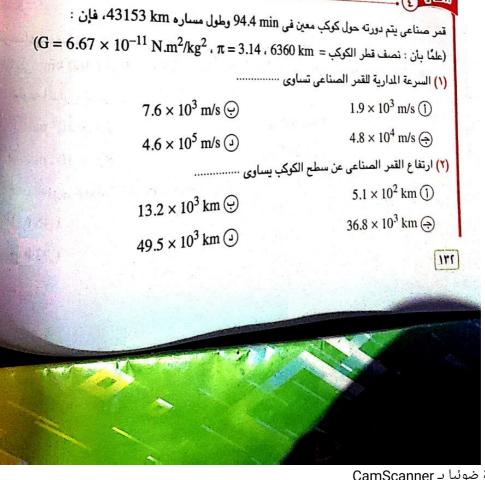
ماذً كانت هذه الأقمار تدور على نفس الارتفاع من سطح الأرض، فما إجابتك ؟

قمر صناعي يدور حول الأرض في مدار شبه دائري على ارتفاع 940 km من سطح الأرض، فإن: $(\pi = 3.14 \, \text{G} = 6.67 \times 10^{-11} \, \text{N.m}^2/\text{kg}^2 \, \text{M} = 6 \times 10^{24} \, \text{kg} \, \text{R} = 6360 \, \text{km}$ (علمًا بأن:

- (١) السرعة المدارية للقمر تساوى
- $7.9 \times 10^3 \text{ m/s}$

 $7.4 \times 10^3 \text{ m/s}$ (1)


 $2.1 \times 10^4 \text{ m/s}$ (3)


- 8.6×10^3 m/s $\stackrel{\frown}{\bigcirc}$
- (٢) الزمن الدورى لدوران القمر حول الأرض يساوى
- 1.61 h 💬

1.48 h (i)

2.18 h 🔾

1.72 h 🖨

الممسوحة ضوئيا بـ CamScanner

The 94 4 min | 2 m = 43153 km | R = 6360 km | v = ? | h = ? $v = \frac{2\pi i}{T} = \frac{43153 \times 10^3}{94.4 \times 60} = 7.6 \times 10^3 \text{ m/s}$ ¿. الاختيار الصحيح هو 🏵 $t = \frac{43153}{2 \times 3.14} = 6871.497 \text{ km}$

$$h = r - R = 6871.497 - 6360 = 5.1 \times 10^2 \text{ km}$$

- رم الاختيار الصحيح هو (1)
- ماذا المطلوب مو حساب شدة مجال الجانبية عند سطح الكوكب. ها إجابتك؟

مثال ق

نمنف قطر مدار قمر صناعي متزامن مع الأرض يساوي

 $(G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2$, $M = 5.98 \times 10^{24} \text{ kg}$: غلمًا بأن

2.7 × 10¹¹ m (-)

1.8 × 10¹⁵ m (1)

 $9.6 \times 10^6 \,\mathrm{m}$

$$T = 24 \text{ h}$$
 $M = 5.98 \times 10^{24} \text{ kg}$

$$T = 24 \text{ h}$$
 $M = 5.98 \times 10^{24} \text{ kg}$ $G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2$ $r = ?$

$$v = \sqrt{\frac{GM}{r}} = \frac{2\pi r}{T}$$

$$\therefore \frac{GM}{r} = \frac{4 \pi^2 r^2}{T^2}$$

$$\therefore \mathbf{r}^3 = \frac{GMT^2}{4\pi^2}$$

$$\vec{r} = \sqrt[3]{\frac{\text{GMT}^2}{4 \pi^2}} = \sqrt[3]{\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24} \times (24 \times 60 \times 60)^2}{4 \times \left(\frac{22}{7}\right)^2}} = 4.2 \times 10^7 \text{ m}$$

ن. الاختيار الصحيح مو ج

المطلوب من حساب السرعة المدارية لهذا القعر، منا إجابتك ؟

• كلمًا زاد**ت كتابة القمر الصناعي المراد إرساله لل**فضاء، احتجنا صارونًا يمكنه التأثير بقوة أكبر على ال<mark>قمر الصناعي حتى يكتب</mark> السرعة اللازمة لدوراته حول الأرض.

M FOIL THE STE

* اختر الإجابة الصحيحة من بين الإجابات المعطاق المنارية .

* اختر الإجابة الصحيحة من بين الإجابات المعطاق المنال وبع كتلته فإن سرعته المدارية .

قمر صناعى يدور حول الأرض في مدار ثابت، فإذا الفصل عنه جزء يمثل دبع كتلته فإن سرعته المدارية .

أن بدا ال في اختاح نفست

السنية اللساكية المستقبال الموجات اللاساكية المستقبال الموجات اللاساكية المستقبال الموجات اللاساكية المستفدامه في إرسال واستقبال الموجات اللاساكية الموجات اللاساكية المستفدامه في المستفدام المستفدام الموجات المستفدام المست * النقل التليفزيوني والإذاعي والهاتفي من وإلى أي مكان على سطح الأرض.

Google Earth جرنامج باستخدام برنامج * دؤية الأماكن من الفضاء باستخدام برنامج تستخدم في

> اسسار اسسيس والفضاء بدقة. والفضاء بدقة. والفضاء بدقة. والمساورة المساورة ال الحجم تسبح في

* دراسة تشكل الأعاصير.

اقمار الاستشعار تستخده في * تحديد المصادر المعدنية وتوزيعها تحت سطح الأرض. * مراقبة المحاصيل الزراعية لحمايتها من مخاطر الطقس.

* توفير المعلومات التي تحتاجها القيادات السياسية والعسكرية لاتخاذ القرار

أقمار الاستطلاع تستخدم في والتجسس

عن نعد

🚺 أقمار الاتصالات

وإدارة الحرب. * التقاط صور للغلاف الجوى من ارتفاع 35000 km فوق سطح الأرض لتحديد

أنماط الطقس، تستخدم فد

* رصد الظروف الجوية مثل جودة الهواء والغطاء الجليدى والغطاء السحابي. * تتبع الأعاصير واتجاهها.

🗿 أقمار الأرصاد

معلومة إثرانية

• اللقمار القطبية Polar satellites

- اللقمار القطبيـة تـدور في مدارات فـوق المناطـق القطبية على ارتفـاع يتراوح بين 200 km إلى 1000 km فوق سطح البحر وتكمـل دورة كاملة فـى فترة زمنية تتراوم بين 100 – 110 دقيقة حسب ارتفاع مدارها.
- تستخدم الاقمار القطبية في مراقبة سطح الأرض والأرصاد الجوية حيث تمسح جميع النقاط على سطح الأرض بالتتابع مع دوران الأرض حول محورها.

و تطبیق • تحلیل

الأسللة المقام اليما بالعلامة 🌟 مداد عنما للميايا

فيم لفسك إكتبونيا

قانون الجذب العام	العام	الجذب	قانون
-------------------	-------	-------	-------

- 🐪 جسمان كتلتهما 8 kg ، 2 kg والبُعد بينهما 20 cm ، فاذا علمت أن ثابت الجذب العام المادى المتبادلة بينهما تساوى .6.67 $imes 6.67 imes 10^{-11} \;
 m N.m^2/kg^2$ هإن قوة التجاذب المادى المتبادلة بينهما تساوى
 - $2.67 \times 10^{-12} \,\mathrm{N} \,\odot$

 $2.67 \times 10^{-8} \text{ N}$

5.34 × 10⁻¹¹ N (3)

5.34 × 10⁻⁹ N (=)

♦ كرتان لهما نفس الكتلة والبُعد بين مركزيهما 2 m وقوة التجاذب بينهما № 20 × 6.67 فإن كتلة كل المحالة الم من الكرتين تساوى $(G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2 : علمًا بأن)$

20 kg (-)

14.14 kg ①

400 kg (3)

200 kg (=)

وكرتان كتلتهما 20 kg ، 8 kg والبُعد بين مركزيهما 0.2 m ، إذا كان ثابت الجذب العام هو G فإن قوة التجاذب المتبادلة بينهما بالنيوتن تساوى

40 G (-)

8 G ①

8000 G (3)

4000 G 🕞

وضعتا متماثلتان كتلة كل منهما m ونصف قطر كل منهما r وضعتا متلاصقتين فإن مقدار قوة التجاذب المأدى بينهما يعطى من العلاقة

 $F = \frac{Gm^2}{4r^2}$

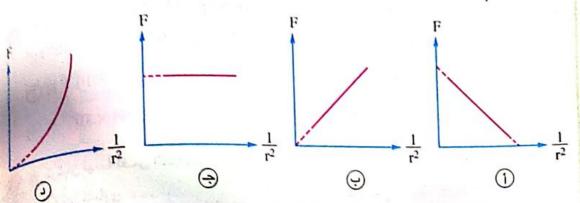
 $F = \frac{Gm^2}{2}$

 $F = \frac{Gm^2}{2c^2}$

 $F = \frac{2 \text{ Gm}}{2} \odot$

و إذا تضاعف البعد بين مركزي جسمين، فإن قوة التجاذب بينهما

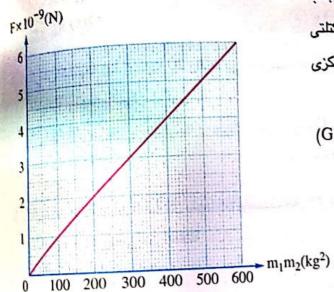
(ب) تصبيح نصف قيمتها الأصلية

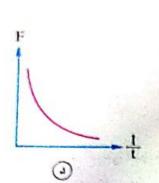

التضاعف (1)

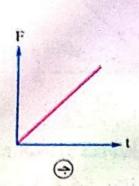
() تصبح أربعة أضعاف قيمتها الأصلية

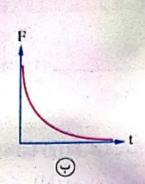
ج تصبح ربع قيمتها الأصلية

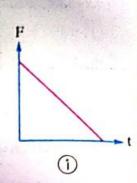
- - (ب) تزداد للضعف
 - (تصبح اربعة أمثالها


- 🛈 لا تتغير
- 会 ثقل للنصف
- الشكل البياني الذي يمثل العلاقة بين قوة التجاذب المادي (F) بين جسمين ومقلوب مربس البعد بين مركزيهما (1) مو


الشكل المقابل يمثل العلاقة البيانية بين قوة الجذب


 $(G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2 : علمًا بأن)$


- 1.84 m ①
- 2.58 m 😔
- 4.62 m 🕞
- 5.78 m 🔾



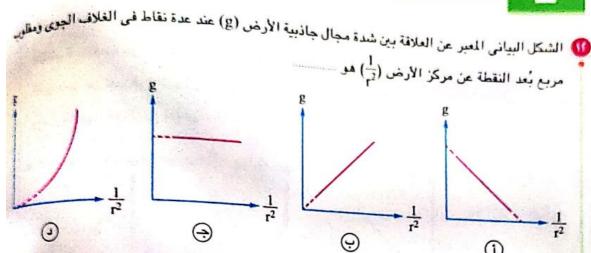
شدة مجال الجاذبية

- ا المام المست أن نصيف قطر كوكب ما 10 × 10 × 10 وكتلت 1.9 × 10 وثابت الجذب العام 1.9 لا المام 1.9 × 10 وثابت الجذب العام 1.9 × 10 مان :
 - (١) قوة الجذب التي يتأثر بها جسم كتلته lkg موضوع على سطح الكوكب تساوى
 - 39.45 N 🔾

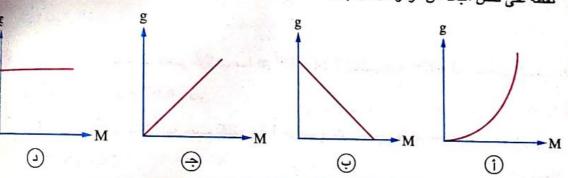
24.86 N (1)

60.42 N (3)

- 45.95 N ج
- (٢) قيمة عجلة الجاذبية على سطح الكوكب تساوى
- 39.45 m/s² 😔


24.86 m/s² (1)

60.42 m/s² (3)

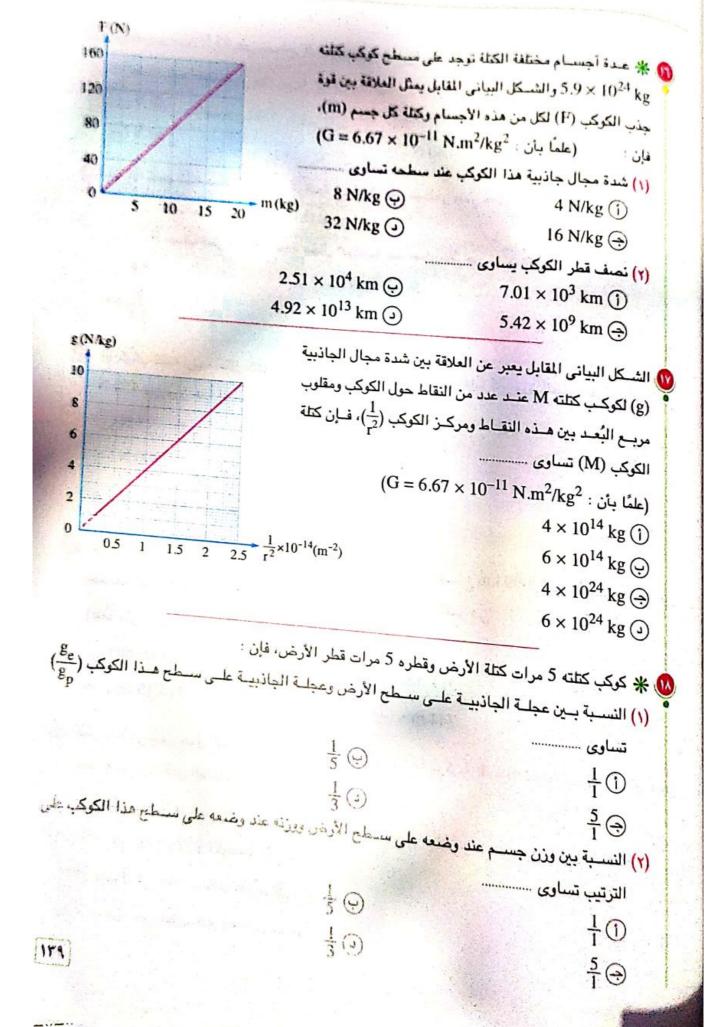

45.95 m/s²

- 60.42 m/s² (
- - $22.2 \times 10^{-4} \text{ N/kg}$
 - $22.2 \times 10^{-2} \text{ N/kg} \odot$
 - $22.2 \times 10^2 \text{ N/kg}$
 - $94.1 \times 10^5 \text{ N/kg}$

الامقتحاق فيزياء - ١ ث - ترم ٢ - جـ ١ - (م/ ١٨) ١٣٧

الشكل البياني الذي يمثل العلاقة بين شدة مجال الجاذبية (g) لكل كوكب من كواكب المجموعة الشعمية عد الشعمية الشعمية عد الشعمية الشعمية عد الشعمية عد الشعمية عد الشعمية عد الشعمية الشعمية عد الشعمية عد الشعمية عد الشعمية الشعمية عد الشعمية المساءة

- - (أ) تزداد لأن عجلة الجاذبية تتناسب عكسيًا مع مربع نصف قطر الأرض
 - ﴿ تزداد لأن عجلة الجاذبية تتناسب طرديًا مع مربع نصف قطر الأرض
 - ﴿ تظل ثابتة لأن عجلة الجاذبية تعتمد على كتلة الأرض فقط
 - () تقل لأن عجلة الجاذبية تتناسب عكسيًا مع نصف قطر الأرض
- إذا علمت أن عجلة الجاذبية على سطح القمر سدس عجلة الجاذبية على سطح الأرض، فإن النسبة بين ثاب الجذب العام على سطح الأرض وثابت الجذب العام على سطح القمر

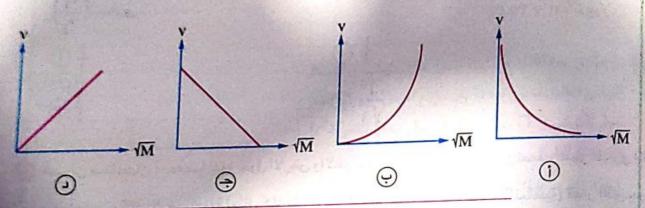

 $\frac{1}{3}$ \odot

610

 $\frac{1}{6}$

10

171



وزنه على ارتفاع من سطح الأرض يعادل ربع مطوالارم	🐠 🛠 جسم ينزن N 45 على سنطح الأرض، فإن
عادل ربع معادل ربع معادل	يساوى
25 N ⊕	20 N ①
40 N ()	30 N ⊕
دار قمر صناعي يدور حول الأخر جوهو	﴿ إِذَا كَانْتَ شَدَةً مَجَالَ الْجَاذَبِيةَ الْأَرْضَيَةَ عَنْدُ مَدُ لِللَّهِ الْأَرْضِيةَ عَنْدُ مَا يَعْدُ اللَّهُ اللَّهُ الْصَنَاعَى وسطح الأرض (h) تساوى .
المان المان المان المان على المان ا	بين القمر الصناعي وسطح الأرض (h) تساوي .
بية عند سطح الأرض = 10 m/s ²	(حيث: R نصف قطر الأرض، شدة مجال الجاذ
R 😔	2 R ①
$\frac{R}{4}$	$\frac{R}{2.5}$
معف قطر الأرض، فإذا كان وزن الجسم على سطمان	سطح وقطره ضد الجسم على سطح الكوكك الكوك
A STATE OF THE PARTY OF THE PAR	
150 N 🕞	75 N ①
450 N 🗿	300 N ⊕
	السرعة المدارية
	وركب كتلته kg × 10 ²² kg يدور حوله قمر صناء 4.96 يدور حوله قمر صناء الكوكب نصيف قطر الكوكب 1063 km
عى عسى ارتفاع 12000 km من سطحه إذا كان	نصف قطر الكوكب 1063 km فإن السرعـ (عادًا بان : 1063 ما 1063 على السرعـ (عادًا بان : 1063 ما 1
- المدارية للقمر هي	(G = 6.67 × 10 ⁻¹¹ N.m ² /kg ² : علمًا بأن
A CONTRACTOR OF THE CONTRACTOR	249.9 m/s ①
311 m/s 💬	713.13 m/s ⊖
744 m/s 🔾	
. قوة جاذبة مركزية F، فإذا تخيلنا حدوث انعدام مفاجئ	م قمر صناعى يدور حول الأرض بسرعة ٧ تحت تأثير السرعة ٥ تحت تأثير السرعة دوران القمر الصناعي فإنه
	ال يظل متحركًا في مداره
	ب تنعدم قوة الجاذبية الأرضية المؤثرة عليه
	﴿ يتحرك في خط مستقيم نحو مركز الأرض
	ن يتحرك في خط مستقيم مماس لمداره

- شدور محطة الفضياء الدولية حول الأرض في مدار نصف قطيره 1 بحيث نتم دورة كاملة حول الأرض خلال زمن T، فإذا انفصل عنها جزء كتلته 0.1 من كتلة المحطة فإن الزمن الدوري المحطة حول الأرض
 - (1) يقل بمقدار ١٠١ من قيمته
 - ﴿ يزداد بعقدار 0.1 من قيمته

(ج) يظل ثابتًا

- ﴿ يِعْلَ إِلَى 0.1 مِنْ قَيِعتَهُ
- عدد من الأقمار الصناعية المتماثلة يدور كل منها حول كوكب مختلف على نفس البعد من مركز الكوكب، فإن الشكل البياني المعبر عن العلاقة بين السرعة المدارية للقمر الصناعي (٧) والجندر التربيعي لكتلة الكوكب (VM) الذي يدور حوله القمر هو

- 🐧 🛠 قمر صناعي يدور في مسار دائري على ارتفاع 300 km من سطح الأرض، فإن : (علمًا بأن: نصف قطر الأرض 6378 km، عجلة الجاذبية الأرضية عند سطح الأرض 9.8 m/s²) (۱) سرعته المدارية تساوى
 - $6.1 \times 10^5 \text{ m/s}$ ($\stackrel{\frown}{\text{.}}$)

 4.4×10^3 m/s (1)

 $9 \times 10^5 \text{ m/s}$

 7.7×10^3 m/s =

- - (٢) زمن دورة القمر الصناعي حول الأرض يساوي
- $5.45 \times 10^3 \,\mathrm{s} \,(-)$

 $2.34 \times 10^3 \text{ s}$

 $9.22 \times 10^3 \, \mathrm{s}$

- $6.32 \times 10^3 \, \mathrm{s}$
- (٣) قيمة العجلة المركزية أثناء حركته تساوى
- 4.3 m/s^2 (-)

2.4 m/s² (1)

8.9 m/s² (3)

 $6.8 \text{ m/s}^2 \oplus$

121

In Vi

- - 4 9

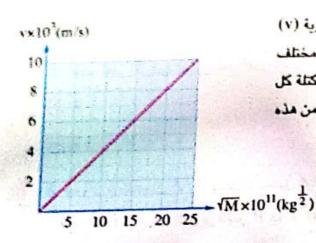
2 (1)

 $\frac{1}{4}$ ①

- $\frac{1}{2}$
- قمران صناعيان كتلتهما $10^3 \, \mathrm{kg}$ ، $5 \times 10^3 \, \mathrm{kg}$ يدوران حول الأرض على نفس الارتفاع من سغ الأرض، فإن النسبة بين السرعة المدارية للقمر الصناعى الأول والسرعة المدارية للقمر الصناعى الثاني $\left(\frac{v_1}{v_2}\right)$ تساوى
 - $\frac{1}{3}$ \odot

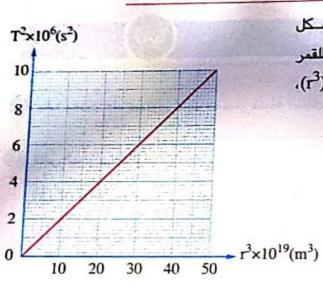
 $\frac{1}{1}$ (1)

 $\frac{1}{\sqrt{3}}$ ③


- $\frac{3}{1}$
- - 9 1 (-)

 $\frac{1}{9}$

 $\frac{3}{1}$


- $\frac{1}{3}$
- كوكبان a ، a يدور حول كل منهما مجموعة من الأقمار الصناعية، والشكل المقابل يمثل العلاقة البيانية بين مربع السرعة المدارية (v^2) للأقمار الصناعية ومقلوب نصف القطر ($\frac{1}{r}$) لمدار كل منها، فتكون النسبة بين كتلتى الكوكبين ($\frac{M_a}{M_b}$) هي
- $v^2(m/s)^2$ b $\frac{1}{r}(m^{-1})$
- $\frac{2}{1}$ \odot
- 3 0

- $\frac{1}{2}$ (i)
- $\frac{1}{3}$

(G = 6.67 × 10⁻¹¹ N.m²/kg² : علمًا بأن

- 2.39×10^3 km (1)
- $4.17 \times 10^3 \text{ km} \odot$
- $16.68 \times 10^3 \text{ km} \oplus$
- $59.97 \times 10^3 \, \text{km}$

 $(G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2 : علمًا بأن)$

- $2.96 \times 10^{24} \,\mathrm{kg}$ (i)
- $4.7 \times 10^{24} \,\mathrm{kg}$
- $2.96 \times 10^{25} \text{ kg}$
- $4.7 \times 10^{25} \text{ kg}$

الأرض مساويًا لزمن دوران الأرض حول محورها دورة كاملة فإن :

، $G=6.67\times 10^{-11}~{
m N.m^2/kg^2}$ ، $\pi=3.14$ ساعة، 24=24 ساعة، وعلمًا بأن : اليوم الأرضى $R=6378~{
m km}$ ، $M=5.98\times 10^{24}~{
m kg}$

- (۱) ارتفاع القمر الصناعي عن سطح الأرض (h) يساوي
- $3.6 \times 10^7 \text{ m}$

 $2 \times 10^7 \,\mathrm{m}$ (1)

 $6.6 \times 10^7 \,\mathrm{m}$ (3)

 $5.6 \times 10^7 \,\mathrm{m}$

(٢) السرعة المدارية للقمر الصناعي تساوى ...

0.47 m/s (2)

0.22 m/s 1

9.41 × 105 m/s (3)

 $3.07 \times 10^3 \text{ m/s}$

124

- R نصف قطر الأرض، فيكون بُعد القمر الصناعي عن سطح الأرض (h) هو
 - 2 R 💬

 $\frac{1}{2}$ R (1)

4 R 🔾

- 3 R ج
- له ، A يدوران حول كوكب نصف قطر مداريهما B ، A يدوران حول كوكب نصف قطر مداريهما B ، A يدوران حول كوكب نصف قطر مداريهما الترتيب، إذا كان الزمن الدورى للقمر $^{10^7}$ هو 207 20 فإن الزمن الدورى للقمر 20 يساوى
 - $4 \times 10^6 \, \text{s}$ (-)

 $5 \times 10^5 \,\mathrm{s}$

 $4.5 \times 10^8 \,\mathrm{s}$

 $2.3 \times 10^8 \, \mathrm{s}$

أسئلة المقال

- ماذا يحدث عند تساوى انحناء مسار قذيفة أطلقت أفقيًا من قمة جبل مع انحناء سطح الأرض؟
 - العبارات التالية:
- (١) لا يسقط قمر صناعي يدور حول الأرض في مسار دائري منتظم رغم تأثره بالجاذبية الأرضية.
 - (٢) تتوقف السرعة المدارية لقمر صناعي يدور حول الأرض على نصف قطر مداره فقط.
- السرعة المدارية لقمر صناعي كتلته $10^3 \, \mathrm{kg}$ تساوي السرعة المدارية لقمر آخر كتلته $10^3 \, \mathrm{kg}$ السرعة المدارية القمر أخر كتلته $10^3 \, \mathrm{kg}$ يدور حول نفس الكوكب وعلى نفس الارتفاع.

T	المعطاة	الإجابات	من بین	إجابتين	ختر
---	---------	----------	--------	---------	-----

وحدة قياس ثابت الجذب العام هي

N.m²/kg² (N.m.kg ()

 $m^3/kg.s^2$ $m^3.kg/s^2$

🕜 عجلة الجاذبية الأرضية

لا تتغير بتغير كتلة الجسم

(أ) ثابت كونى عام

(ب) 1 سعير بنعير حمه انجسم

﴿ متغيرة حسب الارتفاع عن سطح الأرض

تختلف باختلاف فصول السنة

متغيرة حسب بعد الأرض عن الشمس

تتوقف السرعة المدارية لقمر يدور حول كوكب على

أ كتلة القمر

کلة الکوکپ

会 البُعد بين مركزى الكوكب والقمر

الزمن الدورى لدوران القمر حول الكوكب

اتجاه دوران القمر حول الكوكب

إذا كانت كتلة كوكب عطارد kg × 10²³ kg ونصف قطره m × 10⁶ m ووُضع جسم كتلت كانت كتلة كانت كتلة ووُضع جسم كتلت 65 kg

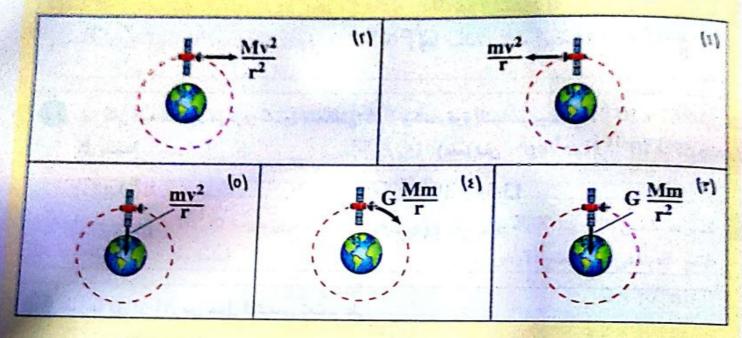
N.m²

(علمًا بأن: ثابت الجذب العام N.m²/kg² المائة الماذبية الأرضية عند سطح الأرض 9.8 مجلة الجاذبية الأرضية عند سطح الأرض 9.8 مجلة الجاذبية الأرضية عند سطح الأرض 9.8 مجلة المحاذبية الأرضية عند سطح الأرض

(1) وزن الجسم على سطح كوكب عطارد 240.5 N

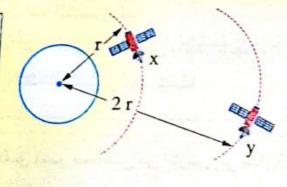
(ع) وزن الجسم على سطح كوكب عطارد N 637 N

€ وزن الجسم على سطح كوكب عطارد N 320.5 N


(2) كتلة الجسم على سطح الأرض 65 kg

طلق الجسم على سطح الأرض 172 kg

اختر من القائمة ما يناسب الفراغات :


أى شكاين من الفائعة التالية يوضحان بشكل صحيح مقدار واتجاه القوة المؤثرة على قعر صناعى كتلته الم ونصف قطر مداره ٢ يدور بسرعة مدارية ٧ حول كوكب الأرض الذي كتلته M، حيث G ثابت الجذب العام ١ الشكل الأول --- (1) ---

الشكل الثاني ---(ب)---

الشكل المقابل يوضح قمران صناعيان Y ، X يدوران حول كوكب، فإذا كان مقدار قوة جنب الكوكب للقمرين متساوى فإن:

(ب) النسبة بين سرعتيهما المدارية
$$\left(\frac{v_x}{v_y}\right)$$
 هى

• اختر الإجابة الصحيحة (١٠:١):

س في الشكل الموضع قمران صناعيان B ، A يدوران حول الأرض،

فإذا كانت سرعة القمر A هي ٧ فإن سرعة القمر B هي

 $\sqrt{2} v \odot$

2 v 🕦

 $\frac{\mathbf{v}}{\sqrt{2}}$ ③

 v^2

 $13.34 \times 10^3 \,\mathrm{kg}$ (\odot)

 $10^6 \, \text{kg}$ (1)

13.34 kg (3)

 $10^3 \text{ kg} \oplus$

سرعة دوران الأرض حول الشمس تعتمد على

أ كتلة الأرض فقط

(ب) كتلة الشمس فقط

ج كتلة الشمس والأرض والبُعد بينهما

ن كتلة الشمس والبعد بينهما

انطلق قمر صناعي من الأرض إلى مداره حول الأرض، ما التغيرات التي تحدث لكتلته ووزنه في هذه الحالة ؟

		The state of the s
الوذن	الكلة	
(KILL)	تقل	1
يظل ثابتًا	تظل ثابتة	9
يقل	تظل ثابتة	(-)
يزيد	تزيد	(3)
يظل ثابتًا		

	-
ي قمر صناعي يدور حول الأرض بسرعة مدارية 7 km/s ، فإن الزمن اللازم ليصنع القمر الصناعي دورة	0
كاملة حول الأرض يساوى	

 $(G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2 \text{ . } M_e = 6 \times 10^{24} \text{ kg} :$ علمًا بأن

- $6.54 \times 10^3 \,\mathrm{s}$
- $7.33 \times 10^3 \,\mathrm{s}$

 $5.25 \times 10^3 \text{ s}$ (i) $6.92 \times 10^3 \text{ s}$ (ii)

150 s ⊕

0 (1)

300 s 🔾

220 s (=)

 $2.6 \times 10^6 \,\mathrm{m}$

 $2 \times 10^6 \,\mathrm{m}$ (i)

 $3.8 \times 10^6 \,\mathrm{m}$ (3)

 $3.2 \times 10^6 \,\mathrm{m}$

2 R 😔

R (j

9 R ()

3 R ج

كوكب كتلته M ونصف قطره R وشدة مجال الجاذبية على سطحه g_1 ، يدور حوله قمر صناعى على ارتفاع h من سطح الكوكب وبسرعة مدارية v متأثر بعجلة جاذبية ناتجة عن الكوكب مقدارها g_2 ، فأى من الآتى يعبر عن كتلة الكوكب M ؟

 $\frac{v^2(R+h)^2}{G} \bigodot$

 $\frac{v(R+h)}{G}$

 $\frac{g_2(R+h)^2}{G}$

 $\frac{g_1(R+h)^2}{G} \oplus$

قصران صناعيان يدوران حول الأرض على نفس الارتفاع وكانت كتلة الأول ضعف كتلة الثاني، فإن قصران صناعيان يدوران حول الأرض على نفس	
قعب أن صيفاعيان بدوران حبول الأرض على نفس الول	0
1 0	
4 🕙	
2 🖯	
	mand
بعما يأتي (١١: ١٧):	• آج
ب عما يالى (١١ : ١١). كوكب كتلته أربع أمثال كتلة الأرض ونصف قطره أربع أمثال نصف قطر الأرض، احسب عجلة الجانيية كوكب كتلته أربع أمثال كتلة الأرض ونصف قطره أربع المثال نصف قطر الأرض، احسب عجلة الجانيية	0
$(9.8 \text{ m/s}^2 = 1.8 \text{ m/s}^2)$ عركب خلف الربي المالان في على سطح الأرض	W
كوكب كتلته أربع أمثال كتلة الارض ولصف سر على على سطح الأرض = 9.8 m/s ²) على سطحه. (علمًا بأن: عجلة الجاذبية على سطح الأرض	
	1
The Control of the Co	
تظهر قوى التجاذب المادى بوضوح بين الأجرام السماوية بينما لا تظهر بوضوح بين شخصين يقفان على	M
نظهر هوی اشجادب دادی جن است.	W
بعد عدة أمتار من بعضهما، فسر ذلك.	
	1
	•
جسمان B ، A كتلة كل منهما 10 kg والمسافة بينهما r وقوة التجاذب المادي بينهما F، احسب قوة التجائب	M
لمادى بينهما بدلالة F إذا أخذ kg من أحدهما وأضيفت للأخرى وقلت المسافة بينهما للنصف.	
	. 4
	, Ęb

سطح الأرض،	قمر صناعی یدور فی مدار دائری علی ارتفاع 1600 km من س
(G = 6.67 × 10-113a 2	أوجد الزمن الدوري للقمر.
$(0-0.07 \times 10^{-6} \text{ m}^2/\text{kg}, \text{s}^2, \pi$	3.14 ، $M = 6 \times 10^{24}$ kg ، $R = 6400$ km : علمًا بأن
	,
······································	
ة لسرعته المدارية ؟ مع ذكر السبب.	ماذا يحدث عندما تقل كتلة القمر الصناعي إلى النصف بالنسبة
	CONTRACTOR OF THE PROPERTY OF
-1.	(4)(4)
ما یاتی ،	اكتب العلاقة الرياضية وما يساويه ميل الخط المستقيم لكل م
g(N/kg)	
170	F(N)
8.	.°
مجال الجاذبية	3. 4
हो	[-2]
$\frac{1}{r^2}$ (m مقلوب مربع البُعد	(m ⁻²)
عن مركز الكوكب	مقلوب مربع البعد r^2 بين مركزي الجسمين
(٢)	
(1)	(1)
	100
	الشكل المقابل يوضع قمر B يدور حول كوكب A كتلته 100
	و معاد التا الماد قدة حذب القمر وقوة جذب الكوكب
$d_1 \times d_2$	مرة كتلة القمر، فإذا تساوت قوة جذب القمر وقوة جذب الكوكب d.
B	$\frac{d_1}{d_2}$ النسبة x ، احسب النسبة الأي جسم موضوع عند النقطة
A	دی جسم موصوح
	ACIDINA DE LA CONTRACTOR DE LA CONTRACTO
	Total Control of the

الشغل والطاقة.

