
 الى ما قبل التغيرات الحرارية المصاحبة للتغيرات الكيمِيائية. من التنيرات الحرارية المصاحبةَ للتغيرات الكيميائِة. إلى نهايـــة الفصـلـلـ

الكيمـيـــاء الــنــووويــة

نواة الذرة و الجسيمات الأولية.
من مكونات الذرة. الى ما قبل القوى النووية الموية.

من القوى النووية القوية. الى نهايــةَ الفصـلـ.

Jgill Jail
الدرس الأوJ

الدرس الثانى

النشاط الإشعاعى 9 الثفاعلات النووية.
من التفاعلات النووية.
إلى ما قبّل تفاعلات التحول النووى (العنصرى).
من تفاعلات التحول النووى (العنصرى). الى نهايــة الفــلـ.

解

 الدرس الأولالدرس الثانى

الدرس الأول

$$
\begin{aligned}
& \text { لتكوين الماء يعتبر تفاعل كيميائى. } \\
& \text { ذوبان مــــ نـتـرات الأمونـيـوم فـى الماء } \\
& \text { يعتبر تغير فيزيائى. }
\end{aligned}
$$

> علم الديناميكا الحرارية هو العلم الذى يختص بدراسة الطاقة
وكيفية انتقالها.
؛

T القانون اللأول للديناميكا الحرارة.

ع ع الحرارة النوعية.
1

W

hall hugil $9 e^{\text {[PHII }}$

؛ النظام هو أى جزء من الكون يكون موضعا للدراسة، تنم فبه تغبران فيزيائبة أو تفاءلات كبمبانبة. 4 الوسط المحيط هو الحيز المحبط بالنطام والذى بمكن أن يثبادل معه المادة أو الطافة أو كلادهما هغا. 4 يمكن التعبير عن التفاعل الكيميانى كنظام، كها يلى :

العلاقَة بين التفاعلات الكيميائية و الطاقة

 حرارذ أو شغل بـــــن وسنــط التفاعل (النظام) والرسط المحـط بـ.
<ا أنواع الأنظمه

تصنف الأنظمهَ تبعًا لقَابليتها لتبادل الطاقَة والمادة مع الوسط المحيط إلى :

نــام معزول

هو الــنـــــام الذى لا يــســـــــح بتبادل أيَا مـن المادة أو الـطـاقًـة مع الوسط المحيط.

نظامم مغلق

هــو الــنـــــام الــذى يــســــــح
 مع الوسط المحيط.

\qquad

(C)

(B)

(A)

التعليل	نوع النظام	الشكل
	مغلق	(A)
لانـه لا يسمح بتبادل أيًا من المادة أو الطاقة مع الوسط المحيط.	معزول	(B)
لانـهـه يسمح بتبادل كل من المادة والطاقة مع الوسط المحيط.	مفتوح	(C)

هِلِوظِمتِ

يعتبر الترمومتر الطبى نظام مغلق،
 لانه يسمح بتبادل الطاقة فقط مع الوسط المحيط على هيئة حرارة

عندما يفقد النظام كمية من الطاقة يكتسبها الوسط المحيط والعكس صحيح، لذلك فإن : أى تغير فى ماقة النظام $\Delta \mathrm{E}_{\text {system }}$ بمقدار مماثل ولكن بإشارة مخالفة ... حتى تظل الطاقة الكلية مقدارًا ثابتًا.

$$
\Delta \mathbf{E}_{\text {system }}=-\Delta \mathbf{E}_{\text {surrounding }}
$$

ويختص القانون الأول للديناميكا الحرارية بدراسة تغيرات الطاقة الحادثة فى الانظمة المعزولة. وينص القانون الأول للديناميكا الحرارية على أن الطاقة الكلية لأى نظام معزول تظل ثابتة، حتى لو تغير النظام

من صورة لأخرى.

 القرق فی درجة الحرارة بيئهما.
 السخونة أو البرودة.

 أى أن العلاقةَ بـين درجة حرارة النظام ومتوسطـ طاقة حركة جزيئاته علاقة طردية.

تزداد طاقة حركة جزيئات الماء بزيادة كمية الحرارة التى تكتسبها

Test Yourself
متوسط طاتَ حركة جزيئات الماء تكون أكبر ما يمكن عند درجة حرارة .

$$
50^{\circ} \mathrm{C} \bigodot
$$

$$
0^{\circ} \mathrm{C} \text { (i) }
$$

$100^{\circ} \mathrm{C}$ (1)

كلما إزدادت درجة حرارة المادة (النظام) كلما ازداد متوسط طاقة حركة جزيئاتها.