الـدرس الأول : ◄ الشغل.

الدرس الثانى : ◄ الطاقة.

قانون بقاء الطاقة.

وقده ة

2

 توجد الطاقة فى الطبيعة فى عدة صور مختلفة مثل الطاقة الحرارية والطاقة الكيميائية والطاقة الميكانيكية وغيرها ... وهذه الطاقة يمكن أن تتحول من صورة إلى أخرى، فما المقصود بالطاقة ؟ وما علاقتها بالشغل المبذول ؟

الفصل

الشغــل والطاقــة

الدرس الأول

الشغل.

الدرس الثانى

◄ الطاقــة.

على الفصل الأول

نواتج التعلم المتوقعة

بعد دراسة هذا الفصل يجب أن يكون الطالب قادرًا على أن :

- يفسر المعلى الفيزيائي للشغل.
- بستنتج أن الشغل كمية قياسية.
 - يستلنج وحدات قياس الطاقة.
- بستنتج العلاقة الرياضية المستخدمة لحساب كل
 من طاقة الحركة وطاقة الوضع.
- يقارن بين طاقة الحركة وطاقة الوضع.
- يستنتح أن طاقة الوضع عبارة عن شغل مبذول.

الاستناف فيزياء - ١ ٥ - ترم ٢ - جـ ١ - (١/ ١٥)

في هذا الدرس سوف نتعرف:

- ▶ العوامل التي يتوقف عليها الشغل المبذول.
- ◄ تأثير زاوية الميـل على قيمة الشغل المبذول.
 - ◄ حسـاب الشغــل بـيانيـًـا.

الدرس الأول

وينتف المني الفيزيائي للشغل عن معناه في الحياة اليومية، فالشغل في الفيزياء ليس معناه القيام بعمل ذهني ي مناق، فلكى تبذل شغلًا ما على جسم لابد أن يتحرك الجسم إزاحة ما نتيجة تأثير قوتك، وإذا لم يتحرك المسم فإنك لم تبدل شغلًا مهما كان مقدار القوة التي نؤثر بها على الجسم،

والتال يرتبط الشغل بعاملين متلازمين (شروط بذل الشغل)، هما :

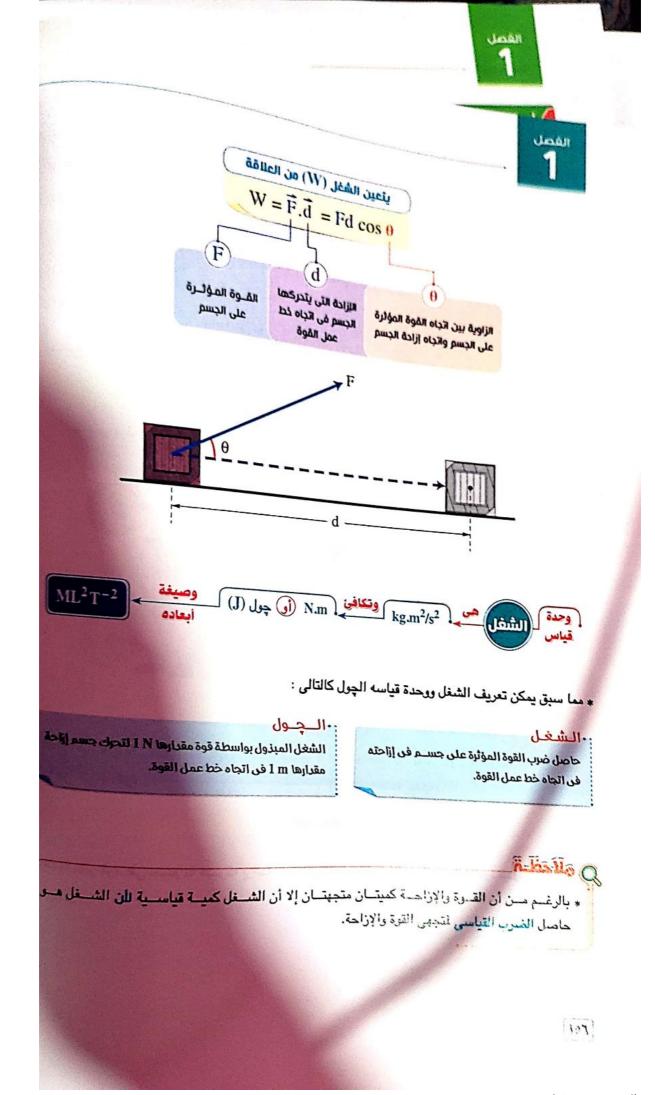
(ا) أن تؤثر قوة معينة على الجسم.

() أن يتحرك الجسم إزاحة معينة في نفس اتجاه عمل القوة.

وينضح ذلك من خلال المثالين التاليين:

◄ الشخص الذي يحاول سحب الحائط لا يبذل شفلا.

4 الاعب الذي يرفع الأثقال لأعلى **يبذل شغلًا.**


 القوة التي تؤثر على الأثقال تحركها إلى أعلى مسافة ◄ القوة التي تؤثر على الحائط لا تحرك (أى يظل الحائط ساكنًا).

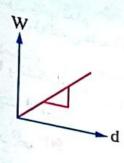
ما في اتجاه القوة.

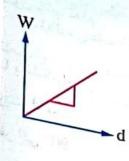
الاستنتاج

لأن

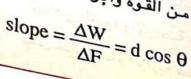
عنما تؤثر قوة على جسم ما فتحركه إزاحة معينة في اتجاه خط عمل القوة يقال إن القوة تبذل شفلا.

العقامل اليي تيوقي عبتهما المقالد بهوقية حيا الماقها ﴿



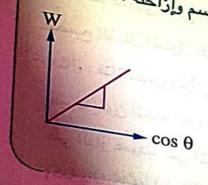

إذاحة الجسم:

يتناسب الشغل طرديًا مع الإزاحة عنب ثبوت قيصسة القوة والزاوية بين اتجاه كل


من القوة والإزاحة.

slope =
$$\frac{\Delta W}{\Delta d}$$
 = F cos θ

القوة المؤثرة على الجسم: يتناسب الشيغل لمرديًا مع القوة عنيد ثبوت الإزاحة والزاوية بين اتجاه كل من القوة والإزاحة.



$W = Fd \cos \theta$

الزاوية بين اتجاه كل من القوة المؤثرة على الجسم وإزاحته:

يتناسب الشغل طرديًا مع جيب تمام الزاوية بين اتجاه كل من القوة والإزاحة عند تبوت قيمة القوة والإزاحة.

slope =
$$\frac{\Delta W}{\Delta \cos \theta}$$
 = Fd

تَاثِيرِ زَاوِيةَ المَيْلِ (θ) عَلَى مَيمة الشَّغَلِ المَبدُولِ

قيمة الزاوية (θ)

 $\theta = 0^{\circ}$

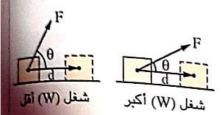
الشغل المبذول

- يكون الشغل المبذول قيمة عظمى موجبة حيث إن :

أى أنه عندما يكون اتجاه القوة في نفس اتجاه الإزاحة يصبح الشغل المبذول قيمة عظمي موجبة.

.. منال: شخص يسحب جسم بقوة F ويتحرك به مسافة d (كما بالشكل).

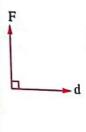
 $W = Fd \cos 0 = Fd$



- الشغل المبذول قيمة موجبة ويرجع ذلك إلى أن : الزاوية بين اتجاهى القوة (١) المؤثرة على الجسم والإزاحـة (d) أقــل مــن °90 فيكــون جبيب تمام

الزاوية قيعة موجبة - مثال : شخص يسحب جسم (كما بالشكل). - ملحوظة : كلما زاد قياس الزاويسة B بين اتجاهى القوة والإزاحـة من صفر إلى °⁹⁰ يقل جيب تمام الزاوية فيقل الشغل المبذول بواسطة نفس القوة إذا حدثت للجسم نفس

0° < 0 < 90°

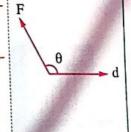

- يكون الشغل المبذول صفر حيث إن:

الإزاحة.

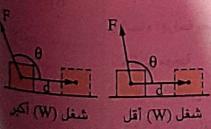
أى أنه عندما يكون اتجاه القوة (F) المؤثرة على الجسم عمودي على اتجاه إزاحة الجسم (b) يصبح الشغل المبذول على الجسم منعدم.

- مثال: فتاة تحمل دلوًا وتسير به مسافة أفقية حيث يكون اتجاه القوة التى تؤثر بها يد الفتاة على الدلو عموديًا على اتجاه الحركة الأفقية للدلو (كما بالشكل).

 $\theta = 90^{\circ}$


 $W = Fd \cos 90 = 0$


- الشغل المبذول قيمة سالبة ويرجع ذلك إلى أن: الزاوية بين اتجاهى القوة (F) المؤثرة على الجسم والإزاحة (d) أكبر من °90 وأقل من °180 فيكون جيب تمام الزاوية قيمة سالبة.


F - مثال: شخص يحاول سحب جسم وهو يتحرك عكس اتجاه خط عمل القوة (كما بالشكل).

- ملحوظة : كلما زاد قياس الزاوية θ بين اتجاهى القوة والإزاحة من °90 إلى 180° يزداد جيب تمام الزاوية فيزداد الشغل المبذول بواسطة نفس القوة إذا حدثت للجسم نفس الإزاحة.

 $180^{\circ} > \theta > 90^{\circ}$

 $\theta = 180^{\circ}$

; **d**

- يكون الشغل المبذول قيمة عظمى سالبة حيث إن : أى أنه عندما بكون اتجاه القوة (F) المؤثرة على الجسم في عكس اتجاه إزاحته (b) يصبح الشغل المبذول قيمة عظمي سالبة.

- مثال: الشدفل المبذول بواسطة قدوى الاحتكاك (مثل قوة الفرامل).

اختبر نفسك الخبرا أل

اختر الإجابة الصحيحة من بين الإجابات المعطاة ،

يستطيع القمر الصناعي البقاء في مداره الدائري حول الأرض دون الحاجة إلى استهلاك أي كمية من الوقعيد حيث لا يوجد شغل مبذول عليه لأن القوة المؤثرة على القمر

- (أ) تؤثر في نفس اتجاه حركته
- ب تؤثر في اتجاه معاكس لاتجاه حركته
- ﴿ تؤثر في اتجاه عمودي على اتجاه حركته
 - () تساوی صفر ا

لينانيا الشفل بيلسه ﴿

 $_{*}$ يمكن حساب الشغل بيانيًا باستخدام منحنى (القوة – الإزاحة)، كالتالى : إذا أثرت قوة F على جسم فسببت له إزاحة d فى نفس اتجاه القوة المؤثرة فان ($\theta = 0$)،

وعند تمثيل العلاقة بين (القوة – الإزاحة) بيانيًا نحصل على الشكل اللقابل:

- : الشغل = القوة × الإزاحة
- : الشغل (بيانيًا) = المساحة تحت منحنى (القوة الإزاحة)

W

علماء افادوا البشرية كيمس چول (1818 - 1889) م : ﴿

* يعتبر العالم الإنجليزى چيمس چول من أوائل من أدركوا أن الشغل الميكانيكى يولد طاقة حرارية، ففى إحدى تجاربه وجد أن درجة حرارة الماء أسفل الشلال أكبر منها فى أعلى الشلال مما يثبت أن جزء من طاقة المياه الساقطة تحول إلى حرارة. اثرت قوة F على جسم فازاحته مسافة d في اتجاه خط عملها، فإن أكبر قيمة للشغل المبذول على الجسم عندما

يكون قياس الزاوية بين اتجاهى القوة والإزاحة يساوى

300 ①

900 (1)

60° ⊕

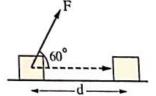
 $W = Fd \cos \theta$

 . كلما قل قياس الزاوية θ زادت قيمة جيب تمامها فتزداد قيمة الشغل المبذول. الحسل

.. الاختيار الصحيح هو (1)

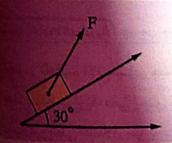
ماذا كان المطلوب حساب النسبة بين قيمتى الشغل المبذول على الجسم عندما يكون قياس الزاوية بين لو اتجاهى القوة والإزاحة °30 ، °60 على الترتيب، ما إجابتك ؟

عربة حديقة كتلتها 20 kg تتحـرك إزاحة أفقية m 4 تحت تأثيـر قوة محصلة مقدارهـا 50 N تصنع زارية مقدارها °60 مع الأفقى، فإن الشغل المبذول بواسطة القوة المحصلة يساوى

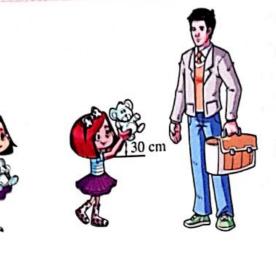

200 J 🔾

100 √3 J 🕞

1001 🕘


801()

 $m = 20 \text{ kg} \mid d = 4 \text{ m} \mid F = 50 \text{ N} \mid \theta = 60^{\circ} \mid W = ?$


 $W = Fd \cos \theta = 50 \times 4 \times \cos 60 = 100 J$

الاختيار الصحيح هو (ب)

كان المطلوب حساب الشغل الذي تبذله نفس القوة المحصلة (مقدارًا واتجامًا) على العربة إذا كانت إزاحة العربة m على مستوى مائل يصنع زاوية °30 مع الأفقى، ما إجابتك ؟

The Toler

الشكل المقابل يوضع طفلة تحمل لعبة كتلتها g 300 وتتحرك بها إزاحة مقدارها 10 m في الانجاه الأفقى ثم قامت برفع اللعبة رأسيًا إلى أعلى مسافة 30 cm ليراها والدها، فإن : (g = 10 m/s²)

- (۱) الشخل الذي تبذله يد الطفلة على اللعبة قبل رفعها يسلوى
 - 0.3 J (÷)

0 (1)

3000 J 🔾

3 J ج

(٢) الشغل الذي تبذله يد الطفلة على اللعبة بعد رفعها لأعلى يساوى

90 J (1)

0.9 J ج

0.3 J 😔

0(1)

(4)

m = 300 g $d_1 = 10 \text{ m}$ $d_2 = 30 \text{ cm}$ $g = 10 \text{ m/s}^2$ $W_1 = ?$ $W_2 = ?$

(١) : القوة المؤثرة على اللعبة عمودية على إزاحتها.

 $\therefore \mathbf{W}_1 = \mathbf{0}$

:. الاختيار الصحيح هو 🕦

 $F = mg = 300 \times 10^{-3} \times 10 = 3 \text{ N}$

التكامل مع الرياضيات 🕳 🕻

يمكنك مراجعة كسور ومضاعفات الهحدات بند (١) صفحة (١٢).

القوة والإزاحة في نفس الاتجاه.

 $\theta = 0$

 $W_2 = Fd_2 \cos \theta = 3 \times 30 \times 10^{-2} \times \cos \theta = 0.9 J$

ن الاختيار الصحيح هو ج

أنا مشخص بربط اللعبة بخيط طول ه 0.5 m وقام بتدويرها في مسار دائري أفقى بسرعة خلال خطية ثابتة مقدارها 8.5 m/s ما الشغل المبذول على اللعبة بواسطة قوة الشد في الخيط خلال وردة كاملة ؟

على منظمة 5 m/s كا المسلم الما المسلم الما المسلم

3000 J (3)

0 (1)

120 J ج

F (متكان) = 60 N W = ?

v = 5 m/s

 $d = vt = 5 \times 10 = 50 \text{ m}$

t = 10 s

- : القوة الأفقية المؤثرة على الجسم = قوة الاحتكاك بين الجسم والسطح = N 60 N $W = Fd = F_{(|\Delta I)} d = 60 \times 50 = 3000 J$
- :. الاختيار الصحيح هو (٥) ماذاً والمقدار القوة الأفقية المؤثرة على الجسم بمقدار N 10، ماذا يحدث للشغل المبذول على المعالم لو بواسطة القوة المحصلة المؤثرة عليه عند تحركه نفس الإزاحة ؟

مثالي

قوة ثابتة أفقية مقدارها N 100 أثرت على جسم ساكن موضوع على سطح أفقى فحركته أفقيًا لتمسم سرعته بعد 5 s تساوى m/s، فإن الشغل الذي بذلته هذه القوة بعد مرور 5 s من بداية الحركة مع إعمار تأثير قوة الاحتكاك يساوى

- $5 \times 10^3 \,\mathrm{J}$
- $2.5 \times 10^4 \text{ J}$

- $10^3 \,\mathrm{J}$
- 10⁴ J ⊕

 $v_i = 0$ t = 5 s $v_f = 20 \text{ m/s}$ W = ?= 100 N

- وسيلة مساعدة
- ٠٠ الجسم يتأثر بقوة ثابتة.
- . . الجسم يتحرك بعجلة منتظمة. وبالتالي يمكن حساب إزاحته من خلال معادلات الحركة بعجلة منتظمة أو باستطاع السرعة المتوسطة.

$$a = \frac{v_1 - v_1}{t} = \frac{20 - 0}{5} = 4 \text{ m/s}^2$$

 $d = v_i t + \frac{1}{2} at^2 = 0 + (\frac{1}{2} \times 4 \times (5)^2) = 50 m$

من المعادلة الأولى للحركة :

. المعادلة الثانية للحركة :

$$W = Fd = 100 \times 50 = 5 \times 10^3 J$$

$$\overline{v} = \frac{d}{t} = \frac{v_f + v_i}{2}$$

$$\frac{d}{5} = \frac{20+0}{2}$$

v(m/s)

10

$$d = 50 \text{ m}$$

$$W = Fd = 100 \times 50 = 5 \times 10^3 J$$

ن الاختيار الصحيح هو 💬

ماذا كانت قوة احتكاك الجسم مع السطح غير مهملة ومقدارها 10 N وتحرك الجسم نفس الإزاحة، لو ما الشغل المبذول بواسطة القوة المحصلة على الجسم ؟

动

الحسل ﴿

$$m = 2 \text{ kg} \qquad t = 4 \text{ s} \qquad W = ?$$

$$a = slope = \frac{\Delta v}{\Delta t} = \frac{20 - 0}{4 - 0} = 5 \text{ m/s}^2$$

$$F = ma = 2 \times 5 = 10 \text{ N}$$

التكامل مع الرياضيات

يمكنك مراجعة كيفية حساب ميل الخط المستقيم بند (٧) صفحة (١٦).

$$d = v_1^1 + \frac{1}{2}m^2 \qquad v_1 = 0$$

$$d = \frac{1}{2}m^2 = \frac{1}{2} \times 5 \times (4)^2 = 40 \text{ m}$$

$$W = \text{Fd} = 10 \times 40 = 400 \text{ J}$$

ماذاً واد مقدار القوة (F) المؤثرة على الوسع، ماذا يحدث النسخل المبذول على الجسم بواسطة مزو را الخفار السحيح هو 💿 [القوة عند تحرك نفس الإزامة ؟

انطلق قطاران B ، A كتلتيهما 2 m ، m على الترتيب من السكون في خط مستقيم فقطعا نقس الطلق قطاران B ، A كتلتيهما المؤثرة على كل من المسافة خلال نفس الزمن، فإن النسبة بين مقداري الشغل الذي تبذله القوة المحصلة المؤثرة على كل من مال ن

$$m_A = m$$
 $m_B = 2 \text{ m}$ $\frac{W_A}{W_B} = ?$

- : القطاران بدءا الحركة من السكون وقطعا نفس المسافة خلال نفس الزمن.
 - .: عجلة تحرك القطاران متساوية.

التكامل مع الرباضيات عد

يمكنك مراجعة التناسب الطردى بند (٦) صفحة (١٥).

- $\frac{F_A}{F_B} = \frac{m_A}{m_B} = \frac{m}{2 \text{ m}} = \frac{1}{2}$
- W = Fd

 $\mathbf{a}_{\mathbf{A}} = \mathbf{a}_{\mathbf{B}}$

: القطاران قطعا نفس المسافة.

$$\frac{W_A}{W_B} = \frac{F_A}{F_B} = \frac{1}{2}$$

.. الاختيار الصحيح هو (ب)

ماذا كان المطلوب إيجاد النسبة بين كميتى تحرك القطارين $\left(rac{P_{A}}{P_{B}}
ight)$ في نهاية الرحلة، ما إجابته الو

جسم كتلته m يتحرك بسرعة v_i فإذا أثرت على الجسم قوة (F) غيرت سرعته من v_i إلى v_i فإن الشغل

 $\frac{1}{2}$ mv_f² (i)

 $\frac{1}{2} m v_i^2 \Theta$

 $\frac{1}{2}$ m $\left(v_f^2 - v_i^2\right)$

 $\frac{1}{2}$ m $\left(v_f^2 + v_i^2\right)$ ①

من المعادلة الثالثة للحركة:

 $v_f^2 - v_i^2 = 2$ ad

 $\mathbf{d} = \frac{\mathbf{v}_{\mathrm{f}}^2 - \mathbf{v}_{\mathrm{i}}^2}{2 \, \mathrm{e}}$

. W = Fd

: F = ma

 $W = \text{ma} \frac{v_f^2 - v_i^2}{2\pi}$

 $W = \frac{1}{2} m \left(v_f^2 - v_i^2 \right)$

: الاختيار الصحيح هو ج

علمت أن السرعة المتوسطة للجسم خلال تلك الفترة هي ٧٠، فإن النسبة بين الشغل المبنول لتحريك الجسم

ماذا بواسطة القوة (F) والتغير في كمية تحرك الجسم خلال تلك الفترة $(\frac{W}{\Delta P})$ تساوي

4 v (3)

2 v (=)

 $\overline{v} \oplus \overline{\frac{v}{2}} \oplus$

جسم كتلته 10 kg يتحرك بسرعة منتظمة على مستوى أملس يميل بزاوية °30 على الأفقى تحت تأثي قوة (F) اتجاهها موأزى للمستوى المائل ولأعلى، عند تحرك الجسم إزاحة m 20 لأعلى المستوى يكون الشة المبذول على الجسم بواسطة هذه القوة هو $z = 10 \text{ m/s}^2$

200 J (-)

100 J (i)

2000 J (J)

1000 J 🕞

- $g = 10 \text{ m/s}^2$ W = ?
- d = 20 m

وسيلة مساعدة

- ه عندمــا يكون الجســه موضوع على مســـلوق مائل أملس تعمل قوة مقدارها w sin θ على جذبه لاسفل المسلوى حيث (w) وزه الجسم.
- يلزم لتحريك الجسم بسرعة منتظمة إلى أعلى المسلوى التأثيــر عليه بقــوة مماثلة مقدارهــا w sin θ في الاتجاه المعاكس (اتجاه الإزاحة).
 - يمكنك مراجعة تحليل المتجهات بند (٨)
- التكامل مع الرباضيات 🖚
 - صفحة (۱۸).

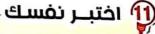
W = Fd

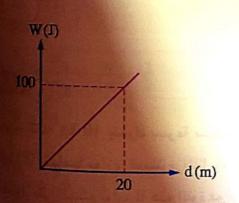
Wain 30

m = 10 kg

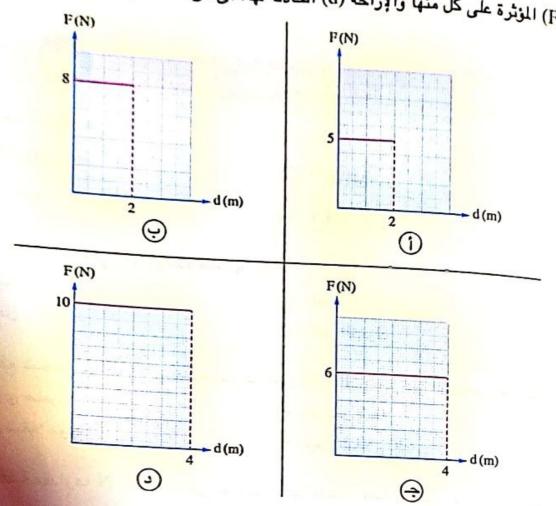
 F_N

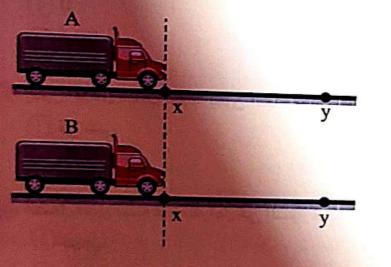
 $\theta = 30^{\circ}$

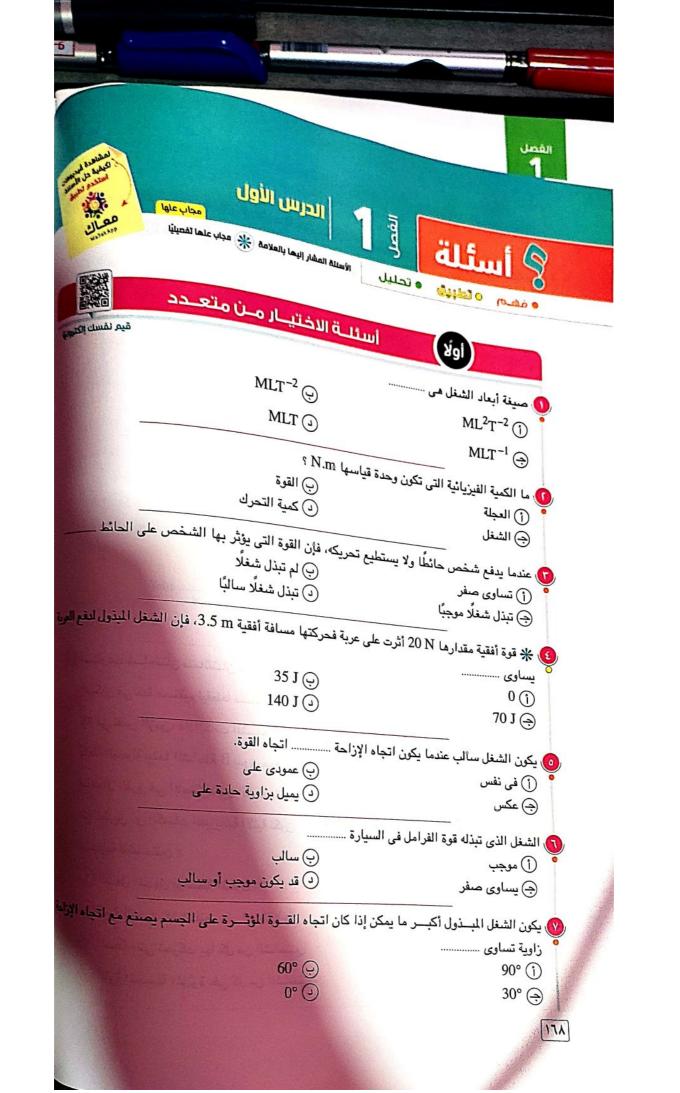

- = (w sin θ) d
- = mgd sin θ
- $= 10 \times 10 \times 20 \times \sin 30 = 1000 \text{ J}$


w cos 30

- :. الاختيار الصحيح هو ج
- ماذا كان المستوى يميل على الأفقى بزاوية أكبر من °30، هل يُبذل على الجسم شعل أكبر استعام لو نفس الإزاحة ؟

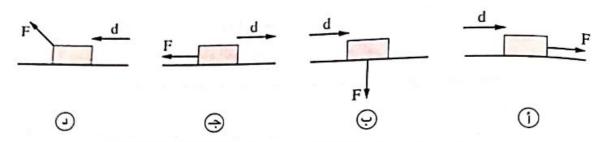

اختر الإجابة الصحيحة من بين الإجابات المعطاة :


- 🚺 🚜 الشكل البياني المقابل يوضح العلاقة بين الشغل المبذول (W) بواسطة قوة (F) والإزاحة (b)، فإذا كانت الزاوية بين متجهى القوة والإزاحة °30 فإن مقدار القوة (F) يساوى
 - 4.33 N (i)
 - 5 N (2)
 - 5.77 N 👄
 - 10 N ()


مجموعة من الأجسام المتحركة يتأثر كل منها بقوة مختلفة (F) والأشكال البيانية التالية تمثل العلاقه بين القوة (F) المؤثرة على كل منها والإزاحة (b) الحادثة لها، أي من هذه الأجسام يُبذل عليه شغل أكبر ؟

سارعت شاحنتان متماثلتان B، A من السكون في خط مستقيم ليقطعا مسافة معينة السكون في نفس الزمن، فإذا كانت الشاحنة A كاملة الحمولة بينما الشاحنة B بدون حمولة، فبإهمال الفرق في الاحتكاك بين الشاحنتين مع الطريق أي الكميات الفيزيائية الآتية تكون متساوية للشاحنتين ؟

- أ الشغل المبذول بواسطة المحرك
- (y) كمية التحرك للشاحنتين عند النقطة (y)
- ﴿ العجلة التي تحركت بها كل من الشاحنتين
- القوة المحصلة المؤثرة على كل من الشاحنتين



عندما تكون الزاوية بين اتجاه القوة الثابتة المؤثرة على جسم واتجاه الإزاحة التي أحدثتها هذه القوة تساوى معفر، فإن الشغل الذي تبذله القوة على الجسم يكون

آ صفر (ج) قيمة عظمى سالبة

لا يمكن تحديد الإجابة

وه قوة ثابتة F تؤثر على جسم فتحركه إزاحة d، فإن الشغل المبذول بواسطة القوة (F) يكون قيمة عظمى سالبة في الشكل

عندما تسقط كرة سقوطًا حرًا، فإن الشغل الذي تبذله قوة الجاذبية عليها يكون

نَ موجبًا

<u>(</u> صفرًا <u>(</u> لانهائی

أثناء الهبوط	أثناء الصعود	
موجبة	موجبة	(1)
سالبة	سالبة	9
سالبة	موجبة	(-)
موجبة	سالبة	(3)

قوة مقدارها N 100 N أثرت على جسم فحدثت له إزاحة قدرها 2.5 m فإن الشغل الذي تبذله هذه القوة
إذا كانت :

الامتحان نيزياء - ١ ٥ - ترم ٢ - ج ١ - (٩/ ٢٢)

بتحرك جسم حركة دائرية منتظمة نتيجة تأثره بقوة محصلة مقدارها 40 N، فإذا كان مقدار إزاحة الج

410 01①

 السهم في الشكل المقابل يوضع اتجاه القوة التي تؤثر بها الأرض على القدر الصناعي، فإن القدر الصناعي

أ) يُبذل عليه شغل، لأن اتجاه الحركة مماس للمسار الدائرى

يُبذل عليه شغل، لأن اتجاه القوة في نفس اتجاه الحركة

 لا يُبذل عليه شغل، لأن اتجاه القوة عمودى على اتجاه الحركة لا يُبذل عليه شغل، لأن محصلة القوى المؤثرة على القمر الصناعى تساوى صفر

نتحرك حركة دائرية (m) تتحرك حركة دائرية الشكل المقابل سدادة كتلتها منتظمة في مستوى أفقى، فإن الشغل المبذول بواسطة القوة الجاذبة المركزية على السدادة خلال نصف دورة يساوى (حيث: g عجلة الجاذبية الأرضية)

 $\pi m v^2$ (-)

0(1)

2 πrmg 🔾

 $2 \pi m v^2$

سطف ل كتلت ه 40 kg يتحرك أفقيًا في صالة التزلج، فيكون الشخل الذي تبذله قوة وزنه عندما يقطع مساقة

20 m هو

800 J 🔄

01(1)

8000 J 🗇

4000 J ج

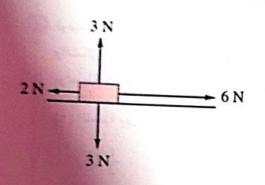
- السهم في الشكل المقابل يوضح اتجاه القوة التي يرفع
 - بها الشخص صندوق، فإن الشخص
- أ) يبذل شغل على الصندوق، لأن القوة المؤثرة على الصندوق أقل من ورنه
- بيذل شغل على الصندوق، لأن القوة المؤثرة على الصندوق في نفس اتجاه إزاحته
- (ج) لا يبذل شغل على الصندوق، لأن إزاحة الصندوق في عكس اتجاه وزئه
- لا يبذل شغل على الصندوق، لأن القوة المؤثرة على الصندوق عمودية على اتجاه إزاحته

14.

طالب استغرق زمن t ليرفع صندوق كتلته m من الأرض ويضعه فوق مكتبه على ارتفاع h، فإذا علمت أن	0			
عجلة الجاذبية g، فإن مقدار الشغل (W) الذي يبذله الطالب يساوى	•			
hgt 💬 mgt 🕦				
mht 🕘 mgh 🤿				
اى القوى التالية تبذل شغلًا على الجسم الذي تؤثر عليه ؟				
ن قوة الجاذبية على قطار يسير في طريق أفقى مستقيم				
(ب) قوة جذب النواة على الإلكترون في ذرة الهيدروچين				
 القوة التى يدفع بها طفل شجرة ضخمة ثابتة 				
 قوة الاحتكاك بين إطارات السيارة والطريق عند استخدام الفرامل 				
أى القوى التالية لا تبذل شغلًا في جميع الحالات على الجسم الذي تؤثر عليه ؟				
(أ) قوة الجاذبية الأرضية (ب) القوة المغناطيسية				
 قوة الجذب المركزى 				
عندما يتحرك صندوق مسافة d في اتجاه يميل على اتجاه القوة المؤثرة عليه بزاوية °30 كما بالشكل، فإن الشغل المبذول على الصندوق بواسطة هذه القوة يساوى				
—————————————————————————————————————				
قوى الاستنكاك N 100 لكل 100 kg من كله الموبوسيكي فرق	No.			
ال - الله قدر ها m لك ساوى				
20 × 10 ³ J (a) 35 × 10 ³ J (a) 15 × 10 ³ J (b) 35 × 10 ³ J (c)				
$25 \times 10^3 \mathrm{J} \bigcirc$				

140 J 🕘

نفع أم عربة طفلتها بسرعة ثابتة على طريق مستقيم أفقى بقوة نصنع مع الأفقى زاوية 60°، فإذا كانت العربة تتعرض لقوة احتكاك مقدارها 20 N فإن الشغل المبذول بواسطة الأم لتقطع العربة مسافة


5 m يساوى

80 J 🕣

1001

40 J 🔾

50 J 🕞

4 J 😔

2 J 🕦

14 J 🗿

8 J 🕞

120° 💬

100° (j

160° 🕘

150° ⊕

- نى تجربة جاليليو التى قام فيها بإسـقاط جسـمين لهما نفس الحجم ومختلفين في الكتلة من قمة برج بيزاً وأسيًا إلى سطح الأرض كان مقدار الشغل الذي تبذله قوة الجاذبية الأرضية
 - أكبر على الجسم الأثقل
 - (ب) أقل على الجسم الأثقل
 - ج متساوى على الجسمين
 - ك يساوى صفر على الجسمين

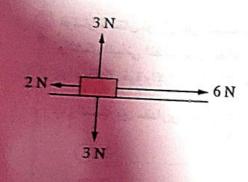
80 J (-)

140 J (3)

141

60 J 🕦

100 J 🕞



80 J 🕣

100 J 🕦

40 J 🗿

50 J 🕞

4 J 😔

2 J 🕦

14 J 🔾

8 J 👄

120° 🕞

100° (j)

160° 🔾

150° ⊕

- ن في تجربة جاليليو التي قام فيها بإسقاط جسمين لهما نفس الحجم ومختلفين في الكتلة من قمة يرج بيزا وأسيًا إلى سطح الأرض كان مقدار الشغل الذي تبذله قوة الجانبية الأرضية -----
 - أ أكبر على الجسم الأثقل
 - أقل على الجسم الأثقل
 - ج متساوى على الجسمين
 - (يساوى صفر على الجسمين

و فصم و درایانی و تحلیل

و الشكسل المقابسل يوضع دافعة تؤشّر بقوة KN 5 الشكسل المقابسل يوضع دافعة على صندوق لترفع من سطح الأرض إلى ارتفاع m 20، فإن الشغل المبذول على الصندوق بواسطة الرافعة يساوى

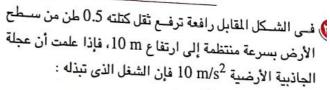
0(i)

10³ J ⊕

 $5 \times 10^3 \,\mathrm{J}$

10⁵ J 🔾 وتان ثابنتان تؤثران على جسمين x ،y لهما نفس الكتلة

والشكل البياني المقابل يمثل العلاقة بين الشغل المبذول (W) بواسطة كل قوة والإزاحة (d) لكل جسم منهما، فإن :


 $\frac{F_x}{F_v}$ تساوی سنداری القوتین النسبة بین مقداری القوتین آب

 $\frac{3}{1}$ \odot

- d (m)

 $\frac{1}{2}$ (1)

 $\frac{2}{1}$ تساوی $\frac{a}{a_y}$ النسبة بین مقداری العجلة التی یتحرك بها كل جسم منهما $\frac{a}{a_y}$ تساوی

(١) قوة الشد على الثقل يساوى

011

50 J 😔 50 kJ 🕘

−50 kJ 🤿

(٢) قوة الجاذبية على الثقل يساوى

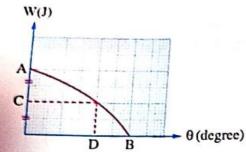
50 J (÷)

01(1) −50 kJ 🤿

50 kJ 🕘

(٣) القوة المحصلة على الثقل يساوى

50 J (-)


50 kJ 🕘

01(1) - 50 kJ ⊕

20 m

W(J)

* الشكل المقابل يوضع العلاقة البيانية بين قيمة الشغل (W) و و واوية ميل خط عمل القوة على اتجاه الحركة (θ)، إذا علمت أن القوة المسببة للحركة N 100 والإزاحة الحادثة m 5 . فإن :

(١) قيمة الشغل عند النقطة A تساوى

100 J 😔

0 ①

500 J (3)

250 J 🕞

(٢) قيمة الزاوية عند النقطة B تساوى

30° ⊕

0° (1)

90° (J)

60° ⊝

(٣) قيمة الزاوية عند النقطة D تساوى

30° (♀)

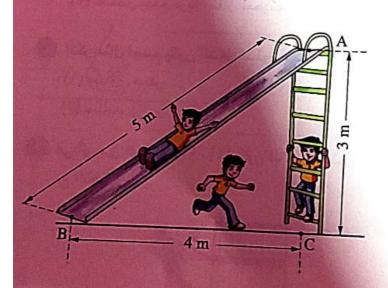
0° (1)

90° 🔾

60° ⊝

م الشكل المقابل، رجل كتلته 70 kg يصعد سلم طوله m 5،

فإن الشغل الذي يبذله الرجل يساوى


(علمًا بأن : عجلة الجاذبية الأرضية 10 m/s²

 $17.5 \times 10^2 \,\mathrm{J}$

0 (1)

 $35 \times 10^2 \,\mathrm{J}$

 $30.3 \times 10^2 \,\mathrm{J}$

فى الشكل المقابل طفل ينزلق على منحدر أملس (مهمل الاحتكاك) من A إلى B أملس (مهمل الاحتكاك) من C ثم يصعد ثم ينطلق جريًا من B إلى C ثم يصعد سلم رأسى من C إلى A ليكرر الأمر مرة أخرى، فإن الشغل المبذول بواسطة وذن الطفل بكون

- (أ) أكبر في المرحلة AB
- (ب) متساوى في المرحلتين BC ، AB
- (ج) متساوى في المرحلتين CA ، AB
 - () متساوى في جميع المراحل

السئلة المقال ولطيان ولطيان الفضل (۱) الشغل كمية قياسية. (۱) الشغل كمية قياسية. (۲) * القوة المجاذبة المركزية لا تبذل شغلا على البسم الذي يتحدك في مسار دائري. * لا يبدَل شغلا على الإلكَّرون الله على القعر الصناعى الذرب على الأرض.

* لا يبدَل شغلا على المنفل على القعر المناعى الذرب المناعى ال و نسد العبادات التالية : المحملة يعون مساوت المراحة (b) في كل مرة كما في الشيكلين (1) ، (٦)، أي المحملة يعون مساوت في الشيكلين (1) ، (٦)، أي المحملة والمحمدة والم من المالتين يكن فيها الشغل المبذول على الجسم أكبر؟ 145° (1) وضح فى كل مما يأتى هل يتم بذل شغل أم لا ؟ مع التفسير: (١) شخص يصعد سلم مائل. (٢) شخص يحاول دفع سيارة ولم تتحرك. (٢) شخص يدفع عربة أطفال فيحركها. اذكر مثال لجسم يكون الشغل المبذول عليه : (٢) موجب. (۱) يساوى صفر. فى أى من الحالتين (١) ، (٦) يكون الشغل المبذول أكبر إذا تحرك الجسم نفس الإزاحة يتأثير القوة ٤٠٠ مع التعليل. (1) (1)

أنماط جديدة من الأسئلية 🚰

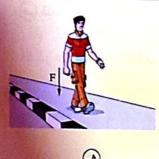
اختر إجابتين من بين الإجابات المعطاة ،

الجول يكافئ

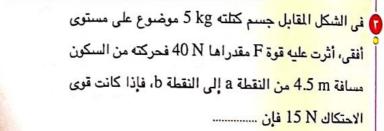
N.m² 🕘

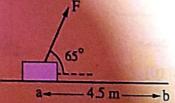
N/m (j

kg.m/s²


 $kg.m^2/s^2$

أى شكلين من الأشكال التالية يوضح أن هناك شغل مبذول بواسطة القوة (F) ؟


N.m 🕞



- أ الشغل المبذول على الجسم بواسطة القوة المحصلة يساوى صفر
- (ب) الشغل المبذول على الجسم بواسطة القوة المحصلة يساوى 8.6 J
- (ج) الشغل المبذول على الجسم بواسطة القوة المحصلة يساوى 112.5 J
 - طرعة الجسم عند b تساوى 1.85 m/s
 - (م) سرعة الجسم عند b تساوى 10.6 m/s

الامتحاق ليزياء ١ ٥ - تم٢ - بد١ - (١٨ ١١)

يسقط صندوق معلق في مظلة رأسيًا إلى أسفل كما بالشكل،

أى العبارات الأتية صحيحة ؟

أ تبذل قوة الجاذبية شغلًا سالبًا على الصندوق

بيذل وزن الصندوق شغلًا سالبًا على المظلة

﴿ تبذل المظلة شغلًا سالبًا على الصندوق

ك يبذل وزن الصندوق شغلًا موجبًا على المظلة

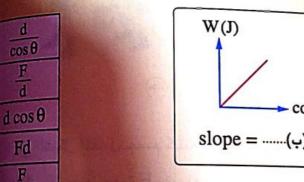
تبذل المظلة شغلًا موجبًا على الصندوق

(W) الشكل البياني المقابل يعبر عن العلاقة بين قيمة الشغل المبذول (W)

على جسم والزاوية (θ) بين القوة (F) المؤثرة على الجسم والإزاحة (d) التى يتحركها نتيجة تأثره بهذه القوة، فإن


ب قيمة A تساوى Fd

1 Fd تساوى A تساوى


ن قيمة B تساوى °30

🕒 قيمة B تساوى °0

(م) قيمة B تساوى 90°

اختر من القائمة ما يناسب الفراغات :

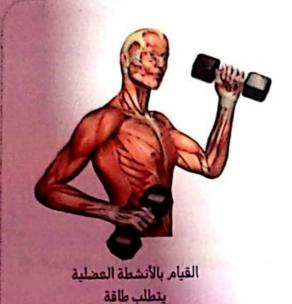
	W(J)
- cos θ	F(N)
(ب)	slope =(1)

«حيث (W) الشغل المبذول، (F) القوة المحصلة، (θ) الزاوية بين القوة والإزاحة، (d) الإزاحة».

49.9
86.6
92,4
1524.8

cosθ

الشغل (W)	الزاوية (θ) بين الإزاحة والقوة	الإزاحة (d)	القوة (F)
(1)J	45°	100 m	20 N
4330 J	60°	(ب) m	100 N



الطاقة

 ◄ الطاقة أهمية كبيرة في حياتنا حيث لا نستطيع القيام بالأنشطة المختلفة (ذهنية ، عضلية) بدون الطاقة الناتجة من احتراق السكريات داخل أجسامنا.

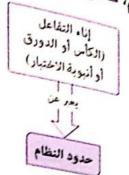
♦ قانون بقاء الطاقة

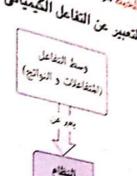
- للطاقة صور متعددة، منها:
- الطاقة الكيميائية.
 - الطاقة الكهربية.
- - الطاقة الحرارية.
- ◄ ورغم التعدد في صور الطاقة والتي تبدو كل صورة منها وكأنها مستقلة بذاتها عن باقى الصور، إلا أنه توجد علاقة بين جميع صور الطاقة حيث يمكن أن تتحول الطاقة من
 - صورة لأخرى، وهو ما يعبر عنه قانون بقاء الطاقة.

◄ ينص قانون بقاء الطاقة على أن الطاقة لا تفني ولا تستحدث من العدم ، لكن يمكن تحويلها من صورة إلى أخرى.

• الطاقة الضوئية.

الطاقة الحركية.


علم الكيمياء الحرارية


- ♦ علم الديناميكا الحرارية هو العلم الذي يختص بدراسة الطاقة وكيفية انتقالها.
- ◄ وبعتبر علم الكيمياء الحرارية فرع من فروع الديناميكا الحرارية وهو العلم الذي يختص بدراسة التغيرات الحرارية المصاحبة للتفاعلات الكيميائية والتغيرات الفيزيائية.
- اتحاد غازى الهيدروجين والأكسجين لتكوين الماء يعتبر تفاعل كيميائي.
- · ذوبان ملح نترات الأمونيوم في الماء يعتبر تغير فيزيائي.
 - معظم التغيرات الفيزيائية والتفاعلات الكيميائية تكون مصحوبة بتغير في الطاقة.
 - ومن المفاهيم الأساسية المرتبطة بالكيمياء الحرارية:
 - 🚺 النظام و الوسط المحيط.
 - الحرارة و درجة الحرارة.

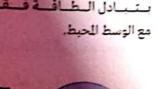
- القانون الأول للديناميكا الحرارية.
 - الحرارة النوعية.

الدراسة، تتم فيه تغيرات فيزيائية أو تفاعلات كيميائية، الدراسة تتم فيه تغيرات فيزيائية أو تفاعلات كيميائية، النظام هو العرز الحيط بالنظام والذي يمكن أن يتبادل معه المادة أو الطاقة أو كلاهما معًا. النظام هو الحيز الحيط بالنظام والذي يمكن أن يتبادل معه المادة أو الطاقة أو كلاهما معًا.

: يعكن التعبيز عن التفاعل الكيمياش كلفام، كما يلى : • يعكن التعبيز عن التفاعل الكيمياش

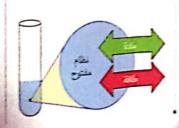
﴿ العلاقة بين التفاعلات الخيميائية و الطاقة

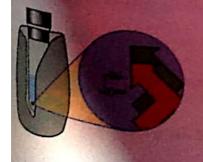
 عنظم التفاعلات الكيميائية تكون مصحوبة بتغير في الطاقة (فقد أو امتصاص طاقة)، وذلك عن طريق تبادل الطاقة على هيئة حرارة أو شغل بين وسط التفاعل (النظام) والوسط المتيط به.



أثواع الأنظمة

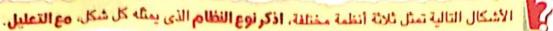
◄ تصنف الأنظمة تبعًا لقابليتها لتبادل الطاقة والمادة مع الوسيط المحيط إلى :


نظام مغلق


موالنظام الذي يسمح بتبادل الطاقة فقط

نظام مفتوح

هو النطام الذي يستمح بتبادل كل من للادة والطاقة مع الوسط للحيط



نظام معزول

هو الـنـظـام الذي لا يــــــــــ بتبادل أينًا من المادة أو الطباق

مع الوسط للحبط.

(A)

التعليل	نوع النظام	الشكل
لأنه يسمح بتبادل الطاقة فقط مع الوسط المحيط على هيئة حرارة،	مغلق	(A)
لأنه لا يسمح بتبادل أيًا من المادة أو الطاقة مع الوسط المحيط.	معزول	(B)
لأنه يسمح بتبادل كل من المادة والطاقة مع الوسط المحيط.	مفتوح	(C)

🥥 ملحوظۃ۔

يعتبر الترمومتر الطبى نظام مغلق، لأنه يسمح بتبادل الطاقة فقط مع الوسط المحيط على هيئة حرارة

القانون الأول للديناميكا الحرارية

◄ عندما يفقد النظام كمية من الطاقة يكتسبها الوسط المحيط والعكس صحيح، لذلك فإن:
 أى تغير فى طاقة النظام ΔΕ_{system} يصاحبه تغير فى طاقة الوسط المحيط _{surrounding}
 بمقدار مماثل ولكن بإشارة مخالفة ... حتى تظل الطاقة الكلية مقدارًا ثابتًا.

$$\Delta E_{\text{system}} = -\Delta E_{\text{surrounding}}$$

◄ ويختص القانون الأول للديناميكا الحرارية بدراسة تغيرات الطاقة الحادثة في الأنظمة المعزولة.
وبنص القانون الأول للديناميكا الحرارية على أن الطاقة الكلية لأى نظام معزول تظل ثابتة، حتى لو تغير النظام
من صورة لأخرى.

الممسوحة ضوئيا بـ CamScanner

استنتاج طاقة الحركة لجسم

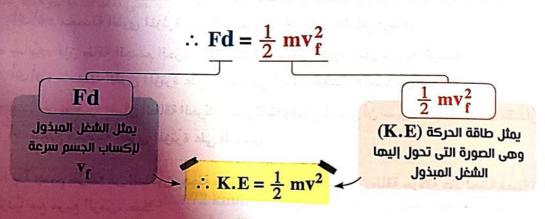
باذا أشرت قوة F على جسم ساكن كتلته m فتحرك بعجلة $_{*}$ إذا $_{*}$ لتصل سرعته إلى $_{*}$ بعد أن يقطع إزاحة $_{*}$ ، فإن $_{*}$

من المعادلة الثالثة للحركة :

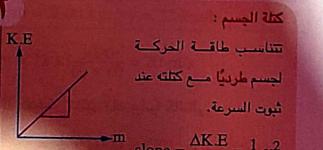
$$v_i = 0$$
 d
 v_f

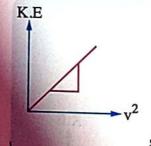
$$v_f^2 = v_i^2 + 2$$
 ad

$$v_i = 0$$

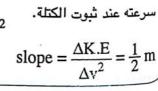

$$v_f^2 = 2 \text{ ad}$$
 , $d = \frac{v_f^2}{2 \pi}$

$$\therefore \text{ Fd} = \frac{1}{2} \frac{\text{F}}{\text{a}} \text{ V}_{\text{f}}^2$$


$$\because \frac{F}{a} = m$$

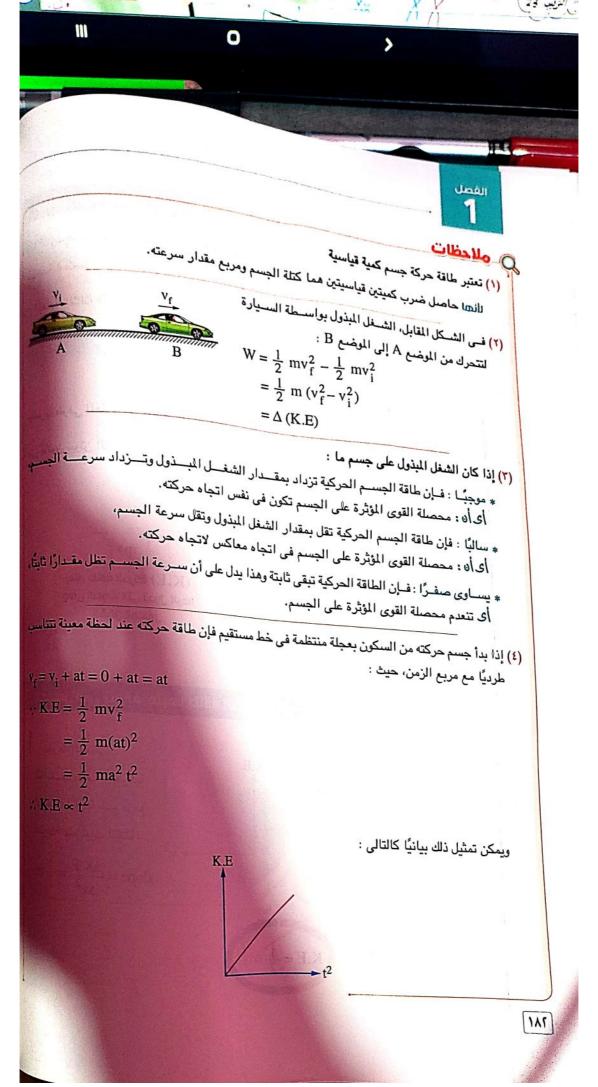

بضرب طرفى المعادلة في القوة (F):

من قانون نيوتن الثانى :



العوامل التي تتوقف عليها طاقة الحركة لجسم

slope = $\frac{\Delta K.E}{\Delta m} = \frac{1}{2} v^2$



سرعة الجسم :

تتناسب طاقة الحركة

لجسم طردیًا مع مربع

 $K.E = \frac{1}{2} mv^2$

: شِيَّالِيهِ تَّالِقَيْلِهِيَّ مُ

ان الشغل المبذول على جسم في مدورة طاقة حركة يتناسب طرديًا $Fd = \frac{1}{2} \text{ mv}^2 = K.E$ بنضح من العلاقة 2 مع مربع السرعة التي يتحرك بها،

فادا

• تحركت سيارة بسرعة 30 km/h وكانت طاقة حركتها K.E، عند الضغط على دواسة الفرامل بقوة F فإنها تقطع مسافة d قبل أن تتوقف.

• تحركت نفس السيارة بسرعة 60 km/h تكون طاقة حركتها 4 K.E، عند الضغط على دواسة الفرامل بنفس القوة المستخدمة في الحالة الأولى (F) فإنها تقطع مسافة 4 d قبل أن تتوقف.

$$v = 60 \text{ km/h}$$

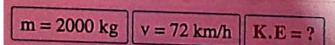
: المسافة (d) المطلوبة لتوقف سيارة تتحرك بسرعة ٧ باستخدام قوة معينة حتى تفقد طاقة حركتها تتناسب طرديًا مع مربع هذه السرعة، حيث :

$$Fd = \frac{1}{2} mv^2$$

· كل من القوة (F) والكتلة (m) ثوابت.

∴ d ∞ v2

طاقة حركة شاحنة محملة كتلتها 2000 kg تسير بسرعة 72 km/h تساوى

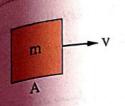

$$1.44 \times 10^5 \,\mathrm{J}$$

 $4 \times 10^4 \, \text{J}$ (1)

$$8 \times 10^5 \,\mathrm{J}$$

 $4 \times 10^5 \,\mathrm{J}$

الحسل 🖟


$$v = 72 \times \frac{1000}{60 \times 60} = 20 \text{ m/s}$$

K.E =
$$\frac{1}{2}$$
 mv²
= $\frac{1}{2} \times 2000 \times (20)^2 = 4 \times 10^5$ J

ن الاختيار الصحيح هو 🕣

ماذا الدين الشاحنة جزء من حمولتها فقلت كتلتها بمقدار الربع وزادت سرعتها بمقدار الربع، لع 🤘 التغير الذي يحدث في طاقة حركتها ؟

الشكل المقابل يوضع جسمان B ، A كتلتيهما 2 m ، m على الترتيب كل منهما يتحرك بسرعة منتظمة V ، v على الترتيب، فإذا كانت طاقة حركة الجسم A هي K.E فإذ طاقة حركة

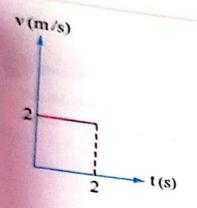
- الجسم B هيB
 - 2 K.E ①
 - 4 K.E 😔
 - 8 K.E ج
 - 16 K.E 🔾

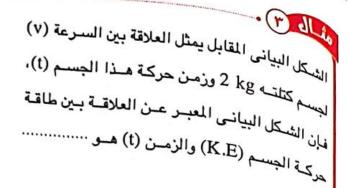
$$m_A = m$$
 $v_A = v$ $(K.E)_A = K.E$

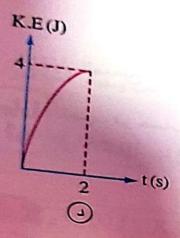
$$m_B = 2 \text{ m}$$
 $v_B = 2 \text{ v}$ $(K.E)_B = ?$

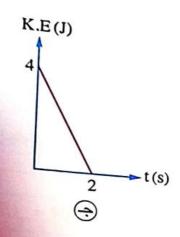
$$(K.E)_A = K.E = \frac{1}{2} \text{ mv}^2$$

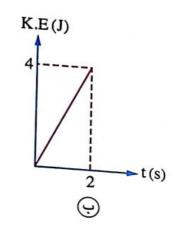
$$(K.E)_B = \frac{1}{2} \times 2 \text{ m} \times (2 \text{ v})^2$$

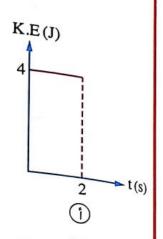

$$= 8 \times \frac{1}{2} \text{ mv}^2$$


بالتعويض من المعادلة (1) في المعادلة (2):


 $(K.E)_{R} = 8 K.E$


ن الاختيار الصحيح هو (ج)


ماذا طُلب منك تقليل سرعة الجسم B حتى تكون له نفس طاقة حركة الجسم A، فكم تكون سرعة الجديدة بالنسبة لسرعة الجسم A ؟



من الشكل البياني نجد أن سرعة الجسم ثابتة وبالتالي فإن طاقة حركة الجسم ثابتة وتمثل بخط مستقيم موازى للمحور الأفقى (محور الزمن).

$$K.E = \frac{1}{2} \text{ mv}^2 = \frac{1}{2} \times 2 \times (2)^2 = 4 \text{ J}$$

.. الاختيار الصحيح هو (١

ماذا كان المطلوب حساب مقدار القوة المحصلة المؤثرة على هذا الجسم، ما إجابتك ؟

سيارة كتلتها 1200 kg تتحرك على طريق أفقى، فإن الشغل اللازم بذله لزيادة سرعة السيارة من 5 m/s $(g = 10 \text{ m/s}^2)$ إلى 10 m/s يساوى $4.5 \times 10^4 \,\mathrm{J}$

$$6 \times 10^3 \,\mathrm{J}$$

$$6 \times 10^4 \,\mathrm{J}$$

$$m = 1200 \text{ kg}$$
 $v_i = 5 \text{ m/s}$ $v_f = 10 \text{ m/s}$ $W = ?$

 $\mathbf{v} = \Delta(K.E) = (K.E)_f - (K.E)_i$ $=\frac{1}{2} \text{ mv}_{f}^{2} - \frac{1}{2} \text{ mv}_{i}^{2}$

 $=\frac{1}{2}m(v_f^2-v_i^2)$

 $= \frac{1}{2} \times 1200 \left((10)^2 - (5)^2 \right)$

 $=4.5 \times 10^4 \text{ J}$

يساوي التغير في طاقة دوكتها.

الاختيار الصحيح هو

عاذاً المطلوب هو حساب الشغل المبنول بواسطة الجاذبية على السيارة عندما تتغير سرعتها من 8m6 لو إلى 10 m/s ما إجابتك ؟

مثاله ق

تتحرك سيارة في خط مستقيم بسرعة 15 m/s وعندما ضغط سائقها على الفرامل توقفت بعد أن قطعت مسافة m 20 من لحظة الضغط على الفرامل، إذا ضغط السائق على الفرامل بنفس القوة والسيارة تتحرك بسرعة 30 m/s فإن المسافة التي تقطعها السيارة لتتوقف هي

80 m (3)

40 m (=)

20 m (-)

5 m (1)

 $(v_i)_1 = 15 \text{ m/s}$ $(v_f)_1 = 0$ $d_1 = 20 \text{ m}$ $(v_i)_2 = 30 \text{ m/s}$ $(v_f)_2 = 0$ $d_2 = ?$

W = -Fd

 $W = \Delta(K.E) = \frac{1}{2} \text{ mv}_f^2 - \frac{1}{2} \text{ mv}_i^2$

 $W = -\frac{1}{2} \text{ mv}_1^2$

(2)

(1)

ن المعادلتين (1) ، (2) :

 $Fd = \frac{1}{2} mv_i^2$

 $\frac{d_1}{d_2} = \frac{(v_i)_1^2}{(v_i)_2^2}$

کل من F ، m ثابتتین:

 $\frac{20}{d_0} = \frac{(15)^2}{(30)^2}$

 $d_2 = 80 \text{ m}$

مكنك مراجعة التناسب الطردى بند (٦) صفحة (١٥).

: الاختيار الصحيح هو 🕒

ماذاً كان المطلوب إيجاد النسبة بين مقدارى العجلة التي تباطأت بها السيارة في الحالتين، ما إجابتك الم

مثال

جسمان y ، x لهما نفس الكتلة، فإذا كانت طاقة حركتيهما y ، 100 J ، 100 على الترتيب ومقدار كمية تحرك الجسم x هي 20 kg.m/s، فإن مقدار كمية تحرك الجسم y يساوي

180 kg.m/s → 60 kg.m/s → 20 kg.m/s →

10 kg.m/s (i)

ن الحسل

 $(K.E)_x = 100 \text{ J}$ $(K.E)_y = 900 \text{ J}$ $P_x = 20 \text{ kg.m/s}$ $P_y = ?$

 $\therefore KE = \frac{1}{2} \text{ mv}^2$

∴ K.E \propto v²

P = mv

∴ P∝v

2

∴ P∝√K.E

 $\therefore \frac{20}{P_n} = \sqrt{\frac{100}{900}}$

 $\therefore \frac{P_x}{P_y} = \sqrt{\frac{(K.E)_x}{(K.E)}}$

 $\therefore P_y = 60 \text{ kg.m/s}$

التكامل مع الرباقيات

من العلاقتين (1 ، (2 :

يمكنك مراجعة التناسب الطردى بند (٦) صفحة (١٥).

ن الاختيار الصحيح هو 🖨

ماذا المطلوب هو النسبة بين سرعة الجسمين (المطلوب هو النسبة بين سرعة المطلوب و النسبة بين سرعة المطلوب و المطلوب و النسبة بين سرعة المطلوب و الم

💋 اختبــر نفسك اختر الإجابة السحيحة من بين الإجابات المعطاة ، 🚺 🌞 الشكل البياني المقابل بوضع منحني (الإزاحة - الزمن) لمركة جسم كلك kg دا، فإن طاقة حركة هذا الجسم تساوي سسسس 501(4) 25 J (1) - t(x) 225 J (J) 125 J (a) 🚺 أي من الأشكال الثالبة يعبر عن جسم له طاقة حركة أكبر ؟ m t 2m 0 0 1 (7)

Potential Energy (P. E) وكان الوقع ا

عند بذل شغل على جسم لتغيير موضعه فإن هذا الشغل
 يُختزن داخل الجسم في ضورة طاقة تسمى طاقة الوضع.

- طاقة الوضع

الطاقة اللي يملكها الجسم لليجة لموضعه أو حالله.

أمثلة عنى طاقة الوضع

طاقة وضع مختزلـة الطبي في مليك (نبركي التخز مشدود أو مضفوط التــر (حنافة وضع مرلة)

انضيفاط أو استطالة زنبرك عن وضعه الطبيعي يُكسب جزيئاته وضعًا جديدًا (مشدود) فلتُحْزَن طاقة وضع مرنة، وعندما تنزول القسوة التي سببت انضغاطه أو استطالته يبذل الزنبرك شغيًلا حتى يتخلص من هذه الطاقة لكي يعود إلى وضعه المستقر.

استطالة الخيط المطاطى تُكسب جزيئاته وضعًا جديدًا فتضرن طاقة وضع مرنة، اذلك يتحرك الضيط المطاطى المشدود عند إزالة القوة المؤثرة عليه حتى يتخلص من هذه الطاقة لكن يعود إلى وضعه المستقر.

طاقلاً وداع مدارلة في خيرة مطادلي مشدود (خارفة وضع مرنة)

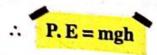
MAL

ترتبط طاقة الوضع التثاقلية بموضع الأشياء بالنسبة لسطح الأرض (بالنسبة لمجال الجاذبية) فيختزن الجسم طاقة وضع تثاقلية أكبر إذا تصرك إلى نقطة أبعد في مجال الجاذبية.

طاقة وضع مختزنة فى جسم مرفوع عن سطح اللرض (طاقة وضع تثاقلية)

استنتاج طاقة الوضع لجسم

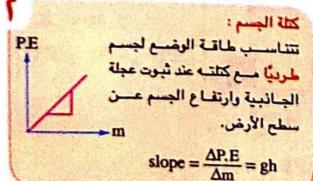
« عند رفع جسم كتلت » m مسافة رأسية h عن سطع الأرض فأن الشغل المبذول (W) يتعين من العلاقة : W = Fh

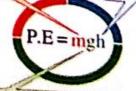

حيث : F مى القوة اللازمة لرفع الجسم الأعلى ضد الجاذبية الأرضية وتساوى وزنه (w) :

$$F = w = mg$$

$$\therefore$$
 W = mgh

 الشغل المبذول يُختزن داخل الجسم في صورة طاقة وضع (P.E).




العوامل التي تتوقف عليها طاقة الوضع التثاقلية لجسم

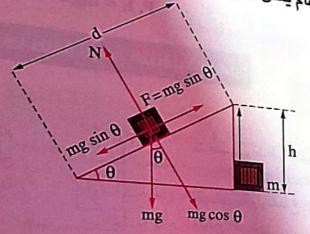
الارتفاع عن سطح الأرض:

تتناسب طاقة الوضع لجسم طرديًا مع ارتفاعه عن سطح الأرض عند ثبوت الكتلة وعجلة الجانبية.

slope =
$$\frac{\Delta P.E}{\Delta h}$$
 = mg = w

مجلة الجاذبية الأرضية : تتغير تغيرًا طفيفًا بالابتعاد عن سطح الأرض.

يكون الشغل المبذول متساويًا في الحالتين


* يتطلب ذلك قوة أقل من وذن الصندوق، لكنه سيحتاع $W = wh = 450 \times 1 = 450 J$

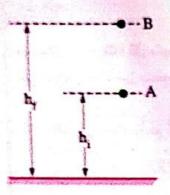
$$F = \frac{W}{d} = \frac{450}{3} = 150 \text{ N}$$
 : پرناحة أكبر:

پتطلب ذلك قوة تكافئ وزن الصندوق :

$$F = \frac{W}{d} = \frac{450}{1} = 450 \text{ N}$$

ويشكل عام يمكن تمثيل رفع جسم لارتفاع ما بسرعة منتظمة كالتالى

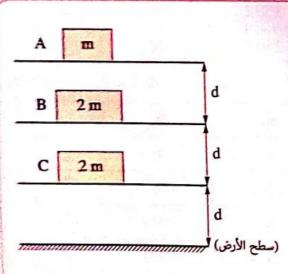
W = Fd


= mg (sin θ) d

 $: \sin \theta = \frac{h}{d}$

W = mgh

 $\Delta P.E = mgh - 0$ = mgh


 \therefore W = $\triangle P.E$

* مما سبق نستنتج أنه لرفع جسم كتلته m من الموضع A إلى الموضع B كما في الشكل المقابل يُبذل على الجسم شغل (W) يحسب من العلاقة :

$$W = mgh_f - mgh_i$$
$$= mg(h_f - h_i) = mg\Delta h$$

$$W = \Delta(P.E)$$

عدة عبوات (C ، B ، A) مختلفة الكتلة موضوعة في متجر على أرفف مختلفة كما بالشكل، ما الترتيب الصحيح لهذه العبوات تبعًا لطاقة الوضع التي تختزنها كل منها ؟

 $A > B > C \bigcirc$

مثال

- C>B>A (-)
- B > A > C 🕣
- B > C > A (2)

: P.E = mgh

: $(P.E)_A : (P.E)_B : (P.E)_C = m_A h_A : m_B h_B : m_C h_C$

 $= m \times 3 d : 2 m \times 2 d : 2 m \times d$

= 3 md : 4 md : 2 md

= 3 : 4 : 2

B>A>C

· الترتيب الصحيح للعبوات تبعًا لطاقة الوضع المختزنة في كل منها هو :

٠٠ الاختيار الصحيح هو 🕣

تم وضع العبوة B في نفس رف العبوة A، هل تكون للعبوتين نفس طاقة الوضيع الم

ماذا لو جسمان y ، x كتلة كل منهما 10 kg موضوعان على سطح الأرض، قام شخص برامع الجسم X إلى منفرة على ارتفاع m من سطح الأرض ورفع الجسم y إلى رف على ارتفاع 2.5 m من سطح الأرض، فإن: $(g = 10 \text{ m/s}^2)$

(١) التغير في طاقة وضع كل من الجسمين يساوي

Δ(P.E) _v	$\Delta(P.E)_{x}$	
150 J	100 J	1
250 J	100 J	9
150 J	150 J	(-)
250 J	150 J	3

(٢) الشغل المبذول بواسطة الشخص على كل من الجسمين يساوى

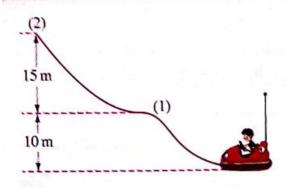
W,	W _x	
150 J	100 J	1
250 J	100 J	9
150 J	150 J	⊕
250 J	150 J	3

$$m_x = 10 \text{ kg}$$
 $m_y = 10 \text{ kg}$ $h_x = 1 \text{ m}$ $h_y = 2.5 \text{ m}$ $g = 10 \text{ m/s}^2$

$$\Delta(P.E)_x = ?$$
 $\Delta(P.E)_y = ?$ $W_x = ?$ $W_y = ?$

$$\Delta (P.E)_{x} = m_{x} g \Delta h_{x} = 10 \times 10 \times (1 - 0) = 100 J$$
(1)

$$\Delta(P.E)_y = m_y g \Delta h_y = 10 \times 10 \times (2.5 - 0) = 250 J$$


$$W_x = \text{Fd} = m_x \text{gh}_x = 10 \times 10 \times 1 = 100 \text{ J}$$

 $W_y = \text{Fd} = m_y \text{gh}_y = 10 \times 10 \times 2.5 = 250 \text{ J}$

ماذًا كان المطلوب حساب الشغل الميذول ارفع الجسم x من المنضدة إلى الرف, ما إجابتك؟

(4)

علك

- $7.5 \times 10^4 \,\mathrm{J}$
- $5 \times 10^4 \,\mathrm{J}$
- $7.5 \times 10^4 \, \text{J}$ (3)
- $5 \times 10^4 \,\mathrm{J}$

- ني الشكل المقابل تنتقل عربة ملاهى كتلتها هي الراكب معًا 200 kg من سطح الأرض إلى المرضع (1) ثم إلى الموضع (2)، فإن التغير نى طاقة الوضع عند انتقال العربة من سطح $(g = 10 \text{ m/s}^2)$ الأرض إلى:
 - (١) الموضع (1) يساوى
- $2.5 \times 10^4 \,\mathrm{J} \odot$ $2 \times 10^4 \,\mathrm{J} \odot$
- $2.5 \times 10^4 \,\mathrm{J} \odot$ $2 \times 10^4 \,\mathrm{J} \odot$

$m = 200 \text{ kg} \mid g = 10 \text{ m/s}^2 \mid h_1 = 10 \text{ m} \mid h_2 = 25 \text{ m}$

 $\Delta(P.E)_1 = ? | \Delta(P.E)_2 = ?$

- (١) عند انتقال العربة من سطح الأرض إلى الموضع (١):
- $\Delta(P.E)_1 = mg\Delta h_1 = 200 \times 10 \times (10 0) = 2 \times 10^4 J$
- ن الاختيار الصحيح هو (1)
- (٢) عند انتقال العربة من سطح الأرض إلى الموضع (2) :

 $\Delta(P.E)_2 = mg\Delta h_2 = 200 \times 10 \times (25 - 0) = 5 \times 10^4 J$

- الاختيار الصحيح هو
- ماذا المطلوب هو حسباب التغير في طاقة الوضع عند انتقال العربة من الموضع (2) إلى الموضع (1)، الما إجابتك ؟

جسم x موضوع على ارتفاع h_{χ} من سطح الأرض وجسم y موضوع على ارتفاع h_{χ} من سطح القمر، $\frac{h_x}{h_x}$ أن طاقة الوضع للجسمين واحدة وكتلتيهما متساوية، فإن النسبة $\left(\frac{h_x}{h_x}\right)$ تساوى

(علمًا بأن : عجلة الجاذبية على سطح الأرض سنة أمثال عجلة الجاذبية على سطح القمر)

 $\frac{1}{3}$ ①

 $\frac{3}{1}$

<u>}</u>⊕

6 (1)

الامتحال ليزياء - ١ ٥- ترم ٢ - جـ ١ - (١٠ / ٢٥)

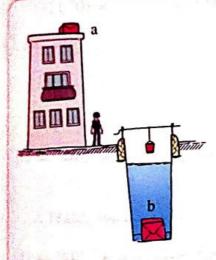
$$(P.E)_x = (P.E)_y$$
 $m_x = m_y$ $g_e = 6 g_m$ $\frac{h_x}{h_y} = ?$

$$P(P.E)_{y} = (P.E)_{y}$$

$$(P.E)_{x} = (P.E)_{y}$$

$$\therefore 6 g_m h_x = g_m h_y$$

$$g_{\rm m}$$
 $\frac{h_{\rm y}}{h_{\rm y}} = ?$


$$\therefore m_x g_e h_x = m_y g_m h_y$$

$$\therefore \frac{h_x}{h_y} = \frac{1}{6}$$

٠٠ الاختيار الصحيع هو (٩)

ماذا وضع الجسمين على نفس الارتفاع من سطحى الأرض والقمر، فكم تكون النسبة (P.E) ؟

مثال ه).

يقف شخص على سطح الأرض ويوجد بجانبه مبنى ارتفاعه 10 m وبئر عمقه m 10 عن مستوى سطح الأرض، فإذا وضع جسم a كتلت 2 kg أعلى المبنى ووضع جسم أخر b كتلت 4 kg في قاع البئر، فإن طاقة وضع الجسمين (b ، a) بالنسبة لمستوى سطح الأرض تساوى (علمًا بأن : g = 10 m/s²)

(P.E) _b (J)	$(P.E)_a(J)$	
400	200	1
-400	200	9
200	400	⊕
- 200	400	③

⊕ الحــــل

$$m_a = 2 \text{ kg}$$

$$h_a = 10 \text{ m}$$

$$m$$
 $m_b = 4 \text{ kg}$

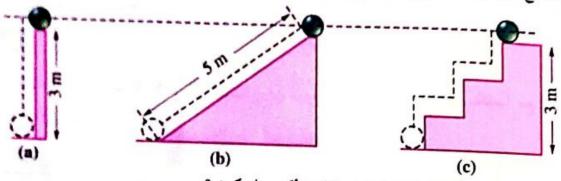
$$h_b = -10 \text{ m}$$
 $g = 10 \text{ m/s}^2$

$$g = 10 \text{ m/s}^2$$

• موجبة ، إذا كان مستوى الجسم أعلى من مستوى سطح الأرض. • سالبة ، إذا كان مسلوى الجسم أقل من مسلوى سطح الأرض.

👰 وسيلة مساعدة إذا كان مستوى القياس هـ و مستوى سطح الأرض. فإن إشارة h تكون ،

$$(P.E)_a = ?$$
 $(P.E)_b = ?$

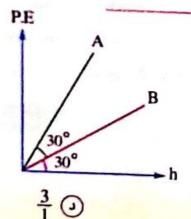

(P.F.) = m gh
$$-2 \times 10 \times 10 = 200$$

$$(P.E)_a = m_a g h_a = 2 \times 10 \times 10 = 200 J$$

(P.E)_b =
$$m_b g h_b = 4 \times 10 \times (-10) = -400 J$$

.. الاختيار الصحيع هو 😡

الاشكال التالية توضع ثلاثة مسارات مختلفة مهملة الاحتكاك يمكن أن تسلكها كرة ساكنة موجودة عند سطح الأرض لتصل إلى ارتفاع معين:


في أي مسار يكون الشغل المبذول لرفع الكرة أكبر ما يكون ؟

- ج) المسار ع

 $\frac{1}{3} \odot$

(ب) المسار b

a السار

🛐 الشكل البياني المقابل يمثل العلاقة بين طاقة الوضع (P.E) لكل من جسمين B ، A وارتفاع كل منهما (h) عن سطح الأرض، فإن النسبة بين وزنى الجسمين $\left(\frac{w_{A}}{w_{B}}\right)$ تساوى

 $\frac{1}{2} \odot$

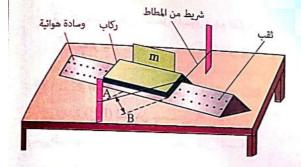
 $\frac{2}{1}$ (1)

وما سبق يمكن المقارنة بين طاقة الحركة وطاقة الوضع كما يلى :

طاقة الوضع	طاقة الحركة	مع منبق يمكن ١٨
الطاقة التي يمتلكها الجسم نتيجة لموضعه أو حالته	الطاقة التى يمتلكها الجسم نتيجة لحركته	المفهوم
P.E = mgh	$K.E = \frac{1}{2} \text{ mv}^2$	العلاقة الرياضية
 (١) كتلة الجسم، (٢) الارتفاع عن سطح الأرض، (٣) عجلة الجاذبية الأرضية. 	ر١) كتلة الجسم. (٢) سرعة الجسم.	العوامل الم ؤثرة
الچول	الجول	وحدة القياس
ML ² T ⁻²	ML ² T ⁻²	ميغة الأبعاد
140	1	

تعيين طاقة الحركة لجسم

الغرض من التجربة

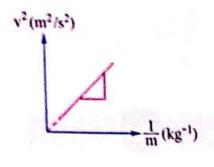

• تعيين طاقة حركة جسم متحرك.

فكرة التجربة

• تبعًا للعلاقة (K.E = $\frac{1}{2}$ mv²) يمكن استنتاج أن مربع سرعة الجسم يتناسب عكسيًا مع كتلته، وذلك عند ثبوت طاقة الحركة.

الجهاز المستخدم

• ركاب كتلته m يتحرك على وسادة هوائية (سطح عديم الاحتكاك) مسافة معينة بواسطة شريط مرن من المطاط مشدود بين قائمين رأسيين (كما بالشكل).

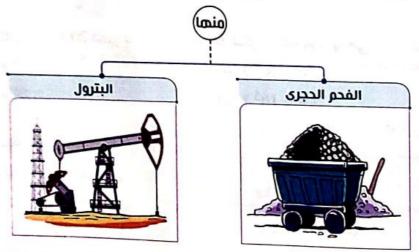


الخلوات

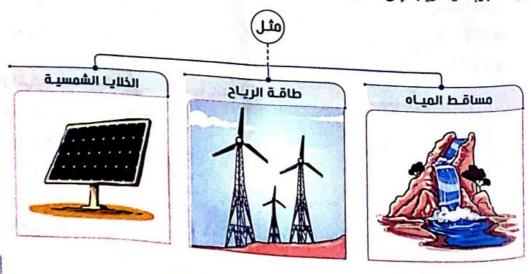
- (١) حرك الركاب من الموضع (A) إلى الموضع (B) بحيث يعمل الركاب على شد الشريط المرن إلى الخلف ويذلك يختزن الشغل المبذول على الشريط المرن في صورة طاقة وضع.
- (٢) دع الركاب حرًا فيتحرك بسرعة معينة (٧) نتيجة تحول طاقة الوضع المختزنة في الشريط المرن إلى طاقة حركة.
- (٢) عين الزمن الذي يستغرقه الركاب أثناء حركته على الوسادة الهوائية باستخدام الساعة الكهربية المتصلة بالخلية الكهروضوئية.
 - (٤) احسب سرعة الركاب (٧) بقسمة المسافة التي تحركها على الزمن الذي قطع فيه هذه المسافة.
- (ه) كرر الخطوات السابقة عدة مرات مع تغيير كتلة الركاب (m) وتثبيت المسافة (AB) التي يتحركها الركاب الخلف وبالتالي تظل قوة شد الشريط المرن ثابتة في كل مرة وفي كل مرة احسب سرعة الركاب (٧) مع تسجيل النتائج في الجدول التالي :

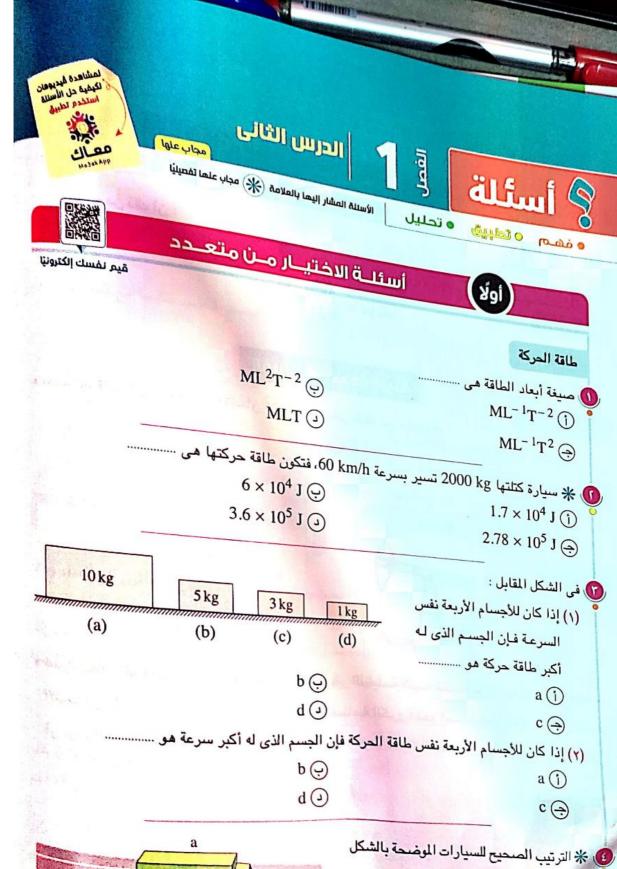
$v^2 (m^2/s^2)$	$\frac{1}{m} (kg^{-1})$	السرعة v (m/s)	الزمن t (s)	کلة الرکاب m (kg)

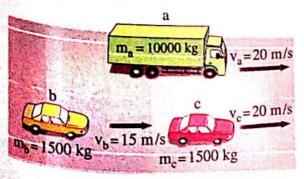
117



ر۱) ارسم علاقة بيانية بين مربع السرعة (v^2) على المحور الرأسى ومقلوب الكتلة $(\frac{1}{m})$ على المحور الأفقى، تجد أنها خط مستقيم $v^2 \propto \frac{1}{m}$


slope =
$$\frac{\Delta v^2}{\Delta(\frac{1}{m})}$$
 = 2 K.E


الفيزياء في خدمة البيئة


« معظم الطاقات التي يستخدمها الإنسان تأتي من مصادر طاقة غير متجددة،

نتبر مصادر الطاقة غير المتجددة من مصادر الطاقة غير النظيفة لأنها تنتج مواد ضارة بالبيئة ويصحة الإنسان، ولذلك هناك اتجاه عالمي (خاصة الدول الصناعية الكبري) نحو استخدام مصادر الطاقة الطبيعية في توليد الكهرباء وتحويلها إلى العديد من صور الطاقة اللازمة للحياة العملية للإنسان وللحفاظ على البيئة،

c < b < a 😔

b>c>a ⊕

c = b = a

194

الدرس الثاني

 $v^2(m^2/s^2)$

8

6

4

2

﴾ عداء كتلته 72 kg وطاقة حركته مساوية لطاقة حركة سيارة كتلتها 1200 kg وتتحرك بسرعة 2 km/h.

2.27 m/s (i)

3,04 m/s 💬

5.14 m/s (=)

9.26 m/s 🕘

1 * جسم يمكن تغيير كتلت والشكل المقابل يوضع العلاقة البيانية بين مربع مقدار سرعة الجسم (v^2) ومقلوب كتلته $(\frac{1}{m})$ ، فتكون طاقة حركة الجسم هي

0.53(1)

110

2 J (=)

4 J 🖸

🕻 % اصطدمت سيارة كتلتها 3 × 10 kg وسرعتها 16 m/s بشجرة فلم تتصرك الشجرة وتوقفت السيارة، فإن :

(١) التغير في طاقة حركة السيارة يساوى

 $-2.4 \times 10^4 \text{ J} \odot$

 $-3.84 \times 10^5 \text{ J}$ (1)

 $2.4 \times 10^4 \text{ J}$

 $3.84 \times 10^5 \text{ J}$

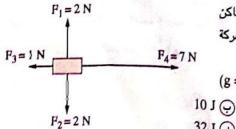
(٢) الشغل المبذول على الشجرة عندما ترتطم مقدمة السيارة بالشجرة يسماوى

 $2.4 \times 10^4 \text{ J}$

0 (1)

 $6.23 \times 10^5 \,\mathrm{J}$

 $3.84 \times 10^5 \text{ J}$


🦑 جسم كتلته 25 kg بُدُل عليه شـفل مقداره ل 1800 فتحرك أفقيًا من السـكون مسافة d على مستوى أفقى، فتكون سرعة الجسم بعد قطعه هذه المسافة هي

140 m/s 😔

288 m/s ①

12 m/s (3)

12√2 m/s 🕣

الشكل المقابل يوضح أربعة قوى تؤثر على جسم ساكن فيتحرك أفقيًا مسافة m 4, فيكون التغير في طاقة حركة الجسم خلال تلك المسافة هو

(g = 10 m/s² ; علمًا بأن

811

32 J 🔾

24 J 🕣

111

· details office was والمركة المركة الم ، فإذا تضاعفت سرعته تصبع طاقة المركة 1010 419 الشكل المقابل يوضع سيارة كتلتها ١١١ وسرعتها ٧ ودراجة ناريـة كتلتهـا 4 وسرعتها ٧ 2 ، فتكون النسبة بين طاقتى (K.E) هی $\left(\frac{(K.E)_{i,j}}{(K.E)_{i,l}}\right)$ هی حرکتیهما 10 $\frac{1}{2}$ ① س جسمان كتلة الأول ضعف كتلة الثانى وسرعة الأول نصف سرعة الثانى فإن طاقة حركة الأول (ضعف طاقة حركة الثاني. ن أربعة أمثال نصف (أ) * إذا كانت طاقة الحركة لجسم 36 J وكمية التحرك لنفس الجسم 18 kg.m/s فإن: (١) السرعة التي يتحرك بها (لجسم تساوى 2 m/s 😛 1 m/s (1) 4 m/s 🕘 3 m/s 🕞 (٢) كتلة الجسم تساوى 9 kg 💬 18 kg 🕦 4.5 kg 🕘 6 kg ج ﴿ جسمان b ، a كتلة الجسم a أربعة أمثال كتلة الجسم b والجسمان لهما نفس طاقة الحركة فتكون النسبة بين كميتى تحرك الجسمين $\left(\frac{P_a}{P_b}\right)$ هى 2 ⊕ $\frac{1}{2}$ ① 40 $\frac{1}{4}$ 1...

		نتيجة التصادم تساوى
	3)	$\frac{1}{8}$ mv ² (j)
1 1 100	$\frac{1}{2}$ mv ² \bigcirc	$\frac{1}{4} \text{ mv}^2 \oplus$
قوة مركزية قدرها N	في مسار نصف قطره 20 cm وتؤثر عليه	* يتحرك جسم حركة دائرية منتظمة
		فتكون طاقة حركة الجسم هي
	0.2 J 😛	0.11①
	2 J 🖸	110
ة الواحدة g 49 وسسرعا	سامية في الدقيقة فإذا كانت كتلة الرميامية	
		200 m/s، فإن طاقة الحركة الكلية المتوا
	8800 1 ⊕	980 J ①
	$588 \times 10^3 \mathrm{J}$	588 J 🕞
8 وكانت سسرعة القذي	600 m/s تجاه حاجز مطاطى سُـمكه cm	* سُددت قذيفة كتلتها g بسرعة
		حظة خروجها من المطاط 400 m/s ، ف
	لا على القذيفة يساوى	(١) الشغل الذي تبذله قوة مقاومة المطاه
	لا على القذيفة يساوى	11①
	- 1000 J ③	1000 J ⊕
	ساوی	 ٢) متوسط قوة مقاومة المطاط للقذيفة يد
	- 12.5 N ⊕	12.5 N ①
	– 12500 N 🖸	12500 N 🕣
		المة المضمع
The Control of the Co		طاقة المختزنة في زنبرك مضغوط هي
	ب طاقة وضع	الماقة حركة المحتولة على المراق مصنعولة على المراقة حركة المراقة المر
		ن هایه حریه
	🔾 طاقة تنافر	
 لشــفل المبذول بواسطة	the country of the property of the country of any property of the first of the country of the co	طاقة نورية
 لشــفل المبذول بواسطة	طاقة تنافر ع 200 m من سلطح الأرض، فإن اا	﴾ طاقة نووية ? تسلق رياضى وزنه 700 N جبلًا إلى
 لشــفل المبذول بواسطة	the country of the property of the country of any property of the first of the country of the co	طاقة نووية

12 kg الشكل المقابل يوضع منضدة موضوع عليها كتاب كتلته 2 kg،

فإن طاقة وضعه تساوى

(g = 9.8 m/s² : علمًا بأن

98 J 🕕

1010

2.5 J 🚗

9.8 J 🔾

🀠 * جسم طاقة وضعه عند نقطة على ارتفاع m 5 من سطح الأرض تساوى J 980 وعجلة الجاذبية الأرضية 9.8 m/s²، فإن كتلته عند سطح الأرض تساوى

20 kg 🕦

50 kg 😔

100 kg ج

196 kg 🔾

الشكل المقابل يوضح رافع أثقال يرفع كتلة مقدارها 100 kg، الشكل المقابل يوضح رافع أثقال يرفع كتلة مقدارها فيكون الشغل المبذول بواسطة رافع الأثقال هو

(g = 10 m/s² : علمًا بأن

100 J 🕦

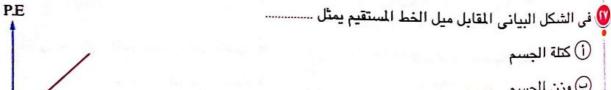
200 J 🕞

1000 J ج

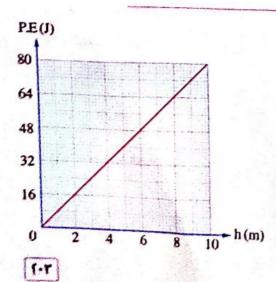
2000 J 🔾

🐽 وصل رجل إلى شقته صعودًا على السلم مرة، وباستخدام المصعد مرة ثانية، أي العبارات التالية صحيحةً ا

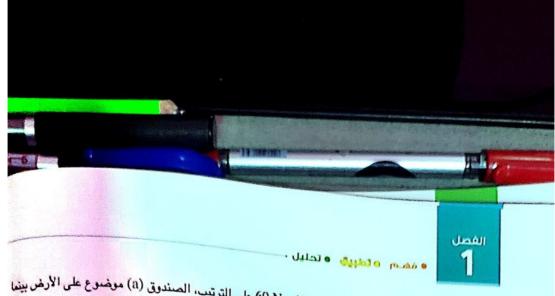
أ طاقة وضع الرجل أكبر عند صعوده السلم


(ب) طاقة وضم الرجل أكبر عند استخدام المصعد

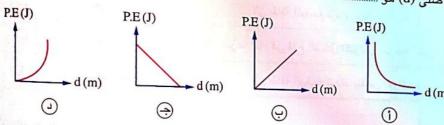
﴿ لا توجد ملاقة وضع للرجل عند استخدام المصعد


(الله عناقة وضع الرجل متساوية في الحالتين المالتين المالة عنه الم

- 🕜 عند قذف جسم رأسيًا لأعلى فإنه أثناء الصعود تزداد
 - آ) سرعته
 - ب عجلة تحركه
 - ﴿ طاقة وضعه
 - طاقة حركته
- أيهما أكبر طاقة وضع الماء أعلى شلال أم طاقة وضعه عند قاع الشلال ؟ ولماذا ؟


السبب	الموضع ذو طاقة الوضع الأكبر	
لأن سرعة الماء أعلى الشلال أكبر من سرعته في قاع الشلال	أعلى الشلال	1
لأن طاقة الوضع تزداد بزيادة الارتفاع	أعلى الشلال	9
لأن سرعة الماء في قاع الشلال أكبر من سرعته أعلى الشلال	أسفل الشلال	<u>-</u>
لأن طاقة الوضع تزداد بنقص الارتفاع	أسفل الشلال	①

- - 🛈 كتلة الجسم
 - وزن الجسم
 - 🥱 إزاحة الجسم
 - صرعة الجسم


- 💯 🛠 الشكل المقابل يوضح العلاقة البيانية بين طاقة وضع جسم (P.E) وارتفاعه (h) عن سطح الأرض، فإن كتلة $(g = 9.8 \text{ m/s}^2)$ هذا الجسم تساوى
 - 0.5 kg ①
 - 0.82 kg 😌
 - 8 kg 🕣
 - 78.4 kg 🕘

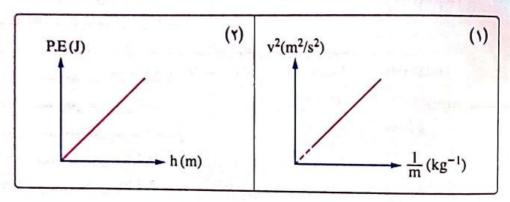
- 1.3 m ①
- 1.5 m 😔
 - 3 m ج
 - 5 m 🔾

الشكل البياني المعبر عن تغير طاقة الوضع (P.E) لجسم يسقط سقوطًا حرًا بتغير بعده عن موضع

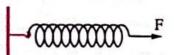
الأصلى (d) هوا

m فى الشكل المقابل عربة ملامى كتلتها m عديمة الاحتكاك مع السطح تمر بالنقطة A بسرعة خطية الارمقدار الشغل الذى تبذله قوة الجاذبية الأرضية على العربة لتنتقل من النقطة A إلى :

- C
- (۱) النقطة B هو
 - 0 ①
 - mgh ج
- (٢) النقطة C هو
 - 0 ①
 - mgh ج

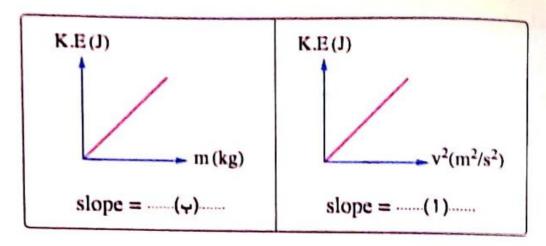


- 2 mgh 🕘
- $\frac{1}{2}$ mgh \odot
- 2 mgh 🔾


أسئلــة المقــال

- 0 نسر العبارات التالية:
- (١) طاقة الحركة كمية قياسية.
- (٢) طاقة حركة جسم ساكن تساوى صفر.
- (٣) عند قذف جسم رأسيًا إلى أعلى تزداد طاقة الوضع له أثناء الصعود.
- (اكتب العلاقة الرياضية التي يمثلها الأشكال البيانية التالية وما يعبر عنه ميل الخط المستقيم:

«حيث (v) سرعة الجسم، (m) كتلة الجسم، (P.E) طاقة الوضع، (h) الارتفاع»


- و قارن بين طاقة الوضع المرنة و طاقة الوضع التثاقلية (من حيث: المفهوم).
 - الشكل المقابل يوضح ملف زنبركى مشدود بقوة F، ماذا يحدث عند زوال هذه القوة ؟ مع التفسير.

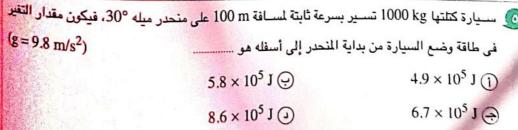
أنماط جديدة من الأسئلـة ﴿ اختر إجابتين من بين الإجابات المعطاة : أ) مقدار سرعة الجسم يساوى m/s ب مقدار سرعة الجسم يساوى 12.5 m/s ج مقدار سرعة الجسم يساوى 5 m/s الشغل المبذول على الجسم بواسطة القوة المحصلة يساوى صفر الشغل المبذول على الجسم بواسطة القوة المحصلة يساوى 25 J (P.E) الشكل البياني المقابل يوضح العلاقة بين طاقة وضع جسم (P.E) PE(J) وارتفاعه (h) عن سطح الأرض، فإن (علمًا بأن: g = 9.8 m/s²؛ المحوران ممثلان بنفس مقياس الرسم) أ) ميل الخط يعبر عن كتلة الجسم - h (m) (ب) ميل الخط يعبر عن وزن الجسم ميل الخط يعبر عن سرعة الجسم كتلة الجسم تساوى 0.4 kg (كتلة الجسم تساوى 3.7 kg KE(J) الشكل البياني المقابل يوضح العلاقة بين طاقة الحركة (K.E) لجسم كتلته m ومربع مقدار سرعة الجسم (v²) فإن (علمًا بأن: g = 10 m/s²)، المحوران مرسومان بنفس مقياس الرسم) 1) كتلة الجسم تساوى 0.5 kg $v^2(m^2/s^2)$ (ب) كتلة الجسم تساوى 1 kg ب كتلة الجسم تساوى 2 kg ن وزن الجسم يساوى N 0.05 N (م) وزن الجسم يساوى N 20 N 🚯 الچول هو 1 m/s ماقة حركة كرة كتلتها 2 kg تتحرك بسرعة (ب) وحدة قياس كل من الوزن والقوة (ج) الشغل المبذول على جسم يتحرك إزاحة أفقية m عندما تؤثر عليه قوة أفقية N 1 (يكافئ نيوتن/متر (ه) وحدة قياس كل من الشغل وكمية التحرك

اختر من القائمة ما يناسب الفراغات ،

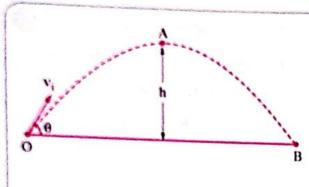
2 m	
<u>m</u> 2	1
2 v	
$\frac{v^2}{2}$	
4 v	

«حيث (K.E) طاقة الحركة، (V) سرعة الجسم، (m) كتلة الجسم»

	2.5
	5
	25
1	500
2	500


طاقة الحركة لجسم (K.E)	السرعة (٧)	(m) যহা।
(1) J	10 m/s	50 kg
5000 J	(י-) m/s	400 kg

0	
5	
25	
125	
200	


طاقة الوضع للجسم (P.E)	ارتفاع الجسم عن سطح الأرش (lı)	(m) যাব্যা
2500	(1) m	50 kg
2500 J	0.01 km	(ب) kg

 $(g = 10 \text{ m/s}^2 : علمًا بان)$

1.7

0.25 kg في الشكل المقابل قذفت كرة كتلتها 0.25 kg سرعة ابتدائية 8 m/s وفي اتجاه يميل على الأفقى بزاوية °60، فإن التغير في الطاقة الحركية لكرة من نقطة قذفها (O) إلى أقصى ارتفاع تصل إليه عند النقطة (A) يساوى

– 2 J 😔

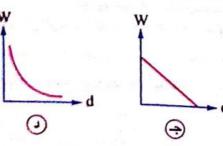
-1J(j

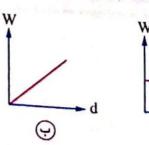
-8J 🔾

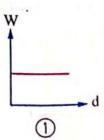
- -6J⊕
- إذا قلت طاقة حركة كرة إلى الثلث فإن هذا يعنى أن سرعتها ما كانت عليه.

 $\frac{1}{3}$ قلت إلى (أ

(د) زادت إلى 3 أمثال


- $\frac{1}{\sqrt{3}}$ قلت إلى $\frac{1}{\sqrt{3}}$
- إذا كان وزن جسم على سطح الأرض 6 أمثال وزنه على سطح القمر، فإن النسبة بين طاقة حركته على سطح الأرض وطاقة حركته على سطح القمر عندما يتحرك بنفس السرعة تساوى
 - 10


 $\frac{1}{6}$ (i)


36 (J

6 3

- الشكل المقابل يوضع العلاقة بين القوة المؤثرة على جسم وإزاحته، فتكون العلاقة بين الشغل المبذول والإزاحة

الامتحال فيزياء - ١ ث - ترم ٢ - 4 / (١/ ٢٧) [١٠٩]

الم الم الكرتان متماثلتان B ، A القيتا من نفس الارتفاع حيث قذفت A افقيًا بسرعة v وتركت B لتسقط سقوطًا كرتان متماثلتان B ، A القيتا من نفس الارتفاع حيث قذفت

حرًا، فعند لحظة ملامستهما للأرض يكون

حرًا، فعند لحظة ملامستهما للرحق ع
$$(K.E)_A = (K.E)_B \neq 0$$

$$(K.E)_A < (K.E)_B \bigoplus$$

 $(K.E)_A > (K.E)_B \odot$ $(K.E)_{A} = (K.E)_{B} = 0$

• أجب عما يأتي (١١ : ١٧) :

س جسمان B ، A كتلتيهما B ، A على الترتيب، فإذا كان لهما نفس طاقة الحركة، احسب النسبة بين كمية تحرك الجسم A وكمية تحرك الجسم B على الترتيب.

اذا كانت طاقة وضع جسم كتلت ه 15 kg على ارتفاع h من سطح الأرض هي 1200 J $(g = 10 \text{ m/s}^2)$ احسب ارتفاع الجسم عن سطح الأرض.

س وفقًا لنموذج بور لتركيب الذرة، يدور الإلكترون حول النواة في مدار دائري منتظم وضح لماذا لا تبذل القوة الجاذبة المركزية شغلًا على الإلكترون أثناء دورانه.

K.E الشكل البياني المقابل يعبر عن تغير طاقة حركة جسم كتلته m بمرور الزمن، هل الجسم يتحرك بعجلة منتظمة أم بعجلة غير منتظمة ؟

قذف طالب حجر الأعلى فوصل الحجر إلى ارتفاع m 12، فإذا قذف نفس الطالب الحجر بنفس السرعة	0
على سطح القمر، احسب الارتفاع الذي يصل إليه الحجر مستخدمًا معادلات الشغل والطاقة.	
(علمًا بأن : عجلة الجاذبية على سطح القمر = أ عجلة الجاذبية على سطح الأرض)	
	_
يبذل عامل شغلًا قدره J 360 ضد قوة احتكاك مقدارها N 20 في دفع مكنسة على الأرض بسرعة ثابتة	0
لدة s 4.5، احسب مقدار السرعة التي تتحرك بها المكنسة.	
	_
فى الشكلين الموضعين جسمين b ، a متماثلان وموضوعان على سطح أفقى، يؤثر على	Ø
كل منهما قوتين F ، F كلفترة زمنية t فيتحرك كل منهما إزاحة d في الاتجاه الأفقى،	
أى الجسمين يبذل عليه شغل أكبر ؟	
2 F	
2F a F	

الفصل

قانون بقاء الطاقة

اختبار على الفصل الثاني

نواتج التعلم المتوقعة

بعد دراسة هذا الفصل يجب أن يكون الطالب قادرًا على أن :

- بطبق قانون بقاء الطاقة على تغيرات طاقة الوضع وطاقة الحركة عند قذف جسم لأعلى.
 - يطبق قانون بقاء الطاقة في الحياة العملية.

قانون بقاء الطاقة

2

في هذا الفصل سوف نتعرف :

- استنتاج قانون بقاء الطاقة الميكانيكية.
- قانون بقاء الطاقة في الحياة العملية.

طاقة حركة في شلال الماء تتحول إلى طاقة الوضع

طاقة ميكانيكية تتمثل في حركة طاقة الوضع السيارات والقطارات الكيميائية المختزنة تتحول إلى في الوقود (بنزین وغیر ذلك)

طاقة حرارية وضوئية الطاقة الكمربية تتحول إلى في المصباح

طاقة كهربية عند توصيلها في طاقة الوضع 🔞 الكيميائية المختزنة تتحول إلى دائرة كهربية مغلقة SIZE AA في البطارية

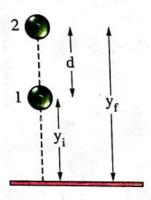
> طاقة الوضع تتحول إلى طاقة ضوئية وحرارية عند اشتعاله في الخشب

🔞 الكيميائية المختزنة

* على تحول الطاقة من صورة لأخرى تظل كمية الطاقة ثابتة، وهذا ما يعرف باسم قانون بقاء الطاقة.

hetattelle caite. الطاقة لا تفلى ولا تستحدث من العدم، ولكن يمكن أن تتحول من صورة إلى أخرى.

515


. نما يلى سندرس إحدى صور قانون بقاء الطاقة وهو قانون بقاء الطاقة الميكانيكية.

استنتاج قانون بقاء الطاقة الميكانيكية

بفرض جسم كتلته m قُذف رأسيًا إلى أعلى من النقطة (1) بسرعة ابتدائية V: يكس اتجاه الجاذبية الأرضية ليصل إلى النقطة (2) بسرعة ع٧، فإن الشغل المذول على الجسم بفعل قوة الجاذبية أثناء ارتفاعه يعمل على:

- (١) زيادة طاقة الوضع للجسم بزيادة الارتفاع.
 - (٢) نقص طاقة الحركة للجسم بنقص سرعته.

$$v_f^2 - v_i^2 = 2 \text{ ad}$$
 : من المعادلة الثالثة للحركة : $v_f^2 - v_i^2 = 2 \text{ ad}$: الجسم يتحرك لأعلى في عكس اتجاه مجال الجاذبية الأرضية.

$$\therefore a = -g$$

$$\therefore v_f^2 - v_i^2 = -2 gd$$

بضرب المعادلة السابقة في (m):

$$\frac{1}{2} m (v_f^2 - v_i^2) = - mgd$$

$$\therefore d = y_f - y_i$$

$$\therefore \frac{1}{2} m (v_f^2 - v_i^2) = - mg (y_f - y_i)$$

$$\frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2 = - mg y_f + mg y_i$$

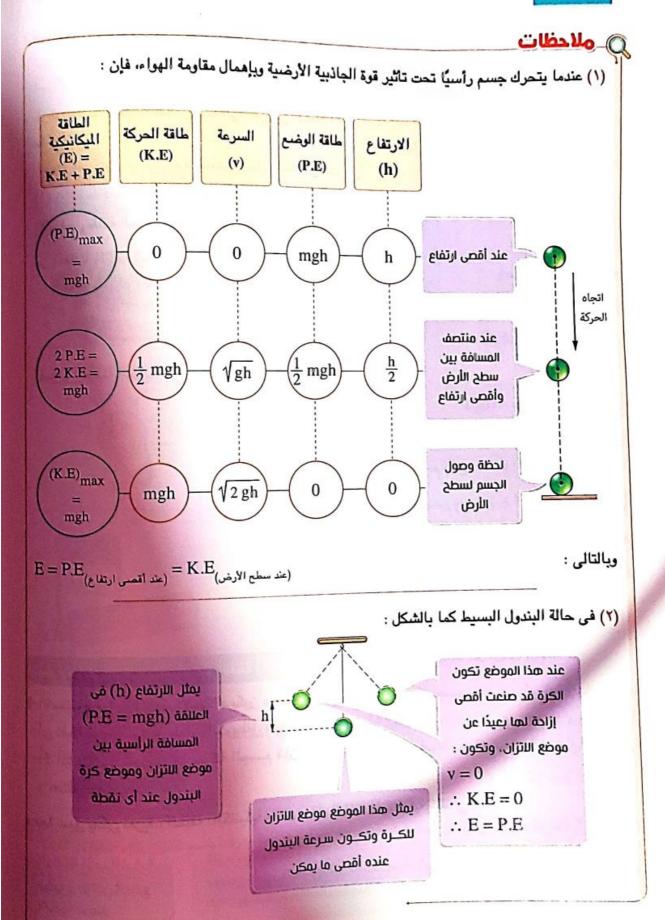
$$mg y_f + \frac{1}{2} m v_f^2 = mg y_i + \frac{1}{2} m v_i^2$$

$$(P.E)_{f} + (K.E)_{f} = (P.E)_{i} + (K.E)_{i}$$

ای اه :

ميوع طاقتي الوضع والحركة عند النقطة (1) (عجموع طاقتي الوضع والحركة عند النقطة (2)

*الاستنتاج ، بإهمال قوى الاحتكاك يكون مجموع طاقتى الوضع والحركة لجسم يتحرك بتأثير قوة الجاذبية عند أى نقطة في مساره = مقدار ثابت يطلق عليه الطاقة الميكانيكية (E).


أى أنه: كلما زادت طاقة حركة الجسم فإن ذلك يكون على حساب طاقة الوضع (تقل طاقة الوضع) والعكس صحيح.

ا من المنتقع المنافع المنافع

الطاقة الميكانيكية فجفوع طاقتى الوضع والحركة لجسم.

- قانون بقاء الطاقة الميكانيكية

مجموع طاقتى الوضع والحركة لجسم عند أى نقطة في مساره عندما يتحرك تحت تأثير الجاذيية الأرضية وياهمال مقاومة الهواء يساوى مقدار ثابت يسمى الطاقة الميكانيكية.

10

$$A \bigoplus_{v_i = 0}^{y_i = 30 \text{ m}}$$

B
$$(y_t)_1 = 20 \text{ m}$$

$$(y_f)_2 = 0$$

 $(v_f)_2 = ?$

نى الشكل المقابل جسم ساكن على ارتفاع m 30 من من الشكل المقابل جسم ساكن على ارتفاع m 30 من سطح الأرض له طاقة وضع 1470 J، فإذا سقط الجسم المنا فإن : g = 9.8 m/s² المنا فإن :

(١) طاقة وضع الجسم وطاقة حركته عند ارتفاع m 20 m من سطح الأرض هما

طاقة المركة	طاقة الوضع	WE THE
980 J	490 J	1
490 J	490 J	9
980 J	980 J	⊕
490 J	980 J	<u> </u>

(٢) سرعة الجسم لحظة اصطدامه بالأرض تساوى

28 m/s 🔾

14 m/s (i)

24.25 m/s (=)

$y_i = 30 \text{ m}$ $(P.E)_i = 1470 \text{ J}$ $v_i = 0$ $(y_f)_1 = 20 \text{ m}$ $(y_f)_2 = 0$ $g = 9.8 \text{ m/s}^2$ $(P.E_f)_1 = ?$ $(K.E_f)_1 = ?$ $(v_f)_2 = ?$

(۱) * عند الموضع A :

$$(P.E)_i = mgy_i \approx 1470 J$$

$$m \times 9.8 \times 30 = 1470$$

$$m = 5 \text{ kg}$$

* عند الموضع B :

$$(P.E_f)_1 = mg(y_f)_1 = 5 \times 9.8 \times 20 = 980 J$$

بتطبيق قانون بقاء الطاقة الميكانيكية على الموضعين B ، A :

$$(P.E_f)_1 + (K.E_f)_1 = (P.E)_j + (K.E)_j$$

$$980 + (K.E_e)_1 = 1470 + 0$$

$$(K.E_f)_1 = 490 J$$

٠٠ الاختيار الصحيح هو 🗿

الامتحان نيزياء - ١ ٥ - ترم ٢ - ج ١ - (١/ ١٨) [١١٧]

$$(P.E)_i + (K.E)_i = (P.E_f)_2 + (K.E_f)_2$$

$$1470 + 0 = 0 + (\frac{1}{2} \times 5 \times (\mathbf{v_f})_2^2)$$

$$(v_p)_2 = 24.25 \text{ m/s}$$

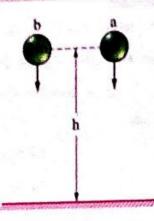
.: الاختيار الصحيح هو ج

مثاله

قُذف جسم من نقطة عند سطح الأرض رأسيًا إلى أعلى بسرعة 10 m/s فإن أقصى ارتفاع يصل إليه الجسم (g = 10 m/s² : علمًا بأن)

$$v_i = 10 \text{ m/s}$$
 $g = 10 \text{ m/s}^2$ $h = ?$

$$K.E_{(\dot{\omega})} = P.E_{(\dot{\omega})} = P.E_{(\dot{\omega})}$$
 الأرض)


$$\frac{1}{2}$$
 mv_i² = mgh

$$\frac{1}{2} \times (10)^2 = 10 \times \mathbf{h}$$

$$h = 5 \text{ m}$$

: الاختيار الصحيح هو ج

ماذاً كانت كتلة الجسم 1 kg، فما هي طاقته الميكانيكية عند أقصى ارتفاع يصل إليه ؟

سقطت كرتان b ، a متماثلتان في الحجم وكتلتيهما 2 m ، m على الترتيب من ارتفاع h عن سطح الأرض كما بالشكل، ما الكمية الفيزيائية التى تكون متماثلة للكرتين عند منتصف المسافة في طريقهما إلى سطح الأرض ؟

- 1 طاقة الوضع 🕒 طاقة الحركة

 - الطاقة الميكانيكية (١٠) السرعة

بالنسبة للكرة b

بالنسبة للكرة a

عند منتصف أقصى ارتفاع راسي

(1) طاقة الوضع

$$P.E = \frac{1}{2} \times 2 \text{ mgh} = \text{mgh}$$

$$P.E = \frac{1}{2} \text{ mgh}$$

ب طاقة الحركة

$$K.E = mgh$$

$$K.E = \frac{1}{2} mgh$$

ج الطاقة المكانيكية

$$E = P.E + K.E = 2 \text{ mgh}$$

$$E = P.E + K.E = mgh$$

(د) السرعة

$$v_f^2 = v_i^2 + 2 \text{ gd}$$

$$v_i = 0$$
, $d = \frac{h}{2}$

$$v_f^2 = 2 g \frac{h}{2}$$

$$v_f = \sqrt{gh}$$

· الاختيار الصحيح هو 🕟

 $\frac{e^{\frac{E_{a}}{E_{b}}}}{L_{b}}$ عند وصولهما لسطح الأرض، لما المطلوب حسباب النسبة بين الطاقة الميكانيكية للكرتين المطلوب حسباب النسبة بين الطاقة الميكانيكية الكرتين المطلوب حسباب النسبية الميكانيكية الميكانيكية الكرتين المطلوب حسباب النسبية الميكانيكية ا ما إجابتك ؟

يبين الشسكل المقابل كرة كتلتها g 4 معلقة بخيط تتأرجع · (E) II 10

بشکل عرفی مستوی معدد، فإن اقصی سدعة تبلغها 2.45 m/s (= (g = 9.8 m/s² : ناب لماد) الكرة أثناء تأرجحها تساوى 0.49 m/s (2)

 $v_a = 0$ h = 2.5 cm

4.9 m/s ① 0.7 m/s 🕞

الهسك

 $g = 9.8 \, \text{m/s}^2$ $v_{\text{max}} = ?$

الناء تارجة برو البندول يتعدم ساعيفا عبد التعطيم C ، 3 وينانج اوصى ساعو إلما عبد التعطيم p garine grine &

: b ، a مند النقطتين بقاء الطاقة عند النقطتين

 $(P.E)_a + (K.E)_a = (P.E)_b + (K.E)_b$ $mgh + 0 = 0 + \frac{1}{2} mv_b^2$ $gh = \frac{1}{2} v_{max}^2$

 $v_{\text{max}} = \sqrt{2 \text{ gh}} = \sqrt{2 \times 9.8 \times 2.5 \times 10^{-2}} = 0.7 \text{ m/s}$

ماذا الطلوب هو حساب النسبة بين طاقة الوضع للكرة والطاقة الميكانيكية لها عند النقطة عمر المالية المالي لو ما إجابتك ؟

و اختبر نفسك

اختر الإجابة الصحيحة من بين الإجابات المعطاة ، كرة تسقط سقوطًا حرًا من ارتفاع h عن سطح الأرض لتصطدم بسطح الأرض ثم ترتد مرة أخرى، أى الارتفاعات الآتية لا يمكن أن يمثل الارتفاع الذي سترتد إليه الكرة ؟

 $\frac{2 \text{ h}}{3} \odot$

 $\frac{3h}{4}$

 $\frac{3 \text{ h}}{2}$

قانون بقاء الطاقة في الحياة العملية

، ترجد أمثلة كثيرة للتحول المتبادل بين طاقة الوضع (P.E) وطاقة الحركة (K.E)، منها:

🚺 قذف جسم (كرة) لأعلى

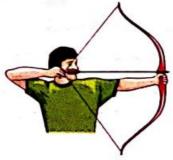
عند قذف كرة رأسيًا الأعلى من سطح الأرض، تكون طاقة وضعها
 مفر وطاقة حركتها نهاية عظمى.

عندما تبدأ الكرة في الحركة لأعلى تزداد طاقة وضعها تدريجيًا وتقل طاقة حركتها بنفس المقدار، ويستمر ذلك حتى تصل الكرة لأقصى ارتفاع لها فتكين طاقة الحركة صفر وطاقة الوضع نهاية عظمى.

عندما تبدأ الكرة في العودة إلى المستوى الذي قُذفت من تزداد طاقة الحركة وتقل طاقة الوضع تدريجيًا حتى تصل إلى المستوى الذي قُذفت منه مرة أخرى فتكون طاقة الوضع صفر وطاقة الحركة نهاية عظمى.

E K.E P.E 1000 J 0 1000 J 1000 J 250 J 750 J 1000 J 500 J 500 J

250 J 250 J


250]

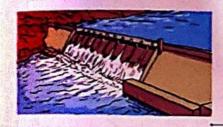
الوثب العالى في ألعاب القوى مسلم الوثبة، ثم تتحول إلى مسلم المنتفع في الزانة أثناء الوثبة، ثم تتحول إلى الماقة حركة.

و قذف السمم من القوس

حيث تُخزن طاقة الوضع في وتر مشدود، ثم تتحول إلى طاقة حركة عند تركه حرًا.

111

1000 J


و عربة الملاهى 🔞

يُستخدم في الملاهي محرك ضخم لسحب عربات قطار الملاهي إلى قمة المرتفع فتختزن قدرًا كبيرًا من طاقة الوضع لأن المحرك استخدم الطاقة لرفع العربات والاشخاص داخلها عكس الجاذبية، وعندما تصل عربات القطار إلى قمة المنحني وتترك لتنخفض ثانية فإن طاقة الوضع تتحول إلى طاقة حركة تدريجيًا، وبإهمال قوى الاحتكاك يظل مجموع الطاقتين ثابتًا، ولذلك يجب أن يكون المرتفع ألأول هو الأعلى لإختزان أكبر قدر ممكن من طاقة الوضع في العربات.

🗿 الماء المختزن خلـف السـد

حيث إن مستواه أعلى من مستوى الماء أمام السد وبذلك يختزن طاقة
 وضع تتحول إلى طاقة حركة عندما يبدأ سقوط الماء عبر السد.

ت**جریا** عملیة

قانــون بقــاء الطـاقــة

الغرض من التجربة

• إثبات قانون بقاء الطاقة الميكانيكية.

وتالعالة

- كرة تنس.
- ميزان رقمى.

- شريط لاصق. شريط مترى.
 - ساعة إيقاف.

चीर्वान्त्री

- (١) عين كتلة كرة التنس بالجرام باستخدام الميزان الرقمي ثم حولها إلى الكيلوجرام.
- (٢) الصبق قطع شريط لاصق على الحائط على ارتفاعات مختلفة (2.5 m ، 2 m ، 1 m) على الترتيب،
 - (٣) اسقط كرة التنس من أول ارتفاع وعين الزمن اللازم لوصولها لسطح الأرض.
 - (٤) كرر المحاولة السابقة عدة مرات.

(ه) كرر الخطوتين (٣) ، (٤) للارتفاعات الأخرى (2 m, 2.5 m) مع تسجيل النتائج في الجدول التالى:

	الزمن (t)			الارتفاع (h)	
متوسط الزمن	المحاولة الثالثة	المحاولة الثانية	المحاولة الأولى	(II) EU0311	
Land Land of the State of the S				1 m	
W		A DENTER OF	J. St.	2 m	
				2.5 m	

(۷) احسب السرعة النهائية
$$(v_f)$$
 للكرة لحظة اصطدامها بالأرض باستخدام المعادلة الأولى $v_f = v_i + gt$

حيث: ٧ = ٧ لأن الكرة سقطت من سكون.

$$K.E = \frac{1}{2} \text{ mv}_f^2$$
 : احسب طاقة حركة الكرة لحظة اصطدامها بالأرض من العلاقة (٨)

(٩) سجل النتائج السابقة في الجدول التالي :

طاقة الحركة (K.E)	طاقة الوضع (P.B)	الارتفاع (h)
A Commence C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	l m
		2 m
		2.5 m

Mile Mile State and W. View

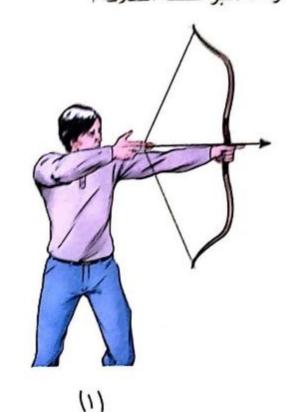
Alternative resource

Constitution Relation

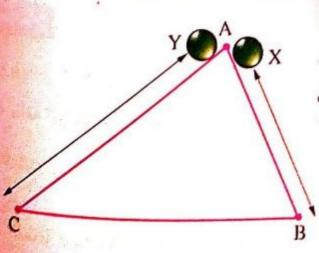
and was the former transmit of transfer the

[•] بزيادة الارتفاع تزداد طاقة الوضع.

اءاه:


الطاقة الميكانيكية = طاقة الوضع + طاقة الحركة = مقدار ثابت

[•] طاقة الوضع عند أقصى ارتفاع = طاقة الحركة عند سطح الأرض = الطاقة الميكانيكية.


اختر الإجابة الصحيحة من بين الإجابات العطاة ،

الشكلان التاليان يمثلان محاولتين مختلفتين لإطلاق سهمين من نفس القوس، أي السهمين تكون سرعته أكبر لحظة انطلاقه ؟

- (1) السهم (۱)
- (٦) السهم (٦)
- ج كلاهما ينطلق بنفس السرعة
 - لا يمكن تحديد الإجابة

فى الشكل المقابل كرتان متماثلتان (Y ، X) تنحدران معًا من نقطة (AB) إلى أسفل، إحداهما على المنحدر (AB)، والأخرى على المنحدر (AC)، أى العبارات الآتية يصف وصول الكرتين إلى النقطتين (C ، B) ؟

- (أ) تصل الكرة (Y) أولًا
- سرعة الكرة (X) أكبر
 - (ج) تصل الكرتان معًا
- سرعة الكرتين متساوية

The same of the sa

أولًا)

أسئلــة الاختيــار مــن متعــدد

	杨	10.
	la la	26
	No. or other	-
35	m 42 "	A SPECIAL

قيم نفسك إلكترونيا

A trace

إذا قُذف جسم رأسيًا لأعلى، فأى الكميات الفيزيائية الآتية تساوى صفر عند أقصى ارتفاع ؟

أ قوة الجاذبية الأرضية

(ب) العجلة

(ج) طاقة الوضع

🕘 السرعة

🕡 عند قذف جسم لأعلى فإنه أثناء الصعود

أ تزداد طاقة الحركة وتتناقص طاقة الوضع

ب تتناقص طاقة الحركة وتزداد طاقة الوضع

﴿ تزداد كل من طاقتى الوضع والحركة

تتناقص كل من طاقتى الوضع والحركة

و عند قذف جسم لأعلى ثم عودته إلى النقطة التي قُذف منها، فإن طاقته الميكانيكية

أ تزداد طوال الحركة

ب لا تتغير طوال الحركة

🕞 تقل طوال الحركة

تزداد أثناء الصعود وتقل أثناء الهبوط

تنزلق كرة على سطح مائل مهمل الاحتكاك، فإن:

(١) سرعتها أثناء انزلاقها.

أ تزداد بمعدل منتظم

🥱 تزداد بمعدل غير منتظم

(٢) طاقة حركتها أثناء الانزلاق

ا تزداد

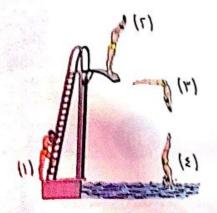
ج تساوی صفر

﴿ تقل بمعدل منتظم

ك لا تتغير

﴿ تقل ولا تساوى الصفر

ك لا تتغير

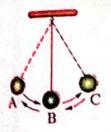

الزيادة قوة جذب الأرض للعربات

🕝 لتقليل مقاومة الهواء

﴿ لِتَقَلِيلُ الشَّعْلُ المَبِدُولُ عَلَى الْعَرِبَاتِ عَنْدُ هَبُوطُهَا

لاختزان أكبر طاقة وضع فى العربات إلى المعربات المربات المرب

الامتنحاق نبزياء - ١ خ - تزم ٢ - جد ١ - (م / ٢١) [10]


🐠 🛠 في الشكل المقابل، تكون طاقة الحركة للرجل أكبر ما يمكن عند الوضع

(1)(1)

1110

(4)

(5)(3)

(١٠ الشكل المقابل يوضع بندول بسيط يتأرجع، فتكون

(أ) طاقة الحركة عند C قيمة عظمى

B عند الماقة المكانيكية عند A > الطاقة المكانيكية عند B

طاقة الوضع عند A قيمة عظمى

(1) طاقة الوضع عند C > طاقة الوضع عند A

🚺 النسبة بين الطاقة الميكانيكية لجسم قُذف رأسيًا إلى أعلى وطاقة وضعه عند أقصى ارتفاع

 $\frac{1}{2} \odot$

7

1 3

سقط جسم كتلته m سقوطًا حرًا، فإذا كانت سرعته عند منتصف المسافة بين موضع سقوطه وسطح الأرض هي ٧ فإن الطاقة الميكانيكية له هي

 $\frac{1}{2}$ mv² Θ

 $\frac{1}{4}$ mv² (1)

 2 mv^2

 $mv^2 \rightarrow$

🐠 🖟 قُذف جسم إلى أعلى بسرعة 40 m/s إذا كانت طاقة وضعه عند أقصى ارتفاع هي 4000 ، فإن كلت

تساوی

5 kg 😔

1.25 kg (1)

200 kg 🔾

50 kg ج

👚 🔆 في الشكل المقابل جسم كتلته 10 kg يسقط سقوطًا حرًا، فإذا كانت طاقته الميكانيكية عند النقطة B هي J 800 ، فإن طاقة حركته عند النقطة A تساوي

(g = 10 m/s² : علمًا بأن)

400 J 💬

200 J (1)

800 J 🔾

600 J ج

0 * جسم كتلته 0.5 kg يسقط من ارتفاع m 100 سقوطًا حرًا، فإن الطاقة الميكانيكية بعد أن يقطع مسافة (g = 10 m/s² : علمًا بأن 20 m من بداية الحركة تساوى

400 J 😔

100 J (i)

700 J 🗿

500 J 🕞

🕡 جسم كلته 12 kg يستقط ستقوطًا حرًا، فإذا كانت طاقته الميكانيكية عند منتصف المسافة بين موضع س وسطح الأرض لـ 150 فإن سرعته لحظة اصطدامه بسطح الأرض تساوى

25 m/s 😔

5 m/s (i)

100 m/s 🔾

50 m/s ج

(g = 10 m/s² : عُدُف جسم كتلته 0.2 kg رأسيًا الأعلى بسرعة 20 m/s فإن (علمًا بأن : 0.2 kg وعلمًا وال

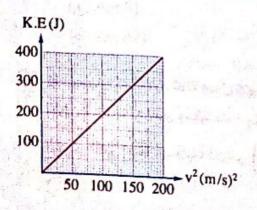
(١) أقصى ارتفاع يصل إليه الجسم يساوى

20 m 😔

1 m (1)

200 m 🔾

40 m (-)


(٢) سرعة الجسم عند ارتفاع m 10 من سطح الأرض تساوى

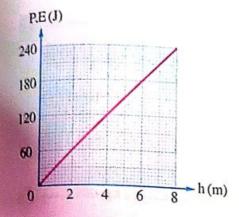
20.21 m/s 😔

14.14 m/s ①

30.42 m/s (3)

25.31 m/s 🕣

والشكل المقابل يوضح العلاقة البيانية بين طاقة الحركة (K.E) لجسم يسبقط من ارتفاع m فوق سلطح الأرض ومربع سيرعته (v2) أثناء السيقوط، فتكون طاقة وضعه على ارتفاع m 2 هي


(g = 10 m/s² : علماً بأن)

40 J 🕞

20 J ①

801(3)

60 J 🕣

لتصل سرعته إلى الصفر عند ارتفاع m 8 ، والشكل المنصل سرعته إلى الصفر عند ارتفاع m 8 ، والشكل البياني المقابل يوضح العلاقة بين طاقة وضع الجسم (P.E) وارتفاعه عن سطح الأرض (h)، فتكون :

- (١) كتلة الجسم هي
- 3 kg 😔
- 1 kg (i)
- 30 kg 🔾
- 10 kg ج

(۲) طاقة حركة الجسم على ارتفاع m 6 من سطح الأرض هي

- 120 J 😔
- 60 J 🕦
- 240 J (J)
- 180 J ج

* قُذَفت كرة كتلتها 0.5 kg رأسيًا لأعلى فوصلت سرعتها إلى 3 m/s عند ارتفاع m 4، فإن مقدار الشغل المنظل المن

22.25 J 🔾

20 J ج

1000 J 🕞

9800 J 🕦

196 J (3)

490 J ج

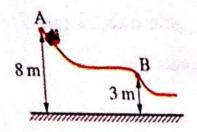
(٢) إذا سقط منه الصندوق عند هذا الارتفاع تكون سرعة ارتطام الصندوق بالأرض هي

19.8 m/s 😔

14 m/s (j)

392 m/s 🔾

196 m/s ج

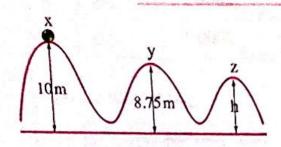

به جسمان كتلة الأول ثلاثة أمثال كتلة الثانى سقطا فى لحظة واحدة وكان الارتفاع الذى سقط منه الجسم الأول به الجسم الأول وطاقة حركة الجسم الأول وطاقة والأول وا

الجسم الثانى لحظة وصولهما للأرض (K.E) هي

 $\frac{1}{2}$ \odot

 $\frac{1}{3}$ (1)

 $\frac{3}{1}$


A بندأ عربة الملاهى حركتها من السكون عند النقطة A لتتحرك على قضبان مهملة الاحتكاك كما هو مبين بالشكل، فإن مقدار سرعة العربة عند النقطة B يساوىB $(g = 10 \text{ m/s}^2)$

10 m/s 💬

5 m/s (1)

100 m/s ③

50 m/s ج

0 في الشكل المقابل جسم ساكن كتلته 1 kg ينزلق على $(g = 10 \text{ m/s}^2)$: x منحنى أملس مبتدءًا من النقطة

(١) فإن سرعة الجسم عند النقطة y تساوى

5 m/s (-)

3 m/s (1)

6.5 m/s 3

6 m/s ج

(٢) إذا وصل الجسم عند النقطة Z بسرعة 7 m/s فيكون ارتفاع النقطة Z عن سطح الأرض يساوى

7.55 m 😔

8.45 m (1)

6.85 m (3)

7.25 m (÷)

سيط ينتقل أثناء المتزازه من النقطة a إلى * بندول بسيط ينتقل أثناء المتزازه من النقطة a $(g = 9.8 \text{ m/s}^2)$ النقطة b كما بالشكل المقابل، فإن:

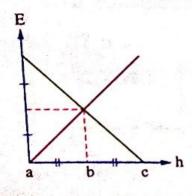
(١) سرعة ثقل البندول عند النقطة b هي

2.1 m/s 💬

4.3 m/s (1)

0.5 m/s ②

1.2 m/s (=)


(٢) أقصى ارتفاع يصل إليه ثقل البندول هو

31.9 cm (-)

20.5 cm (i)

36.9 cm ②

35.8 cm (=)

﴿ الشكل البياني المقابل يوضع العلاقة بين صورتين من صور الطاقة (E) لجسم كتلته 10 kg وارتفاع الجسم عن سطح الأرض (h) عند قذفه رأسيًا $(g = 10 \text{ m/s}^2)$: 20 m فعلى حتى وصوله إلى أقصى ارتفاع

(١) فإن الشط البياني المعثل باللون الأحمر يعثل

أ طاقة حركة الجسم

﴿ طاقة وضع الجسم

الماقة حركة أو طاقة وضع الجسم الجسم

الطاقة الميكانيكية للجسم

ن	c تکو	النقطة	عند	(4)
---	-------	--------	-----	-----

عند النقطة يا تحول		
طاقة وضع الجسم		
0	1	
0	9	
2000 Ј	<u>•</u>	
2000 J	9	
	طاقة وضع الجسم 0 0 2000 J	

(٣) عند النقطة b تكون

	- W-04	عند النقط
طاقة حركة الجسم	طاقة وضع الجسم	
500 J	500 J	0
1000 Ј	500 J	0
500 J	1000 J	9
1000 J		\odot
300	1000 Ј	(3)

(٤) عند النقطة a تكون

		عبد التقص
طاقة حركة الجسم	طاقة وضع الجسم	
0	0	(1)
2000 J	0	-
0	2000 J	9
2000 J	2000 J	()

(ه) فإن الطاقة الميكانيكية للجسم تساوى

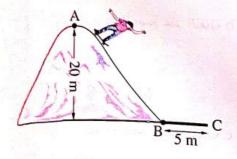
500 J 😔

0 ①

2000 J 💿

1000 J ج

(٦) فإن سرعة الجسم عند النقطة a تساوى

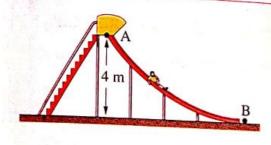

10 m/s 😔

0 (1)

20 m/s 🔾

14.14 m/s ج

		، الجسم عند النقطة b	(۷) فإن سرعا
	سعافی شششششششششششششششششششششششششششششششششششش		0 (1)
101	Ds &	14.14	III/2 (÷)
20 n	(A) فإن سرعة الجسم عند النقطة c تساوى		
			0 🛈
101	Ma (E)	14.14	m/s ج
	n/S (-)		قط ا
2° 27 (49°25) ————————————————————————————————————	ع h فوق سطح الأرض،	م سعوطا حرًا من ارتفا نسلتا	والشكاران
y •		ى سول لمدار العالم	
	المناق المام ا	رط) التي يقطعها م	7.1
The Court of the Assessment of the Court of	2-1-1-1-1	. عرال العمية (y) تمثل	أ سرعة الم
d	قة حركة الجسم	•	صرح الع ج طاقة وض
	لاقة المكانيكية الجسم		
	بين بعض الكميات الفيزيائية	ويوضح العلاقة البيانية	🂯 الشكل المقابل
		والزمز	-5 1
Å /	A والمنحنى B ؟	ات يمثلها كل من المنحنم	(۱) أي الكمي
XxX	النعنى (B)	المنحنى (A)	
(s)	طاقة الحركة	طاقة الوضع	1
	طاقة الوضع	طاقة الحركة	9
	العجلة	كمية التحرك	0
	كمية التحرك	العجلة	(1)
بهد في الشكار الزراد	سم والزمن يمثلها الخط الأس	ن الطاقة المكان كرة الم	(٢) العلاقة _ب
E(J) A A	E(J)	E(J) A	
	7 K \		
B t(s)	t(s) B	t(s)	t(s)
(a) the state of t	.	0	
m			



- 2400 N 🕞

-4000 N 🔾

- 1600 N 🕦

- 3200 N (♣)

* فى الشكل المقابل إذا انزلق طفل كتلته \$25 kg من السكون عند النقطة A وكانت قيمة سرعته عند وصوله للنقطة B هى 6 m/s فيكون مقدار الفقد في الطاقة الميكانيكية نتيجة الاحتكاك مع السطح (g = 9.8 m/s²:

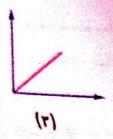
450 J 🕞

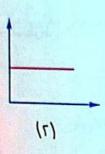
980 J (1)

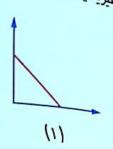
0 (1)

530 J ج

أسئلــة المقــال


بسم كتلته 4 kg يسقط سقوطًا حرًا من ارتفاع m 20 فوق سطح الأرض، أكمل الفراغات الموجودة بالجدول التالى معتبرًا عجلة الجاذبية الأرضية 10 m/s² :


الطاقة الميكانيكية (J)	طاقة الحركة (J)	السرع ة (m/s)	طاقة الوضع (J)	الإزاحة من نقطة السقوط (m)	النقطة
				0	(1)
	***********	5			(1)
	***********	**********	400		(4)
	800	********			(٤)


من النتائج التي توصلت إليها، حدد موضع النقطة أثناء السقوط التي تكون عندها:

- (١) الطاقة الميكانيكية للجسم مساوية لطاقة حركته.
- (٢) الطاقة الميكانيكية للجسم مساوية لطاقة الوضع له.
 - (٢) طاقة الحركة للجسم مساوية لطاقة الوضع.

0 أذف جسم رأسيًا إلى أعلى، ولديك ثلاثة أشكال بيانية (١) ، (٢) ، (٣) للتعبير عن العلاقة بين بعض الكميات الفيزيائية له،

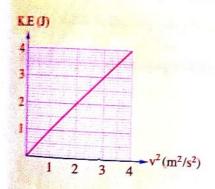
161-6

حدد أيها يصلح للتعبير عن العلاقة بين كل من :

- (١) طاقة الوضع وارتفاع الجسم عن سطح الأرض.
 - (٢) طاقة الحركة وارتفاع الجسم عن سطح الأرض.
 - (٢) الطاقة الميكانيكية وارتفاع الجسم عن سطح الأرض.

و عندما تبدأ عربة الملاهى في الانزلاق من أقصى ارتفاع فإن سرعة حركتها تزداد تدريجيًا، فسر ذلك.

الامتحاق ليزياء - ١ ٥ - ترم ٢ - جـ ١ - (٦ / ١٠) ٢٣١

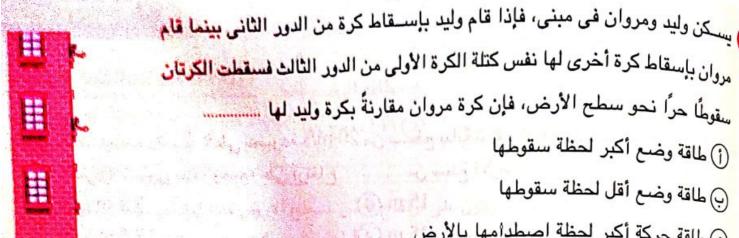


انماط جديدة من الأسئلة

ختر إجابتين من بين الإجابات المعطاة ؛

عندما يسقط جسم سقوطًا حرًا فإنه أثناء السقوط

- (أ) تزداد الطاقة الميكانيكية
- (-) تتناقص الطاقة الميكانيكية
- ضل الطاقة الميكانيكية ثابتة
- () تتناقص طاقة الوضع وتزداد طاقة الحركة
 - تزداد طاقة الوضع وتتناقص طاقة الحركة



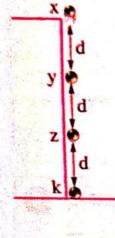
سقط جسم من ارتفاع m 18 فوق سطح الأرض والشكل البيانى المقابل يوضح العلاقة بين طاقة حركة الجسم (K.E) ومربع سرعته (v²) أثناء السقوط، فإن

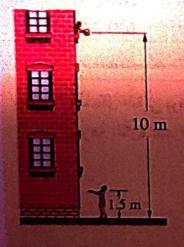
(علمًا بأن : عجلة الجاذبية الأرضية = 10 m/s²

- () طاقة الجسم الميكانيكية = 180 J
- طاقة الجسم الميكانيكية = 360 J
- (ج) طاقة وضع الجسم عند ارتفاع 4 m نساوى 360 J
- طاقة حركة الجسم عند ارتفاع m 10 تساوى 160 J
- 📤 طاقة حركة الجسم عند ارتفاع m 12 تساوى I 180 J

- (أ) طاقة حركة الجسم عند ارتفاع m = الطاقة الميكانيكية للجسم
- ب طاقة وضع الجسم عند سطح الأرض = الطاقة الميكانيكية للجسم
- طاقة حركة الجسم عند ارتفاع m = نصف قيمة الطاقة الميكانيكية للجسم
- √ طاقة حركة الجسم عند ارتفاع m = طاقة وضع الجسم عند ارتفاع m
- ﴿ طَاقَةَ حَرِكَةَ الجِسِمِ عَنْدَ ارْتَفَاعِ m = ضعف طاقة وضع الجِسِمِ عنْدَ ارْتَفَاعِ m 6 m

مروان بإسقاط كرة أخرى لها نفس كتلة الكرة الأولى من الدور الثالث فسقطت الكرتان سقوطًا حرًا نحو سطح الأرض، فإن كرة مروان مقارنة بكرة وليد لها

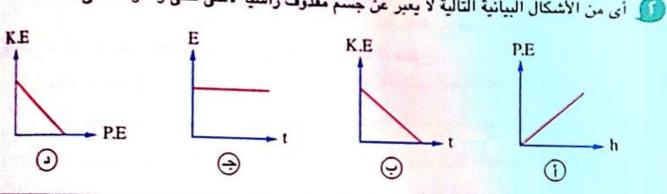

- (أ) طاقة وضع أكبر لحظة سقوطها
- (ب) طاقة وضع أقل لحظة سقوطها
- (ج) طاقة حركة أكبر لحظة اصطدامها بالأرض
 - (د) طاقة حركة أقل لحظة اصطدامها بالأرض
- (٩) نفس طاقة الحركة لحظة اصطدامها بالأرض Carlo house have & are as many


o في الشكل الموضع يسقط جسم من أعلى مبنى ارتفاعه d ، فتكون

- (أ) طاقة الوضع عند x = طاقة الحركة عند y
- (ب) طاقة الحركة عند Z > طاقة الوضع عند k
- ج طاقة الحركة عند z = طاقة الوضع عند y
- () طاقة الوضع عند X > طاقة الحركة عند k
- △ طاقة الوضع عند y > طاقة الحركة عند k

اختر من القائمة ما يناسب الفراغات:

في الشكل المقابل يقوم شخص بإسقاط كتاب كتلته 2 kg من السكون رأسيًّا، بإهمال قوة احتكاك الهواء يكون الشغل الذى تبذله قوة الجاذبية الأرضية حتى يصل الكتاب ليدى الشخص الواقف أسيفل المبنى هو J (1)، ومقدار متوسط القوة التي تؤثر بها يدى الشخص الواقف أسفل المبنى على الكتاب إذا كان الكتاب سيفقد سرعته خلال 0.2 s عند وسموله ليديه هو N(ب).... (علمًا بأن : g = 10 m/s²)

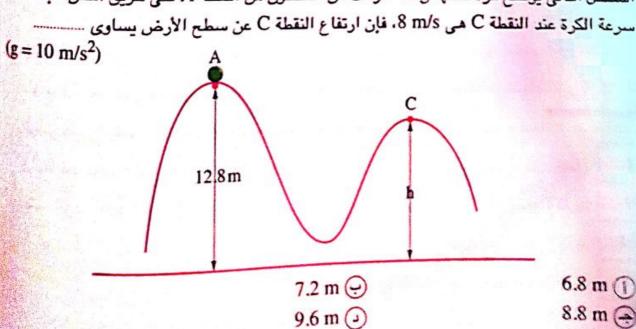

82.6 100 130.4 150 170

، اختر الإجابة الصحيحة (١٠: ١) :

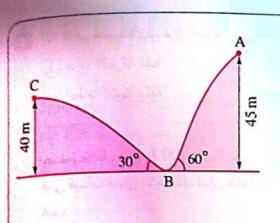
- آل قُذف جسم رأسيكا لاعلى بسرعة 20 m/s من سطح بناية ترتفع 15 m عن سطح الأرض، فإن طافته $(g = 10 \text{ m/s}^2)$ الحركية تساوى طاقة وضعه على ارتفاع من سطح الأرض.
 - 7.5 m (1)

15 m 💬 35 m 🕢

- 17.5 m (=)
- أى من الاشكال البيانية التالية لا يعبر عن جسم مقذوف رأسيًا لأعلى حتى وصوله لأعلى نقطة ؟



- آل إذا كانت طاقة وضع جسم عند سقوطه من أعلى مبنى J 200، فإن طاقته الميكانيكية عند منتصف المبنى تساوی
 - 100 J (i)

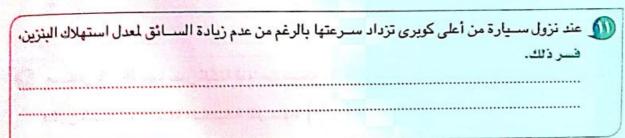

600 J (3)

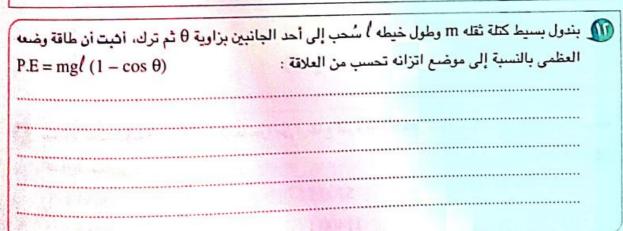
200 J 🕞

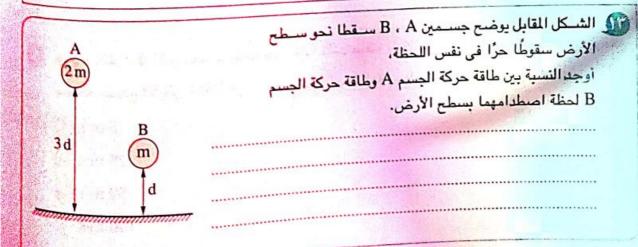
- 400 J ج
- (1) الشكل التالي يوضع كرة كتلتها 4 kg انزلقت من السكون من النقطة A على طريق أملس، فإذا كانت

- 6.8 m ①
- 8.8 m 🕞

 $(g = 10 \text{ m/s}^2)$

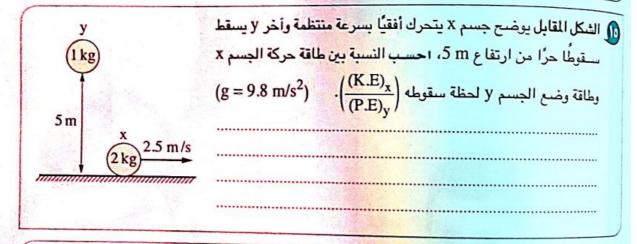

15 m/s 😔

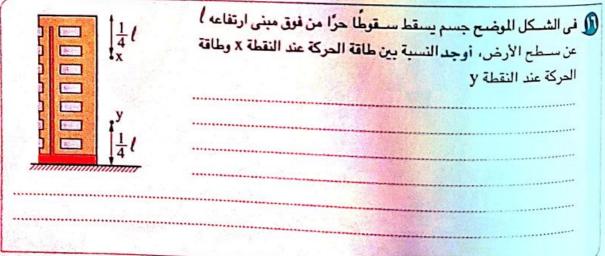

10 m/s (i)


30 m/s (J)

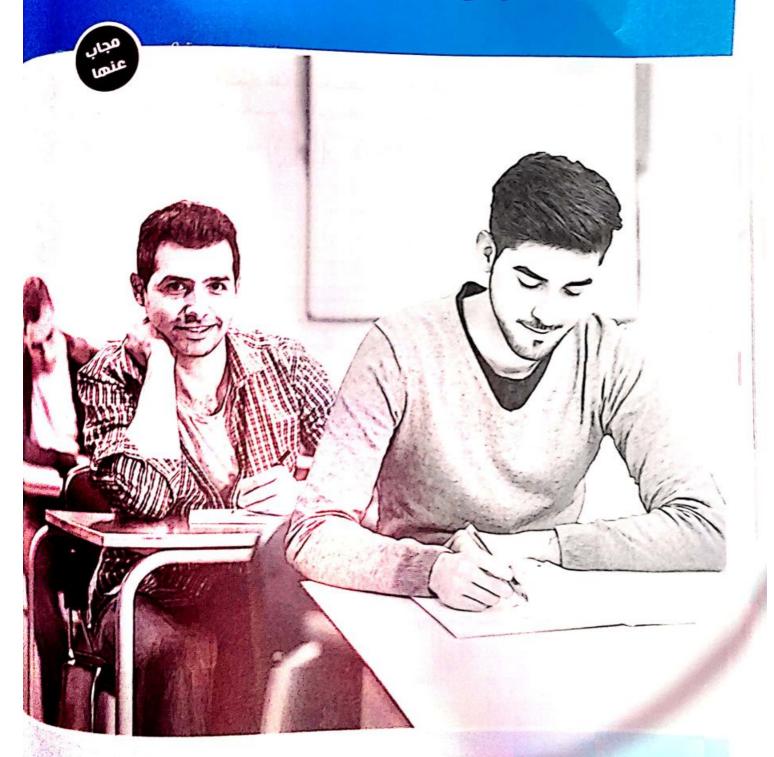
25 m/s (=)

ه أجب عما يأتي (١١ : ١٧) :





FFA


سقوطه وكانت	من أعلى مبنى ارتفاعه d فوصل للأرض بعد زمن t من بداية س ى E.	ا قط جسم سقوطًا حرًا ،
	ى E.	طاقة وضعه لحظة سقوطه ه
	طح الأرض بدلالة d عندما تكون طاقة حركته E طح	احسب ارتفاع الجسم عن س

لًا حرًّا من السكون من ارتفاع h فوق المرا من السكون من المنطقة المنطقة المنطقة الأرض تعن	ت تا الدرار بسقط الجسم سقوط	1 - 1 - 1X - 13
عند اصطدامه بسطح الأرض تعين عند اصطدامه بسطح الأرض	عد قطع العبل يست	ا بستم دولته III معلق في حبل،
	اما معادلات السندن و	مسطع الارض، أثبت مستخد
		$v = \sqrt{2 gh}$: من العلاقة
	······································	***************************************

الاختبارات العامة على المنهج

الأسئلة المشار إليها بالعلامة (*) مجاب عنها تفصيليا.

انترالإجابة الصحيحة (١٠:١):

e a receive e C. De Maring D. May province of the gladest and

Boule Demis of Their the His wiley Come

the same of the second states and the second states are the second secon

The test

16,0112

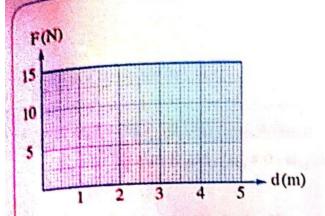
KUZU MA

9 64 F 6

with me was the execution to the first factor hard

(i) 2400 N في نفس اتجاه الحركة

(-) 2400 N عكس اتجاه الحركة


(ج) 1200 N في نفس اتجاه الحركة

() 1200 N عكس اتجاه الحركة

ᠾ عندما يتحرك جسم حركة دائرية منتظمة فإن

مقدار السرعة الخطية التجاه السرعة الخطية	
مان المستوالية المستو	1
متغير المائمة متغير المائمة المتغير المائمة المتغير المائمة المائمة المائمة المائمة المتغير المائمة المائمة الم	9
المراجع المساحد المساح	(-)
ثابت ثابت	0

الامتنحاق نيزياء - ١ ن - ترم ٢ - جـ ١ - (١/ ٢١) [13]

الشكل البياني المقابل يبين الملاقة بين القوة المحصلة (F) المؤثرة على جسم يتحرك أسى اتجاه ثابت والإزاحة (d) التي يقطعها الجسم في اتجاه القوة، فيكون الشعل الذي تبذله هذه

القوة على الجسم هو

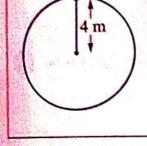
37.5 J 💬

12.5 J (1)

75 J (3)

45 J (=)

🕥 الشكل المقابل يوضع جسم يدور في مسار دائري أفقى منتظم تحت تأثير قوة محصلة مركزية N 100 فتكون قيمة


الزمن الدورى لحركة الجسم هي

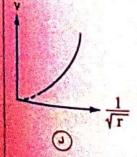
1.26 s 🕘

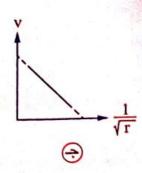
0.63 s (1)

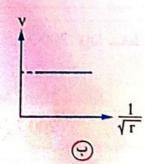
6.28 s (3)

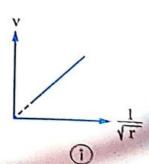
3.14 s 🚓

الى سرعة الجسم A إلى كتلة الجسم B الحسم B إلى كتلة الجسم B إذا كانت نسبة $rac{2}{1}$ ونسبة سرعة الجسم $rac{2}{1}$ B هي أن نسبة الطاقة الحركية للجسم A إلى الطاقة الحركية للجسم B هي

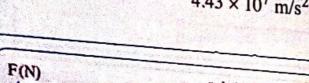

² ⊕


1 1


1 0


 $\frac{1}{2} \odot$

الشكل البياني الذي يمثل العلاقة بين السرعة المدارية (٧) لعدة أقمار صناعية تدور حول نفس الكوكب ومقلوب الجذر التربيعي لنصف قطر مدار كل منها $\left(\frac{1}{\sqrt{r}}\right)$ هو

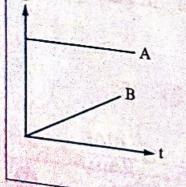


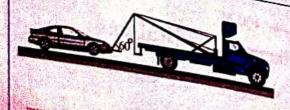
اذا كان الزمن الدوري لدوران الأرض حول الشمس 365.25 يوم، ويبعد مركز الشمس عن مركز الأرض مسافة قدرها m 1011 × 1.496 أفإن عجلة الجذب المركزية للأرض نحو الشمس

تساوى $1.99 \times 10^{-7} \text{ m/s}^2$ (i)

 $5.94 \times 10^{-3} \text{ m/s}^2$ (9) $4.43 \times 10^7 \text{ m/s}^2$

 $1.7 \times 10^{-2} \text{ m/s}^2$

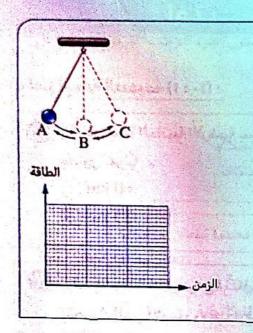

الشكل البياني المقابل يعبر عن العلاقة بين القوة المركزية (F) المؤثرة على جسم كتلت ه 2 kg يتحرك حركة دائرية منتظمة أفقية ومربع السرعة الخطية (v²) التي يتحرك بها الجسم، فإن نصف قطر المسار الدائري المنتظم الذي يتحرك فيه الجسم يساوي 0.5 m (÷) 4 m (3)


0.2 m (j)

2 m ج

الب عما يأتي (١١ : ١٧) :

الشكل البياني المقابل يعبر عن العلاقة بين كمية تحرك جسمين B ، A والزمن، وضح أى من الجسمين يتأثر بقوة محصلة، مع ذكر السبب.


السيارة ونش تسحب سيارة مخالفة على طريق أفقى إزاحة 1 km باستخدام حبل كما بالشكل، فيبذل شعل على السيارة بواسطة قوة الشد في الحبل مقداره J ، 10⁵ احسب قوة الشد في الحبل،

		4 daliti. 7 11	_
and the second s	مجلة المركزية لهذا الجسم.	بسم كتلته g 100 يتحرك حركة دائرية منتظمة ع من قدره s 90 لعمل 45 دورة كاملة، احسب ال	<u>ا</u> ج

			6
	100 May		
س والشمس قلت إلى نصف	ان السافة بين مركزي الأرخ	* احسب عدد أيام السنة الأرضية إذا تخيلنا أ	
ة الأرضية = 365.25 يوم)	ر (علمًا بأن : عدد أيام السنة	* احسب عدد أيام السنة الأرضية إذا تحيلنا المستها، بفرض ثبات مدة دوران الأرض حول نفسو	T.
ignan 1.9		elegy (
	401	H &	
		الأرض، احسب مقدار الشغل الذي يبذله الرجل	
	ة وعجلة تحركها في الشكل	احسب مقدار القوة المحصلة المؤثرة على الكتل	
	ة وعجلة تحركها فى الشكل 		
	ة وعجلة تحركها في الشكل	احسب مقدار القوة المحصلة المؤثرة على الكتل	
	ة وعجلة تحركها فى الشكل 	احسب مقدار القوة المحصلة المؤثرة على الكتل	
	ة وعجلة تحركها فى الشكل 	احسب مقدار القوة المحصلة المؤثرة على الكتل	
	ة وعجلة تحركها فى الشكل 	احسب مقدار القوة المحصلة المؤثرة على الكتل	

rie

* الشكل المقابل يوضح بندول بسيط يتصرك من الموضع A إلى الموضع B ثم إلى الموضع C،

رسم على الشبكة البيانية المقابلة العلاقة بين السم على الشبكة البيانية المقابلة العلاقة بين كل من طاقة الوضع وطاقة الحركة والطاقة الميكانيكية للبندول مع الزمن موضحًا الماضع الثلاثة.

ه اختر الإجابة الصحيحة (١٠:١):

* تقل عجلة الجاذبية الأرضية بنسبة % 1 من قيمتها على سطح الأرض على ارتفاع من سطح الأرض

يساوى تقريبًا

64 km 😔

60 km (j)

32 km (J)

30 km 🕞

بدأت شاحنة كتلتها kg × 4 حركتها من السكون تحت تأثير قوتين إحداهما هي دفع المحرك إلى الأمام ومقدارها N 10⁴ N والقوة الثانية هي قوة الاحتكاك مع الطريق ومقدارها ا $28 \times 10^3 \, \mathrm{N}$ فعند وصول سرعة الشاحنة إلى $3 \, \mathrm{m/s}$ تكون قد قطعت إزاحة تساوى

- 27 m (3)
- 20 m (=)
- 15 m (÷)
- 9 m (i)
- سقط جسم كتلته 1 kg من ارتفاع m 180 m من سطح الأرض، فإن كمية الحركة الخطية للجسم لحظة $(g = 10 \text{ m/s}^2)$ اصطدامه بسطح الأرض تساوى
 - 120 kg.m/s (-)

60 kg.m/s (1)

240 kg.m/s (3)

- 180 kg.m/s ج
- اتجاه السرعة المدارية لقمر صناعي يدور حول الأرض يصنع مع اتجاه قوة الجاذبية الأرضية زاوية مقدارها

45° (-)

- 180° (3)
- 90° ⊕

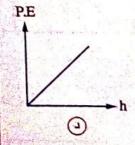
zero (j

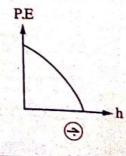
الشكل المقابل يوضع ثلاث كرات Z, y, X موضوعة في مستوى واحد، فتكون النسبة بين قوة التجاذب المادي بين الكرتين y ، x وقوة التجانب المادي بين

الكرتين z ، y هى

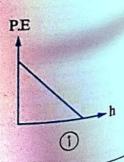
 $\frac{1}{2}$ (1)

- المركبة الرأسية لقوة رد الفعل فقط
 - (٠) المركبة الأفقية لقوة الاحتكاك فقط
- (ج) مجموع المركبتين الرأسيتين لكل من قوة رد الفعل وقوة الاحتكاك
 - (د) مجموع المركبتين الأفقيتين لكل من قوة رد الفعل وقوة الاحتكاك
- إذا سقطت كرة تنسس طاولة وكرة بولينج من نفس الارتفاع، فعندما تبلغان نصف الارتفاع الرأسي يصبح لهما نفس المقدار من (اعتبر مقاومة الهواء مهملة)
 - (ب) طاقة الوضع
 - (٤) الطاقة المكانيكية

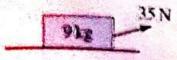

was a first of some that the first the Co


- (i) السرعة (ج) طاقة الحركة
- للرض كل 27.3 يوم، فإن القمر يكمل دورة كاملة حول الأرض كل 27.3 يوم، فإن ارتفاعه فوق سطح الأرض »
- $(R = 6400 \text{ km} \cdot G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2 \cdot M = 6 \times 10^{24} \text{ kg} :$ يساوى (علمًا بأن
 - $3.96 \times 10^7 \,\mathrm{m}$ (?)

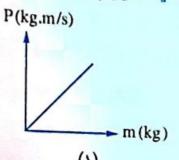

 $3.54 \times 10^7 \,\mathrm{m}$ (i)

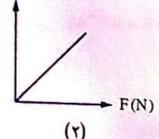

 $3.77 \times 10^8 \,\mathrm{m}$ (3)

- $3.24 \times 10^{8} \,\mathrm{m}$
- بين طاقة $v_1 = 2 v_2$ ، $m_2 = 3 m_1$ بين طاقة مستوى أفقى أملس، فإذا كان $v_1 = 2 v_2$ ، $v_2 = 0$ فإن النسبة بين طاقة
 - حركة الجسم الأول وطاقة حركة الجسم الثانى $\left(\frac{K.E_1}{K.E_2}\right)$ هى
 - 43 1
- 3 ⊕
- 3 1
- لا عند قذف جسم رأسيًا الأعلى من سطح الأرض يكون الشكل البياني المعبر عن العلاقة بين طاقة وضع الجسم (P.E) والارتفاع (h) عن سطح الأرض أثناء الصعود هو

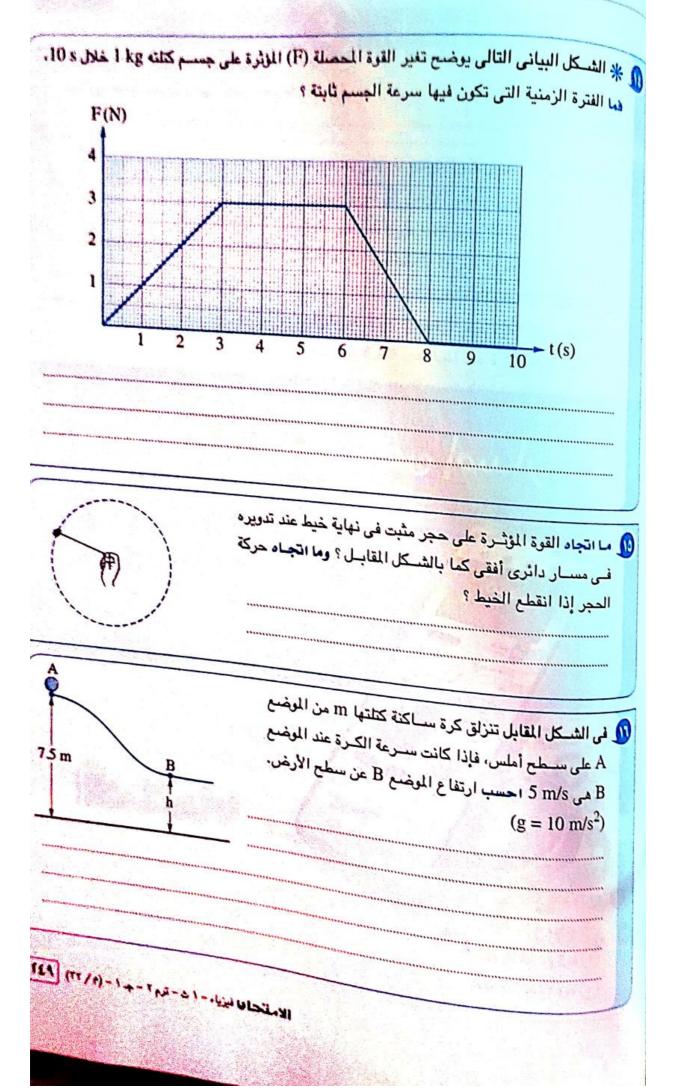

TEY

ه أجب عما يأتي (١١ : ١٧) :




👊 أشرت قبوة مقدارها 35 N واتجاهها كما هبو موضيع بالشبكل على جسم التصرك إزاحة 2.7 m على سطع أفقى مهمل الاحتكاك، فبإذا كان مقدار التغيير في طاقة حركة الجسم 77 J

احسب الزاوية بين اتجاه القوة واتجاه الإزاحة.

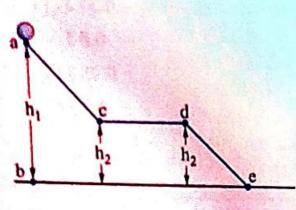


اكتب العلاقة الرياضية التي يعبر عنها الشكل البياني وما يساويه ميل الخط المستقيم لكل مما يأتي و a (m/s2)

航 جسم کتلت ه m پدور بسرعة خطية منتظمة في مسار دائري نصف قطره r بحيث يتم دورة كاملة في زمن T، فإذا قلت القوة الجاذبة المركزية المؤثرة عليه للربع أثبت أن زمنه الدوري يزداد للصعف

The state of the s	
وة الاحتكاك بين إطاراتها والطريق	سيارة تسير في منحني أفقى نصف قطره m 10، فإذا كانت قو
$(g = 9.8 \text{ m/s}^2)$	سيارة تسير في منحني أفقي نصف قطره ١١١ ٥٠٠٠٠
	تساوى عدديًا نصف وزنها احسب سرعة السيارة،

طتابعة كل ما هو جديد من إصداراتنا


زوروا صفحتنا على الفيسيوك

f/alemte7anbooks

النرالإجابة الصحيحة (١٠:١):

The state of the s

م برضح الشكل المقابل كرة موضوعة أعلى سطح مائل مكن أن تصل إلى سطح الأرض عن طريق سقوطها رأسيًا من a إلى b أو انزلاقها على المستوى الموضع بالشكل من a إلى e مرورًا بالنقاط d ، c فبإهمال مقاومة الهواء والاحتكاك تكون

- (i) طاقة حركة الكرة عند الموضعين d ، c متساوية
- (-) طاقة حركة الكرة عند الموضعين e ، b متساوية
- (ج) الطاقة الميكانيكية للكرة عند الموضعين d ، b متساوية
 - (د) جميع ما سبق
- آ جسم یدور فی مسار دائری نصف قطره r بسرعة v تحت تأثیر قوة مرکزیة F، فإذا زادت سرعته إلى v 2 ألودار الجسم في نفس المدار فإن هذا يعنى أن القوة المركزية المؤثرة عليه أصبحت

√2 F ⊕

2 F (i)

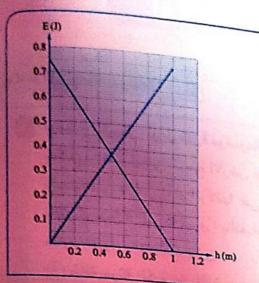
 $\frac{F}{\sqrt{2}}$

ل يتحرك جسم بسرعة 2 m/s فإذا أثرت عليه قوة محصلة مقدارها 8 N في نفس اتجاه حركته لمدة 5 5، فإن التغير في كمية حركته خلال هذه المدة يساوى

24 kg.m/s 💬

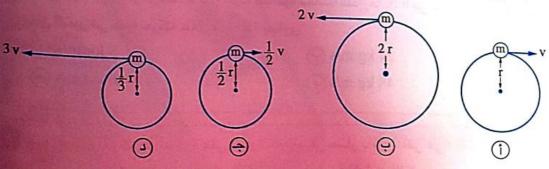
8 kg.m/s (1)

48 kg.m/s (1)

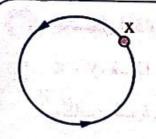

40 kg.m/s 🕣

و قوة الجذب للركرية المؤثرة على سيارة تنعطف في مسار دائري أفقى هي

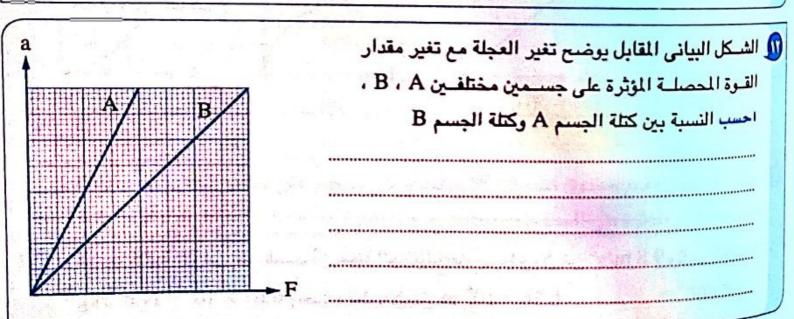
أ مجموع المركبة الأفقية لقوة الاحتكاك والمركبة الرأسية لقوة رد الفعل


- بعدوع المركبتين الأفقيتين لقوة الاحتكاك وقوة رد الفعل The state of the s
 - قوة رد انفعل فقط
 - قوة الاحتكاك فقط

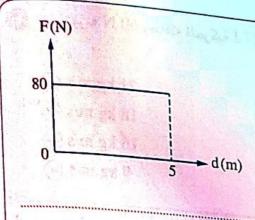
To)


 الشكل البياني المقابل يمثل تغير كل من طاقة الحركة وطاقة الوضع لجسم أثناء سقوطه نحو سطح الأرض فإن الطاقة الميكانيكية للجسم تساوى

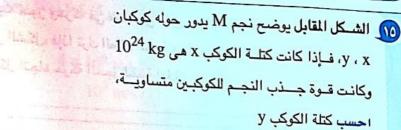
- 0.35 J ①
- 0.61 🤄
- 0.75 J 🕞
- 0.81
- الله الماعي على ارتفاع m 10⁶ من مركز كوكب ما بحيث كانت عجلة الجانبية عند مداره الله المادة 4 m/s²، فتكون السرعة المدارية له هي
 - 4×10^6 m/s \odot
 - $10^3 \,\mathrm{m/s}$
- $2 \times 10^6 \text{ m/s}$ (1)
- $2 \times 10^3 \text{ m/s}$
- إذا تناقصت الطاقة الحركية لسيارة إلى ربع ما كانت عليه، فإن كمية حركتها (ب) تقل للنصف
 - 🕤 تقل للربع ﴿ تزداد لأربع أمثالها
 - () تظل کما هی
- الأشكال التالية تعبر عن أربعة أجسام متساوية في الكتلة تتحرك حركة دائرية منتظمة، أي من هذه الأجسام يتأثر بقوة جاذبة مركزية أكبر؟



- ه جسمان البُعد بينهما r فإذا زادت كتلة أحد الجسمين للضعف، فإن مقدار التغير في البُعد بينهما بحيث تقل قوة التجاذب المادي بينهما للنصف يساوي
 - r 😑
- $\frac{\Gamma}{2}\Theta$


، أبب عما يأتي (١١ : ١٧)

المسك طفل بخيط فى نهايته حجر وحركه فى مستوى دائرى أفقى كما هو X مستوى دائرى أفقى كما هو X مستوى دائرى أفقى كما هو مرضح مرضح باتجاه السهم على الشكل، فإذا ترك الطفل الخيط فجأة والحجر عند الرضع X، وضح على الشكل اتجاه حركة الحجر لحظة إفلاته.



السرعة الابتدائية، قارن بين طاقتى حركتيهما لحظة اصطدامهما بسطح الأرض.

الشكل البياني المقابل يوضع العلاقة بين القوة (F) المؤثرة على جسم والإزاحة (d) التي يقطعها الجسم نتيجة تأثره بهذه القوة، احسب مقدار الشـ خل المبذول على الجسم بواسطة هذه القوة،

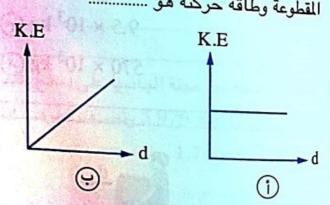
احسب كتلة الأرض إذا علمت أن عجلة الجاذبية عند سطح الأرض 9.8 m/s² وثابت الجذب العام $6.36 \times 10^6 \,\mathrm{m}$ ونصف قطر الأرض $6.67 \times 10^{-11} \,\mathrm{N.m^2/kg^2}$

سطح منزل باستخدام حبل أقصى قوة شد يتحملها N 490 N جسم كتلته 35 kg منزل باستخدام حبل أقصى قوة شد يتحملها احسب أقصى عجلة يمكن أن يكتسبها الجسم أثناء صعوده. $(g = 10 \text{ m/s}^2)$

انتر الإجابة الصحيحة (١٠:١):

المسلمة بين القمر المسلمة مماسية 9 km/s وكانت المسافة بين القمر المسلمي ومركز الكوكب $10^6 \, \mathrm{m} \times 5.43$ ، فيكون الزمن الدورى للقمر الصناعي هو

 $1.21 \,\pi \times 10^3 \,\mathrm{s}$


 $1.21 \,\pi \times 10^6 \,\mathrm{s}$

 $6\pi \times 10^3 \mathrm{s}$

 $6 \pi \times 10^6 \text{ s}$

آل إذا تصرك جسم من السكون بعجلة منتظمة (a) فإن الشكل البياني المعبر عن العلاقة بين الإزاحة القطوعة وطاقة حركته هو

K.E DA TOTA OF

الم حاول شخص دفع صندوق كتلته 50 kg موضوع على سطح أفقى خشس لكنه لم يستطع، فتكون محصلة القوى المؤثرة على الصندوق 50 N ⊖

0 (1)

ن قيمة غير معلومة .

500 N ⊕

للامستان ومتماثلتان كتلة كل منهما m ونصف قطر كل منهما r، فإن مقدار قوة الجذب المادى Chatalas - - - (4) em m

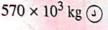
التبادلة بينهما يكون

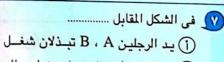
 $\frac{\mathrm{Gm}^2}{4\,\mathrm{r}^2}\,\Theta$

 $\frac{Gm^2}{2r^2} \odot$

🥠 🚜 بزيادة بُعد القمر الصناعي عن مركز الأرض، فإن ...

السرعة المدارية	3	
20 (24) (40) (41)	الزمن الدودى	
تقل	يقل	1
تزداد	يزداد	0
تزداد	يقل	•
تقل		
تقل	يزداد	0

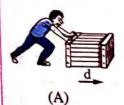

🕥 طيار يقود طائرة بسرعة 60 m/s في مسار دائري منتظم نصف قطره m 200 ، فإذا كانت القوة المركزية اللازمة لبقاء الطائرة في مسارها الدائري $1.71 imes 10^5 \,
m N$ فإن كتلة الطائرة تساوى


 $9.5 \times 10^3 \text{ kg} \odot$

 $570 \times 10^3 \text{ kg}$

 $19 \times 10^3 \text{ kg}$

 10^3 kg



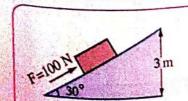
بد الرجل A تبذل شغل بينما يد الرجل B لا تبذل شغل

بيد الرجل B تبذل شغل بينما يد الرجل A لا تبذل شغل 🚓

(ل) يد الرجلين B، A لا تبذلان شغل

(B)

يدور قمر صناعي كتلت عن مركز الكوكب كتلت عن مركز الكوكب الكوكب عن مركز الكوكب الكوكب 6.67 × 10⁵ m السرعة المدارية للقمر الصناعي هي


 $(G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2$: علمًا بأن

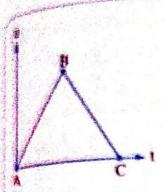
 $6.67 \times 10^3 \text{ m/s}$

 $10^3 \text{ m/s} \odot$

10⁵ m/s 😜

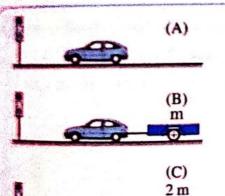
10⁴ m/s (1)

ه من الشكل المقابل، الشغل المبذول بواسطة القوة F لدفع الصندوق من مستوى الأرض لأعلى المستوى المائل يساوى


450 J 💬

750 J 🕘

300 J ① 600 J ج


ا 0.04، فإذا تضاعفت المسافة بينهما فإن قرة التجاني	إذا كانت قوة التجاذب المادى بين جسمين N
	المادي تصبح
0.01 N ⊙ 0.02 N ⊕	0.08 N 💬 0.16 N 🕦
	ب عما یأتی (۱۱ : ۱۷) :
· - 2025	
عة مماسية 10 m/s فيقطع إزاحة m 10√2 m خلا	ل يتصرك جسم حركة دائرية منتظمة بسر
<u>سـم.</u>	1 دورة، احسب الزمن الدورى لهذا الج 4
	Ap 410 A
مر وعجلة الجاذبية على سطح الأرض إذا علمت أن كتلة 8 4 10 ²² kg وكتالة القمر 7.35 × 10 ²² ونصف	Service of the servic
مر وعجله الجاديي على المحاديي على 7.35 × 10 ²² kg وكتانة القمر 6.4 × 10 ⁶ m	الرص Mg الرص 1.74 × 10 ⁶ m قطره
من العلاقة بين بعض (١/ ١١) التعسر عن العلاقة بين بعض	
كال بيانية (١) ، (٢) ، (٣) التعبير عن العلاقة بين بعض	ي قُذف جسم رأسيًا إلى أعلى، ولديك ثلاثة أشب
	الكميات الفيزيائية له،
The second secon	
(17)	
	(۱) حدد أيها يصلح للتعبير عن العلاقة بين كل من ا
, ض،	حدد أيها يصلح للعبير عن الحدد الله الأرد الماقة الحركة وارتفاع الجسم عن سطح الأرد
، الأرض،	
· · · · · · · · · · · · · · · · · · ·	(١) منافة الحرك وارتقاع الجسم عن سطح
	(١) الطاقة الميكانيكية وارتفاع الجسم عن سطح

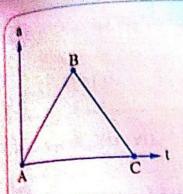
الممسوحة ضوئيا بـ CamScanner

الذرة على حسم بدا حركة من السكون بحروي العجالة المؤرد على حسم بدا حركة من السكون بحروي الرس، فعند أن العطة تكون كعبة تحرك الجسم الرس، فعند أن العطة تكون كعبة تحرك الجسم () منفر () صنفر.

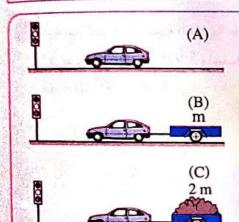
ول البرد فيوة محصلة F على جسم كتلته m فأكسبته عجلة a، فبإذا أثرت قوة محصلة 4 F على جسم و الناد و المرد في المحصلة a تا على جسم 2 m cas

الشكل المقابل يوضع ثلاث سيارات متماثلة كلة كل منها m، رتب تصاعديًا السيارات الثلاث من حيث أقصى قيمة للعجلة الني يمكن أن تتحرك يها كل منها بعد تجاوزها الإشارة.

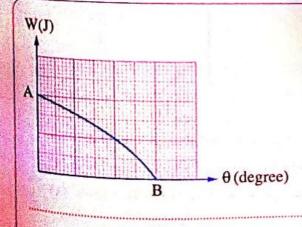
WO)


A distribution of the second of the sec

الشكل المقابل بوضح العلاقة البيانية بين قيمة النسغل وزاوية ميل خط عصل القوة على اتجاه الحركة. إذا علمت أن القوة المسببة للحركة N 100 والإزاحة الحادثة m 5 ، أوجد ،


(١) قيمة الشغل عند A

(1) قيدة الزاوية عند B


fas

المؤثرة على جسم بدأ حركته من السكون بمرور الغجلة المؤثرة على جسم بدأ حركته من السكون بمرور الزمن، هعند أى نقطة تكون كمية تحرك الجسم، (١) صفر، (٢) أكبر ما يمكن.

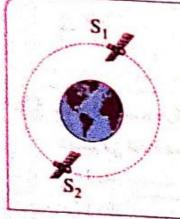
الشكل المقابل يوضح ثلاث سيارات متماثلة كتلة كل منها m، رتب تصاعديًا السيارات الثلاث من حيث أقصى قيمة للعجلة التى يمكن أن تتحرك بها كل منها بعد تجاوزها الإشارة.

الشكل المقابل يوضح العلاقة البيانية بين قيمة الشخل وزاوية ميل خط عمل القوة على اتجاه الحركة، إذا علمت أن القوة المسببة للحركة N 100 والإزاحة الحادثة m 5 ، أوجد ،

- (١) قيمة الشغل عند A
- (Y) قيمة الزاوية عند B

FOA

, افتر الإجابة الصحيحة (١٠:١):


- الكوكب، فإن طول المسار الدائري للقمر الصناعي يساوي
 - $3.95 \times 10^4 \text{ km} \odot$

 $3.62 \times 10^4 \text{ km}$ (i)

 $4.84 \times 10^4 \text{ km}$

- $4.52 \times 10^4 \text{ km}$
- آل تسعير سعارة كتلتها 1250 kg بسعرعة 29.2 m/s، فيكون الشغل الذي يجب أن تبذله المكابح إيقاف السيارة يساوى حوالى
 - -533 kJ (1)
- -426 kJ ⊕
- 533 kJ (-)
- 426 kJ (i)
- آل تجر طفلة عربة صغيرة كتلتها 0.5 kg على طريق أفقى مهمل الاحتكاك بقوة مقدارها N 25. فإن مقدار قوة جذب الأرض للعربة يساوى
 - 25 N (3)

- 20 N 🕞
- 5 N (-)
- 0.5 N (i)

- ل الشكل المقابل قمران صناعيان S2 ، S1 كتلتيهما 2 m ، m على الشكل المقابل قمران صناعيان الم الترتيب يدوران على ارتفاع متساوى من مركز الأرض، فتكون النسبة بين الزمن الدورى للقمر S₁ والزمن الدورى للقمر S₂ هى
 - $\frac{\sqrt{2}}{1}$
- $\frac{2}{1}$ (1)
- 10
- $\frac{1}{2}$

- F(N)
- (F) الشكل البياني المقابل يمثل العلاقة بين القوة (F) المؤشرة على جسم والإزاحة (d) التي يقطعها الجسم ننيجة تأثره بهذه القوة، فيكون مقدار الشغل الذي تبذله مذه القوة على الجسم هو
 - 3.2 J 🕞
- 11(1)
- 12.8 J ①
- 6.4 J 🚗

ىية 40 m بسرعة 40 m	لأول التي تبعد عن سطح الأرض مسافة رأس	👊 تتحرك عربة ملاهى من قمة التل
ا، بإهمال قوى الاحتكال (g = 9.8 m/s^2)	لثّانى الذى ارتفاعه عن سطح الأرض m 5 ة عند قمة التل الثانى هى	حتى وصلت إلى قمة التل ا
	12.25 m/s 💬	11.55 m/s ①
	22.23 m/s 🔾	18.22 m/s ⊕

\chi حجر مربوط بخيط ويدور حركة دائرية منتظمة في مستوى أفقى، فإذا قطع الخيط فإن الحجر

- (1) يستمر في الحركة حول المركز بنفس السرعة
 - بستمر في الحركة حول المركز بسرعة أقل
 - (ج) يسقط مباشرة على الأرض
 - (د) يتحرك في اتجاه مماس المسار الدائري

مدارية $\frac{2GM}{3R}$ حيث M كلة $\frac{2GM}{3R}$ مدارية $\frac{2GM}{3R}$ الأرض و R نصف قطر الأرض، فإن ارتفاع القمر الصناعي عن سطح الأرض هو $\frac{2R}{3}$ \odot R (i)

 $\frac{R}{2}$

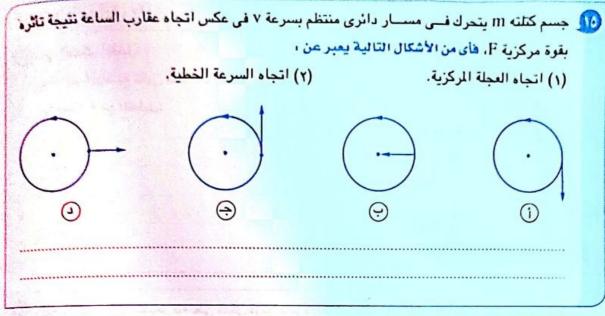
 $\frac{3R}{2}$

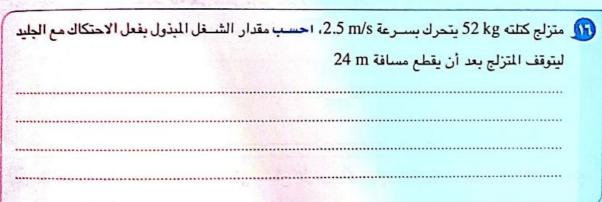
بتحرك جسم حركة دائرية منتظمة نتيجة تأثره بقوة محصلة مقدارها 40 N، فإذا كان مقدار إزاحة الجسم في لحظة معينة m 10 فإن الشغل المبذول على الجسم بواسطة القوة المركزية يساوى 01(1) 4 J (?)

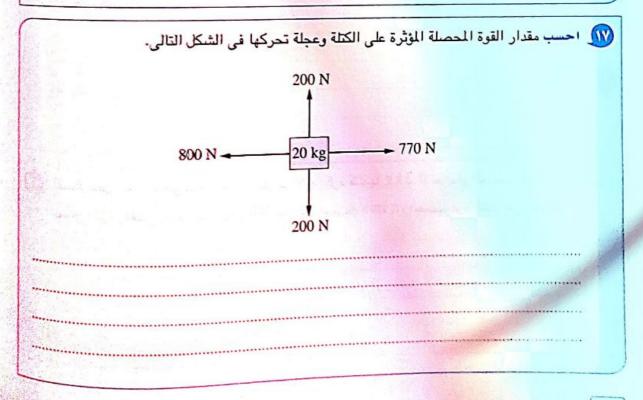
400 J (3)

40 J ج

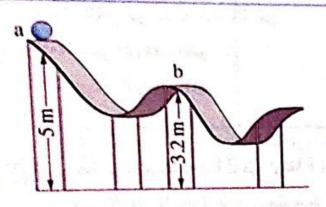
بمقدار 76 J نتيجة الاصطدام فإنها ترتد لأعلى بسرعة مقدارها $(g = 10 \text{ m/s}^2)$


14 m/s (-)


12 m/s (i)


18 m/s 🔾

16 m/s (=)


A Comment	ې عما يأتي (۱۱ : ۱۷) :
AL (II)	ل في الشكل المقابل، عند أى المواضع تكون طاقة الحركة للرجل أكبر
	ما يمكن ؟ مع التعليل.
، الأمر سرعة يمكن ا	50
$g = 10 \text{ m/s}^2$ ة للتلة.	 * سائق دراجة يصعد تلة على شكل قوس دائرى نصف قطره m 50، تسير بها الدراجة عندما تكون عند قمة التلة بحيث تبقى الدراجة ملامساً
	تسير بها الدراجة عندما تكون عند همه الله بعيث بي
حظة ملامسة قدميك لسطح	* عندما تقفز من ارتفاع معين إلى سلطح الأرض فإنك تثنى رجليك ل
	الأرض، فسرذلك.

ار الخيط فتحركت الكرة في وة الشد في الخيط.	ا أمسك طفل بأحد طرفى خيط وعلق بالطرف الآخر كرة كتلتها 0.2 kg ثم أد مسك طفل بأحد طرفى خيط وعلق بالطرف الآخر كرة كتلتها π/s احسب قمسار دائرى أفقى نصف قطره cm بانتظام بسرعة π/s، احسب قمسار دائرى
***************************************	السال دائري الحي
-	

، اختر الإجابة الصحيحة (١٠:١):

n في الشكل المقابل انزلقت كرة من السكون من النقطة 1 عبر مسار مهمل الاحتكاك، فإن سرعة الكرة عند النقطة b تساوى b النقطة b النقطة b

with a flow his

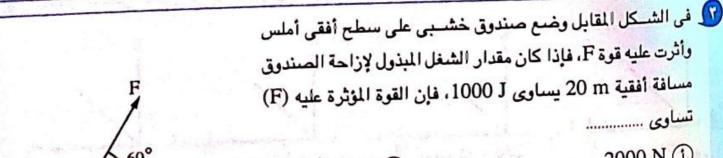
سمال وله فريدوية المس

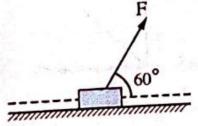
5 m/s 💬

4 m/s (i)

7.5 m/s 🔾

6 m/s (=)


🔐 * قمران صناعيان B ، A يدوران حول نفس الكوكب، فإذا كان نصف قطر مدار كل منهما الزمن 6 m ، 2 x هـو 2 B هـو 2 3 B هـان الزمن الدورى للقمر الصناعي 2 هـو 2 3 3 الدورى للقمر الصناعي A يساوي


 $4 \times 10^6 \,\mathrm{s}$

 $5 \times 10^5 \,\mathrm{s}$ (1)

 $4.5 \times 10^8 \text{ s}$

 $2.3 \times 10^8 \text{ s}$

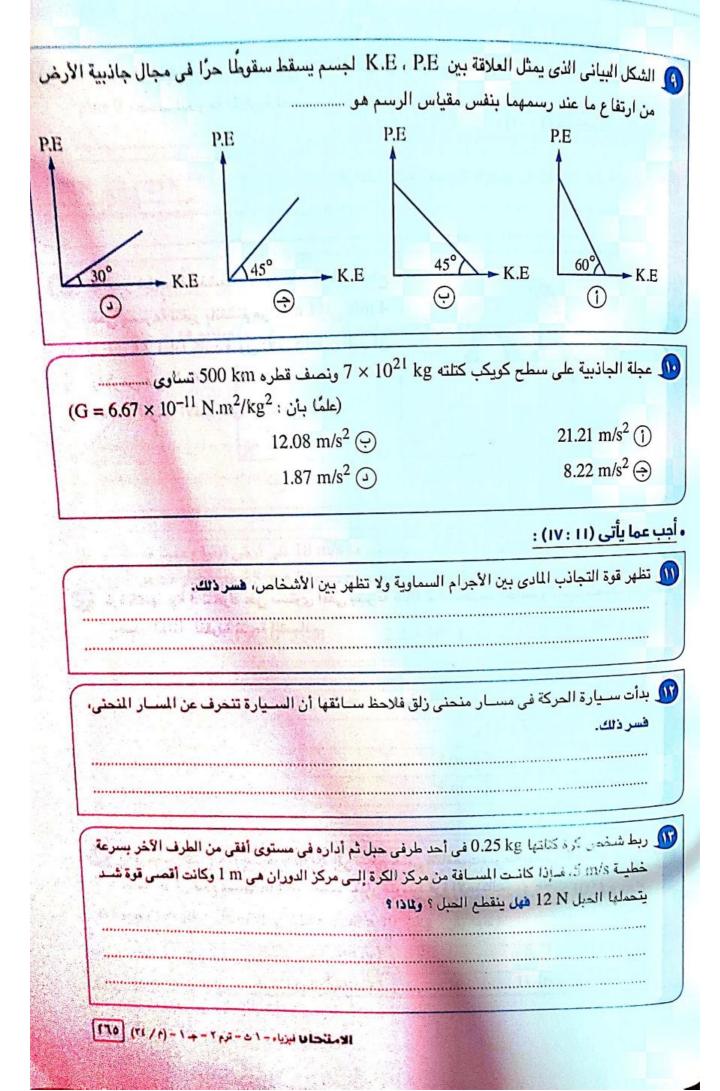
1000 N 🕣

100 N 🕘

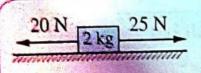
2000 N ①

200 N 🕣

B تمر صناعي A يدور حول الأرض وأخر B يدور حول المريخ، فإذا كان نصفي قطري مداريهما متساوٍ وكتلة الأرض تسع أمثال كتلة المريخ، فإن النسبة بين السرعة الخطية للقمر A والسرعة الخطية


للقمر $\left(\frac{v_A}{v_D}\right)$ تساوی

寻 ④

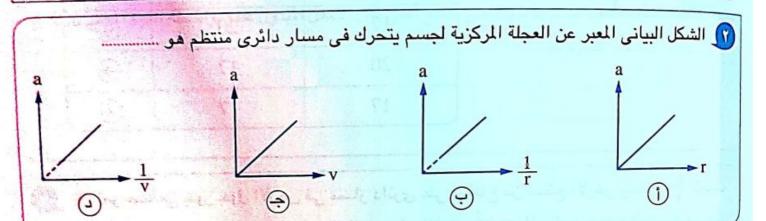

191

- - أ التغير في كمية الحركة أكبر
 - التغير في كمية الحركة أقل
 - ج) زمن التوقف أكبر
 - ن زمن التوقف أقل
- - 200 N (i)
 - 3000 N 🕣
 - 5000 N ج
 - 8000 N 🔾
- - 3 (-)
 - 9 0

- $\frac{1}{3}$ (1)
- $\frac{1}{9}$

ين مخد	اتيار 6 المن مركز كوكب ما ، فاذا كانت من
N	ع: كوكب ما، كسي
	من من 106 الله
***************************************	على ارتفاع ١٠٠٠
***************************************	قصر صناعی له له این له این
	* يدور قدر صناعى على المدارية له. 9 m/s ²
	19 m/s ²
A BOY	
	the de 1 :-
	4 m/s with auto
	على سطح الله الله الله الله الله الله الله الل
	لا يجر فيل ساقًا خشبية كتلتها 1 ton إلى 4 m/s لل الله 4 m/s لل الله الله 4 m/s الله الله الله الله الله الله الله الل
	افعی بست در فیاذا کانت قبوی ا
	خلال 25-، والأرض هي 400 N والأرض هي الصبل.
***************************************	والأرض هي 400 N ، والأرض هي الحبل. المركبة الأفقية لقوة الشد في الحبل.
	احسب المركبة الافقية عن
ا وارتدت بنصف سرعتها،	L51
ا وارتدت بنصف سرعتها،	سرعة 2 m/s اصطدمت بحائط 3 m/s اصطدمت بحائط
ا وارتدت بنصف سرعتها،	كرة كتلتها 3 kg تتحرك على مستوى أفقى بسرعة 2 m/s اصطدمت بحائط
ا وارتدت بنصف سرعتها،	كرة كتلتها 3 kg تتحرك على مستوى أفقى بسرعة 2 m/s اصطدمت بحائط المساقة المفقودة نتيجة التصادم.
ا وارتدت بنصف سرعتها،	كرة كتلتها 3 kg تتحرك على مستوى أفقى بسرعة 2 m/s اصطدمت بحائط احسب الطاقة المفقودة نتيجة التصادم.
ا وارتدت بنصف سرعتها،	كرة كلتها 3 kg تتحرك على مستوى أفقى بسرعة 2 m/s اصطدمت بحائط احسب الطاقة المفقودة نتيجة التصادم.
ا وارتدت بنصف سرعتها،	كرة كتلتها 2 kg تتحرك على مستوى أفقى بسرعة 2 m/s اصطدمت بحائط احسب الطاقة المفقودة نتيجة التصادم.
ا وارتدت بنصف سرعتها،	كرة كلتها 2 m/s تتحرك على مستوى أفقى بسرعة 2 m/s اصطدمت بحائط احسب الطاقة المفقودة نتيجة التصادم.
ا وارتدت بنصف سرعتها،	كرة كلتها 2 kg تتحرك على مستوى أفقى بسرعة 2 m/s اصطدمت بحائط احسب الطاقة المفقودة نتيجة التصادم.
ا وارتدت بنصف سرعتها،	كرة كلتها 2 kg تتحرك على مستوى أفقى بسرعة 2 m/s اصطدمت بحائط احسب الطاقة المفقودة نتيجة التصادم.
ا وارتدت بنصف سرعتها،	كرة كتلتها 2 kg تتحرك على مستوى أفقى بسرعة 2 m/s اصطدمت بحائط احسب الطاقة المفقودة نتيجة التصادم.
	احسب المه المه المه المه المه المه المه المه
	كرة كلتها 3 kg تتحرك على مستوى أفقى بسرعة 2 m/s اصطدمت بحائط احسب الطاقة المفقودة نتيجة التصادم. احسب الطاقة المفقودة نتيجة التصادم. المسبد الطاقة المفقودة يسرعة 8 kg بسرعة 20 m/s إلى سطح خشن فتناقصت سرعته بمنامًا بعد أن قطع مسافة m 40، احسب مقدار متوسط قوة الاحتكاك.
	احسب المه المه المه المه المه المه المه المه
	احسب المه المه المه المه المه المه المه المه
	احسب المه المه المه المه المه المه المه المه
	احسب المه المه المه المه المه المه المه المه

👊 مستعينًا بالشكل المقابل، يتحرك الجسم بعجلة مقدارها

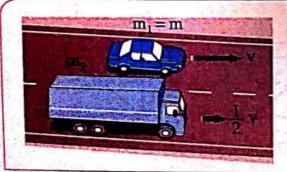


 $7.5 \text{ m/s}^2 (\div)$

 2.5 m/s^2 (i)

 12.5 m/s^2 (3)

 $10 \text{ m/s}^2 \stackrel{\frown}{(\Rightarrow)}$


آل تتحرك سيارة صغيرة كتلتها 1400 kg بسرعة قدرها 18 m/s على أرض أفقية وعندما ضغط السائق على دواسة البنزين تأثرت السيارة بقوة ثابتة فأصبحت سرعتها 25 m/s، فإن مقدار الشغل الذي تبذله هذه القوة يساوى

10⁵ J (3)

 $2.1 \times 10^5 \text{ J}$

 $2.2 \times 10^5 \,\mathrm{J}$ \odot

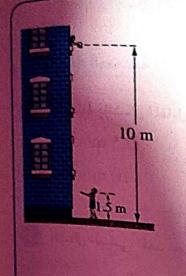
 $2.75 \times 10^5 \,\mathrm{J}$ (1)

🚯 الشكل المقابل يوضح سيارتين طاقتى حركتيهما متساويتين، فتكون قيمة m₂ هى

2 m (-)

m (1)

8 m (1)


4 m ج

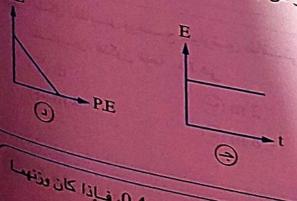
🐠 * قصر مساحى يدور حول الأرض، فإذا كانت كتلته 300 kg ومقدار كمية تحرك الخطية ان نصف قطر مداره یساوی فإن نصف قطر مداره یساوی $(G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2 \text{ , } M = 5.98 \times 10^{24} \text{ kg} : علمًا بأن)$

 $8.59 \times 10^3 \text{ km} \odot$ 5.73 × $10^3 \text{ km} \odot$

 $17.18 \times 10^3 \,\mathrm{km}\,\bigcirc$

 $11.46 \times 10^3 \text{ km}$

10 m من ارتفاع m فوق سطح من المناع 10 m فوق سطح السقط شخص جسم كتلته الأرض والتقطه شـخص آخر بيديه على ارتفاع 1.5 m من سطح الأرض، فإن


قيمة النقص في طاقة وضع الجسم (J)	قيمة الشغل المبذول على الجسم (J)	لارض، قان
17	20	(1)
20	20	9
17	17	⊕
	.,,	(3)

قطر الأرض، فإذا كانت عجلة الجاذبية على سطح الأرض 2 m/s تكون عجلة الجانبية عند هذا

5.6 m/s² 💬

الارتفاع هي

أى صن الأشكال البيانية التالية لا يمكن أن يعبر عن جسم مقذوف رأسيًا الأعلى حتى وصوله

لأعلى نقطة ؟ PE

مرتان معلقتان بجوار بعضها بحيث يكون البعد بين مركزيهما m 4.0، فبإذا كان وذهب المراد علقتان بجوار بعضها بحيث يكون البعد بين مركزيهما m 4.0، فبإذا كان وذهب المراد على ~ 0.00 المناوي يعلم المناوي المناوي يعلم المناوي المناو

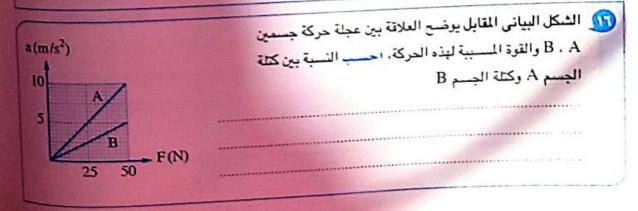
 $(G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2 \text{ } g = 10 \text{ m/s}^2 : نان المال$

6 × 10-7 N

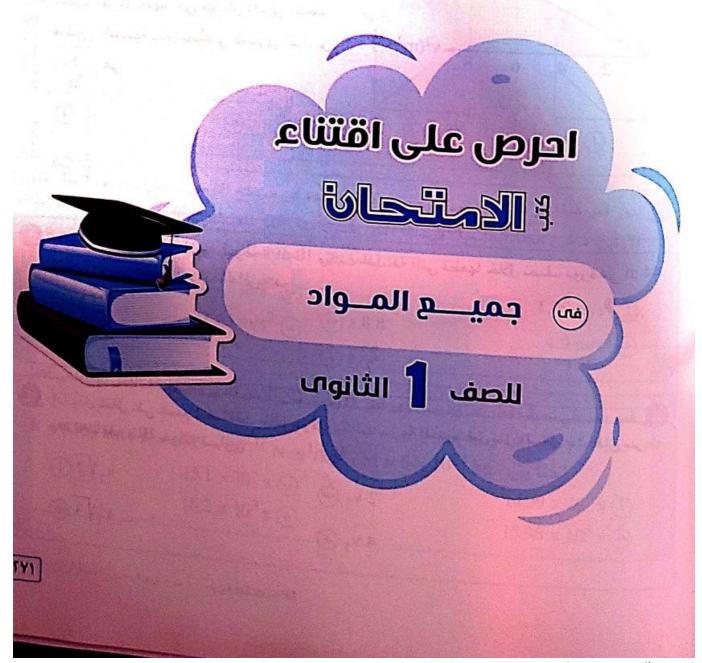
الممسوحة ضوئيا بـ CamScanner

ف قطره $\frac{10}{\pi}$ بحیث یتم دورة کاملة کل 0.5 افتکون قیمة	سرعته الماسية هي
40 m/s ⊕	π m/s (j
100 π m/s 🕘	100 m/s 🖨
	أجب عما يأتي (١١ : ١٧) :
سطح أفقى فإن الشغل المبذول عليه بواسطة القوة المحصلة يكون	س عندما يتحرك جسم بسرعة ثابتة على س مساويًا للصفر، فسر ذلك.
الخط المستقيم لكل مما ياتى ، المخط المستقيم للمن المن المن المن المن المن المن الم	اكتب العلاقة الرياضية وما يساويه مي
اد (ميله عن الأفقى كبير) بينما يصعد محمد نفس الجبل عبر	س يصعد أحمث جبل عبر طريق قصير ع طرية طري المستدر المستدرات
قليل)، قارن بين الشغل الذي تبذله الجاذبية على كل منهما،	مع تفسير إجابتك.

وزن الجسم بالنيوتن	الكوكب
100	الأرض
250	المشترى
40	عطارد
90	الزهرة

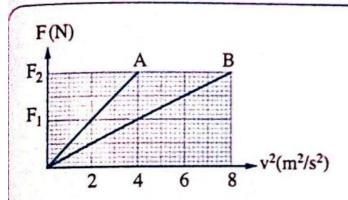

فما الكوكب الذى يكون على سطحه قياس وزن جسم كتلته 2 kg كما الكوكب الذى يكون على سطحه قياس وزن جسم كتلته 2 kg كما بالشكل المقابل ؟ (علمًا بأن : عجلة الجاذبية الأرضية = 10 m/s² كما بالشكل المقابل ؟

قى الشكل المقابل جسم كتلت 10 kg يسقط سقوطًا حرًا،


10 kg يسقط سقوطًا حرًا،

10 kg عند النقطة B هي 10 kg.

800 J هي B هي الشكل المقابيكية عند النقطة B هي المورد و النقطة B هي المورد و النقطة A المورد و النقطة حركته عند النقطة A المورد و النقطة A المورد و النقطة حركته عند النقطة A المورد و النقطة A النقطة A المورد و المورد و النقطة A المورد و النقطة A المورد و النقطة A المورد و المور



دورة كاملة حول الكوكب احسب بعد القمر الثانى	إذا كان القمر الأول يستغرق 20 يومًا ليدور ا في حين أن القمر الثاني يستغرق 160 يومًا،	پ بدور قمران حول کوکب ما فا بیعد عن مرکزه 10 ⁵ km دیبعد عن مرکزه
		عن مركز الكوكب،
	+13.00	

و اختر الإجابة الصحيحة (١٠:١):

- 🕦 تستخدم الوسادة الهوائية لحماية السائق لأنها تقلل قوة التصادم نتيجة
 - (أ) زيادة الفترة الزمنية للتغير في كمية التحرك
 - (ب) زيادة كمية التحرك
 - نقص الفترة الزمنية للتغير في كمية التحرك
 - (1) نقص كمية التحرك

الشكل البياني المقابل يعبر عن العلاقة بين القوة المركزية المؤثرة على جسمين B ، A لهما نفس الكتلة ومربع السرعة الخطية التي يتحرك بها كل منهما في مسار دائري منتظم، فتكون النسبة بين نصفي قطري المدارين المدارين مي مي المدارين المدارين المدارين المدارين المي المدارين المدارين المي المدارين المدارين المدارين المدارين المي المدارين المدارين

 $\frac{\sqrt{2}}{1}$ \odot

 $\frac{1}{2}$ (i)

1/4 ②

4 🕣

لا يدور جسم في مسار دائري بسرعة 10 m/s وكانت المسافة التي قطعها خلال نصف دورة هي 44 m، فيكون الزمن الدوري لحركته الدائرية هو

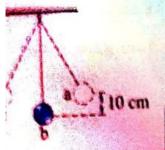
8.8 s 💬

22 s (1)

²²/₇ s ⊙

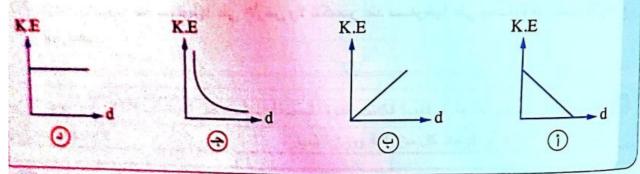
4.4 s 👄

إذا بُذل شغل على جسم فتضاعفت طاقة حركته وكانت سرعة الجسم قبل بذل الشغل ٧، فإن سرعة بعد تضاعف طاقة حركته تساوى


2 v₁ 😌

 $v_1\sqrt{2}$

4 v, 3


 $v_1\sqrt{3}$

LAL

الشكل المقابل يوضع كرة بندول كتلتها g تبدأ g الشكل المقابل يوضع كرة بندول كتلتها g تبدأ مركتها من النقطة g وتصل سرعتها للصفر عند g ($g = 10 \text{ m/s}^2$)

أتمس تيمة لطاقة الحركة (1)	أقصى قيمة لطاقة الوضع (J)	
0.03	0.03	0
0.03	0.015	9
0.015	0.03	(-)
0.015	0.015	0

3.27 m/s² (-)

 1.09 m/s^2 1

2.45 m/s² (3)

4.9 m/s² (=)

 $(R = 6400 \text{ km} \cdot G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2 \cdot M = 6 \times 10^{24} \text{ kg} : ملتا بان)$

 $15.1 \times 10^3 \mathrm{s} \odot$

 $14.39 \times 10^3 \text{ s}$

 $16.2 \times 10^3 \,\mathrm{s}$

 $15.96 \times 10^3 \, \mathrm{s} \, \odot$

וצי בירוח הייי ו פי היי בי ו - נו אים בי בי

رتفاع قدره m 60 فإن طاقة حركته عند منتصف مسافة	يسقط جسم كتلته 19 kg سقوطًا حرًا من ا	9
$(g = 10 \text{ m/s}^2)$	السقوط تساوى	
5700 J 😛	2850 J ①	
11400 J 🔾	8550 J 👄	
	65301 🚓	
115 mg and 17 70% at 7 70 at 117 mg 25 am		900
ره 25 cm نتيجة تأثره بقوة مركزية تساوى عدديًا أربع		100
دوره هی (ب) 1 m/s	أضعاف كتلته فتكون سرعته المماسية بعد ربع ا	
	0.5 m/s (j	
2 m/s 🔾	1.5 m/s ج	
	، عما یأتی (۱۱ : ۱۷) :	، أجب
تنكسر عند سقوطها على وسادة من نفس الارتفاع،	تنكسب البيضة عند سيقوطها على الأرض ولا	00
	و با القام القام القام القام ا	_
		_
للحظ سائقها أن السيارة تنصرف عن المسار المنحني،	بدأت سيارة الحركة في مسار منحنى زلق ف	
	فسر ذلك.	

	* الشكل البياني المقابل يعبر عن	(T)
K.E (J)	العلاقة بين طاقة حركة جسم ومربع	
	سرعته عند تمثيلها بنفس مقياس	
$v^2(m^2/s^2)$	الرسم، احسب كتلة الْجسم.	
Distriction of the Control of the Co		
Property of the Control of the Contr	A SANSANA SANS	
" The state of the		

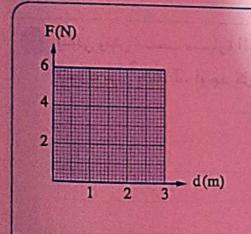
d r	الشكل المقابل يوضح جسمين كرويين متماثلين قوة التجاذب r المسكل المقابل المسلود
The second of th	Control of the same of the Control o
	14-40 A. William C. Transcon
ن على ارتفاع m 5 من سطح	لَ قُذف جســم كتلته 10 kg رأســيًّا لأعلى فكانت ســرعته 5 m/s عندما كا
$(g = 10 \text{ m/s}^2)$	الأرض، احسب سرعته على ارتفاع m 2 من سطح الأرض.
	t (14) tagy at any 1, 25 tags
***************************************	اللما خون (()) ()
مىيارة N 3000 والعجلة التى $(g = 10 \text{ m/s}^2)$	يتولى ونش سحب سيارة أفقيًا فكانت القوة المحصلة المؤثرة على الس تتحرك بها 2 m/s ² ، أوجد كل من كتلة ووزن السيارة.
and the second probability of the second pro	
and the property states of	Company of the Compan
-, t oc	157 173 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ونصفی قطری مداریهما	m2 · m1 یدور حوله قمران کتلتیهما M یدور حوله قمران کتلتیهما
$4 r_1 = r_2 \cdot m_1 = 2 m_2 c$	12 ' 12 على الترتيب فإذا أهملنا قوى التجاذب بين القمرين وكار
	احسب النسبة بين الزمن الدوري لكل منهما $\left(\frac{T_1}{T_2}\right)$.
A CONTRACTOR OF THE STATE OF TH	

• اختر الإجابة الصحيحة (١٠:١):

100 مسم وزنه على سطح القمر N 160 فإذا كانت النسبة بين شدة مجال الجاذبية عند سطح القمر وشدة مجال الجاذبية عند سلطح المشترى على الترتيب هي 2 ، فإن وزن نفس الجسم على سطح المشترى

يساوى

1240 N 💬 10.3 N ①


6200 N (3) 2480 N 🕞

(ب) نصف

🛈 ربع

أربعة أمثال

ج ضعف

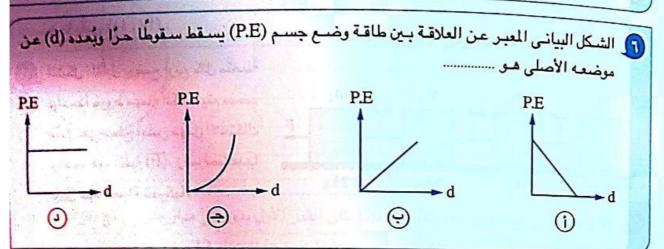
الشكل البياني المقابل يوضح العلاقة بين القوة الأفقية المؤثرة على جسم ومقدار الإزاحة الأفقية التي يتحركها الجسم بفعل هذه القوة، فإن الشغل المبذول بواسطة هذه القوة يساوى

18 J 💬

911

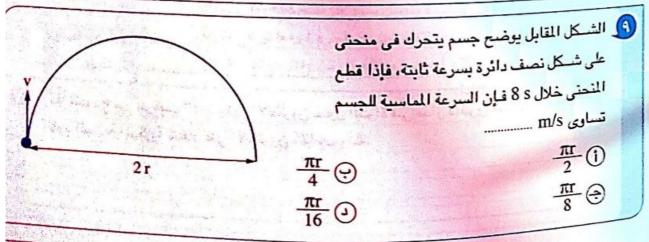
54 J 🔾

36 J ج


قمر صناعی یدور حول کوکب بسرعة 10^5 m/s فی مدار نصف قطره 10^4 km قمر صناعی یدور حول کوکب بسرعة فتكون كتلة الكوكب هي $(G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2 : الما بأن)$

 $2.5 \times 10^{18} \text{ kg}$ (1)

 $2.5 \times 10^{23} \text{ kg} \odot$


 $4.02 \times 10^{20} \text{ kg}$

 $4.02 \times 10^{28} \text{ kg}$

- جسم يتحرك في مسار دائري بسرعة ثابتة، فيكون اتجاه عجلة حركته

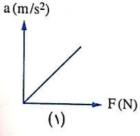
 (أ) في اتجاه سرعته
 (بعيدًا عن مركز الدائرة
 (ي مماسًا للمسار الدائري
- المنط جسم سقوطًا حرًا ففي اللحظة التي تكون فيها طاقة وضعه أقل من طاقة وضعه لحظة سقوطه بنقدار 100 J و 100 J و 100 J و 200 J و 200 J و 400 J و 200 J و 9

🐠 کرة معدنیة کتلتها 0.5 kg تدور فی مسار دائری أفقی نصف قطره 10 cm بمعدل 150 دورة کل نصف دقيقة، فإن القوة الجاذبة المركزية المؤثرة على الكرة تساوى N

5 π 🥹

5 π² (3)

2 π 🕦

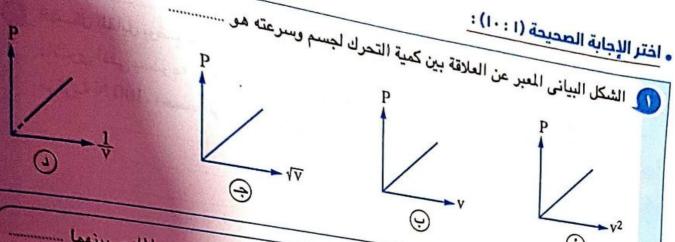

 $10 \pi^2$

• أجب عما يأتي (١١ : ١٧) :

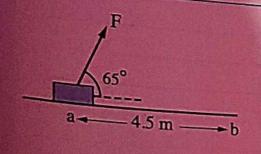
الشكل المقابل يوضح أربع كتل متصلة بواسطة خيوط مهملة الكتلة، يتم سحب الكتل على سطح أملس مهمل الاحتكاك بواسطة قوة أفقية (F)، رتب تصاعديًا الكتل طبقًا لعجلة تحركها.

m ₁	m ₂	m ₃	m ₄
10 kg	3 kg	5 kg	2 kg

اكتب العلاقة الرياضية التي يعبر عنها الشكل البياني وما يساويه ميل الخط المستقيم لكل مما يأتي ، $a(m/s^2)$

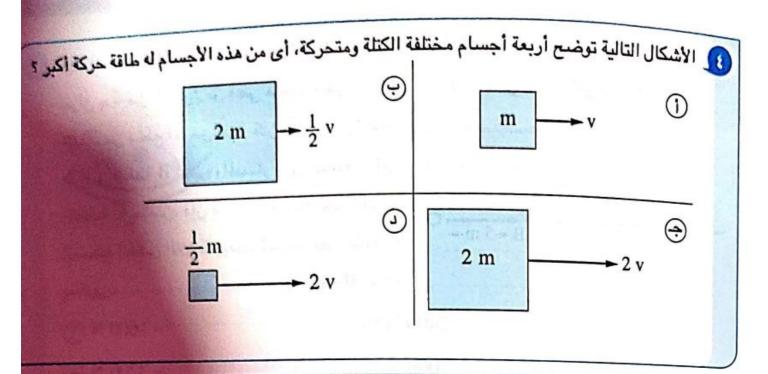


- m (kg)


وفقًا النموذج بور لتركيب الذرة يدور الإلكترون حول النواة في مدار دائري منتظم، وضع الذا لا تبذل الترة الجاذبة المركزية شغلًا على الإلكترون أثناء دورائه.

SYA

تجاه، فسر ذلك.	يحدث تصادم بين قمرين صناعيين يتحركان في نفس المدار وفي نفس الا
A CONTRACTOR OF THE SECOND	
	لشكل المقابل يوضح جسم كتلته 1 kg يتحرك في مسار
4 m	ائرى أفقى بسرعة منتظمة تحت تأثير قوة جاذبة ركزية 100 N ، احسب الزمن الدورى لحركة هذا الجسم.
	(ap)
1.7	A COLOR OF THE PARTY OF THE PAR
متزامن مع الأرض نصف	 پدور فمران صناعیان حول الأرض، فإذا كان القمر الأول پدور في مدار
ِ متزامن مع الأرض نصف عة، احسب السرعة المداري	 پدور قمران صناعیان حول الأرض، فإذا كان القمر الأول پدور في مدار قطره m 10⁷ × 4.23 والقمر الثاني پدور في مدار آخر زمنه الدوري 12 سا.
. متزامن مع الأرض نصف عة، احسب السرعة المداري	 پدور فمران صناعیان حول الارض، فإذا کان القمر الاول یدور فی مدار قطره سار الاول یدور فی مدار قطره m المثانی یدور فی مدار آخر زمنه الدوری 12 سار الثانی. للقمر الثانی.
عة، احسب السرعة المداري	قطره $10^7\mathrm{m} imes 4.23 imes 4.23$ والقمر الثاني يدور في مدار آخر زمنه الدوري $12\mathrm{m}$
عة، احسب السرعة المداري	قطره $10^7\mathrm{m} imes 4.23 imes 4.23$ والقمر الثاني يدور في مدار آخر زمنه الدوري $12\mathrm{m}$
عة، احسب السرعة المداري	قطره $10^7\mathrm{m} imes 4.23 imes 4.23$ والقمر الثاني يدور في مدار آخر زمنه الدوري $12\mathrm{m}$
عة، احسب السرعة المداري	قطره $10^7\mathrm{m} imes 4.23 imes 4.23$ والقمر الثاني يدور في مدار آخر زمنه الدوري $12\mathrm{m}$
عة، احسب السرعة المداري	قطره $10^7\mathrm{m} imes 4.23 imes 4.23$ والقمر الثاني يدور في مدار آخر زمنه الدوري $12\mathrm{m}$
عة، احسب السرعة المداري	قطره $10^7\mathrm{m} imes 4.23 imes 4.23$ والقمر الثاني يدور في مدار آخر زمنه الدوري $12\mathrm{m}$
عة، احسب السرعة المداري	قطره $10^7\mathrm{m} imes 4.23 imes 4.23$ والقمر الثاني يدور في مدار آخر زمنه الدوري $12\mathrm{m}$
عة، احسب السرعة المداري	قطره m + 10.0 × 4.23 والقمر الثاني يدور في مدار آخر زمنه الدوري 12 سا
عة، احسب السرعة المداري	قطره m 10 ⁷ x 10 ⁹ والقمر الثاني يدور في مدار آخر زمنه الدوري 12 سا. للقمر الثاني.
عة، احسب السرعة المداري	قطره m + 10.0 × 4.23 والقمر الثاني يدور في مدار آخر زمنه الدوري 12 سا
عة، احسب السرعة المداري	قطره m 10 ⁷ × 4.23 والقمر الثاني يدور في مدار آخر زمنه الدوري 12 سا. القمر الثاني. القمر الثاني. القمر الثاني عبر التحديد ال
عة، احسب السرعة المداري	قطره m 10 ⁷ x 23 والقمر الثاني يدور في مدار آخر زمنه الدوري 12 سا. القمر الثاني. القمر الثاني. القمر الثاني. القمر الثاني عبد التحديد التحدي
عة، احسب السرعة المداري	قطره m 10 ⁷ x 23 والقمر الثاني يدور في مدار آخر زمنه الدوري 12 سا. القمر الثاني. القمر الثاني. القمر الثاني. القمر الثاني عبد التحديد التحدي

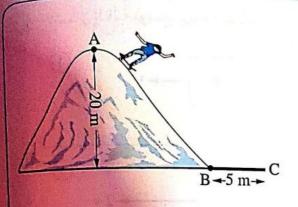


- اذا قل البُعد بين جسمين للنصف وقلت كتلة كل منهما للنصف، فإن قوة التجاذب المادى بينهما
 - 🕤 تقل للربع
 - ب تزداد لأربعة أمثالها
 - ج تبقى ثابتة
 - ن تقل للنصف

ہے فی الشکل المقابل کتلة مقدارها 5 kg موضوعة على مستوى أفقى، أثرت عليها قوة N 40 فحركتها من السكون مسافة m 4.5 من النقطة a إلى النقطة b، فإذا كانت قوى الاحتكاك N 15 فإن

السرعة عند b (m/s)	الشغل المبذول على الكتلة بواسطة القوة المحصلة عند حركة الكتلة من a إلى b (J)	
10.6	112.5	1
10.6	8.6	9
1.85	112.5	⊕
1.85	8.6	0

- - 2.05×10^3 m/s (1)
 - 2.92×10^3 m/s \odot
 - 3.08×10^3 m/s $\stackrel{\frown}{\odot}$
 - $3.64 \times 10^3 \text{ m/s}$ (3)
 - يكون الشغل المبذول على جسم سالبًا عندما تكون القوة المؤثرة عليه اتجاه الإزاحة.
 - 🚺 في نفس
 - (ب) عکس
 - ج عمودية على
 - تصنع زاوية حادة مع
- W جسمان B ، A كتلتهما على الترتيب m ، m 2 على بُعد ثابت من بعضهما، فإذا كان مقدار قوة جذب


الجسم B للجسم A يساوي F فإن مقدار قوة جذب الجسم A للجسم B يساوى

 $\frac{F}{2}$ ①

2 F 🕣

F 💬

4 F (3)

- 2400 N ⊕

- 1600 N 🕦

- 4000 N 🔾

- 3200 N ⊕

7 ويتم دورة كاملة خلال 94.4 min، فإن نصف	🗿 قمر صناعي يدور حول الأرض بسرعة خطية 613 m/s
$(\pi = 3.14)$	قطر مداره یساوی

5784 km (-)

4242 km 🕦

7200 km (3)

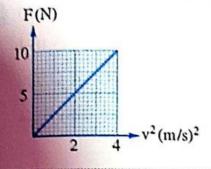
- 6866 km (辛)
- - 3 F 😌

9 F 🕦

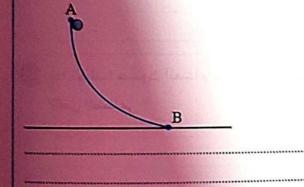
1 F 3

 $\frac{1}{3}$ F \odot

ه أجب عما يأتي (١١ : ١٧) :


	The state of the s
2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	س جسم كتلته 1 kg يتحرك حركة دائرية منتظمة بحيث ي الماسية للحسم.
ع مستعه 10 m خلال 1 ، احسب السرع	
	7
The same of the sa	

TAT


شكل المقابل يبين بندول طاقته الميكانيكية	11
. 10يتحرك بين النقطتين D ، B مارًا	
النقاط C،O،A ، احسب طاقة الوضع	با
سند B وطاقة الحركة عند كل من D ، O	
	. 1
إذا تخيلنا حدوث انعدام مفاجئ لسرعة دوران القمر الصناعي حول الأرض، ماذا يحدث لمسار	T.
القمر الصناعي ؟	
أى نقطة على سطح الأرض يكون لها أكبر سرعة خطية بالنسبة لمحور الأرض، هل النقطة عند خط	NB
الاستواء أم تلك التي تقع عند مداري الجدى والسرطان ؟	
	(100)
	-

TAT

100 الشكل البيائي المقابل يوضح العلاقة بين القوة المركزية المؤشرة على كرة تتحرك في مسار دائرى نصف قطره m 0.4 ومربع السرعة الماسية للكرة، احسب كتلة الكرة.

航 تنزلق كرة من السكون على منحدر عديم الاحتكاك، قارن بين كل من طاقة الوضع وطاقة الحركة و الطاقة الميكانيكية للكرة عند الموضعين B ، A

اثرت قوتان متساويتان على جسمين كتلتيهما 1 kg ،5 kg فاكتسبت الكتلة الثانية عجلة 20 m/s² فاكتسبت الكتلة الثانية عجلة 20 m/s² احسب العجلة التي تتحرك بها الكتلة الأولى.

SAF

الآن بجميع المكتبات سلسلة كتب

فى:

- الأحــ
- الكـــــيمـياء
- التـــاريــخ
- الجـــــغرافـيا
- مبادئ التفكير الفلسفى والعلمي

• أدخل كودك الشخص الموجود على ظهر الغلاف • لمـــزيد من المعـــلومات انظر مفحتن،٥،٤

МаЗак Арр

يُصرف مجانًا مع هذا الكتاب

الجازء الخاص بالإجابات

الحولية للطبئ والنشر والتوزيخ الفوسالة - القافسرة

CITOMANAT-TOWNETT-TORROOMS OF BUIL www.alemte7anbooks.com

Email info@alemte7anbooks.com الحط الساكن ١٥٠١٤

/alemte7anbooks