وحدات قياس كمية الصرارة

Worked Example

(a) 0.47 kJ
(b) 8.36 kJ
(c) $8.36 \times 10^{-3} \mathrm{~kJ}$
(d) $8.36 \times 10^{3} \mathrm{~kJ}$
فكـرة الحـل :

$2 \mathrm{cal} \longrightarrow \quad ? \mathrm{~kJ}$
$8.36 \times 10^{-3} \mathrm{~kJ}=2 \times 4.18 \times 10^{-3}=(\mathrm{kJ})$ كمية الحرارة \therefore
(C): الحـل : الاختيار الصحيح

كمية الحرارة التى مقدارها cal 2 تعادل
(c) ancgillojnal
(${ }^{\circ}$ º C) J/g. ${ }^{\circ} \mathrm{C}$ تُقدر الحرارة النوعية بوحدا

ها $0.385 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$ © 0.385 J أى أن كمية الحرارة اللازمة لرفع درجة حرارة 1 g 1 ت 1 ت

4 والجدول التالى يوضّة قيم الحرارة النوهة لبعض المواد ؛

اللاه السانلل	بـار	الالوالونيوم	الكربون	الحديد	النحاس	ة5 5
4.18	2.01	0.9	0.711	0.448	0.385	الحرارة النوعية)

- الحر ارة النوعية خاصية مميزة للمادة، لانها مقدار ثابت للمادة الواحدة، يختلف من هادة إلى أخرى. - الحـرارة النـوعيـة للمـاء أكبـر مـن الحـرارة النـوعيـة لالى مادة أخـرى، لان كمية الحرارة اللازمة

 بخار الماء والماء السائل.

المادة التى تحتاج لاكتساب كمية حرارة كبيرة لترتفى درجة حرارتها تكون حرارتها النوعية مرتفعة، ويستفرق رفع أو خفض درجة حرارة هذه المادة وقتًا طويلًا، والعكس صحيح.
.

$$
\begin{aligned}
& \text { لارتفاع الحرارة اللنوعية للماء فيستفرق خفض درجة حرارته وقتًا طويلًا، } \\
& \text { وهو ما يحمى ثمار الأثجار من "التجمد. }
\end{aligned}
$$

Worked Example

فى الشكل المقابل، سخنت قطعتان متساويتان فى الكتلة لهما نفس درجة الحرارة الابتدائية لفترة زمنية متساوية باستخدام نفس مصدر الحرارة :

- القطعة الأولى مـن النحاس (حرارته النوعية 0.385 J/g.º ${ }^{\text {0. }}$. - القطعة الثانية من الألومنيوم [حرارته النوعية 0 ه 0.9 J/g. ${ }^{\circ}$. أيهما ترتفع درجة حرارتها بمقدار أكبر؟

الحـل :
مقدار الارتفاع فى درجة حرارة المادة يتناسب عكسيًا مـ حرارتها اللنوعية. ": الحرارة النوعية لقطعة النحاس أقل من الحرارة النوعية لقطعة الألومنيوم.

blall aral cylun

el l

$$
T_{s y \mathrm{~s}}>\mathrm{T}_{\mathrm{sur}}
$$

يفقد النظلام قافلة حرإرية
هى عمليات تنتقل غيبا الحرارد
من النظام إلى الوسط المحيط. مدا يؤدى إلى الى الـى
ارتفاع درجة حرارد الوبيط المحيط
Tانخفاض درجة حرارة النظارما
إلى أن تتساوى درجة حرارتهـا
.

$$
\mathrm{T}_{\text {sur }}>\mathrm{T}_{\text {sys }}
$$

يكتسب النظام طاقة هرارية
هـى عمليات تنتقل فيها الحـرارة مـن الوسط المحيط إلى النظام، مـما يـؤدى إلى الـى
 وارتفـاع درجة حرارة النظام
إلى أن تساوى درجة حرارتهما (T)
تتناسب كمية الحرارة الممتصة أو المنطلقة فى نظام معين تناسبًا طرديًا مـع مقدار التنير فى درجة الحرارة.
يمكن حساب كمية الحرارة الللزمة لرفع أو خفض درجة حرارة النظام أو الوسط المحيط من العلاقَ :

كما يمكن من العلاقة السابقة جسـاب كل مما يأتى :

التغير فى درجة الحرارة

$$
\Delta \mathrm{T}=\frac{\mathrm{q}_{\mathrm{p}}}{\mathrm{mc}}
$$

$$
T_{1}^{1(د ر ج ة ~ ا ل ح ر ا ر ة ~ ا ل ا ي ت َ ا ن ي ة) ~}
$$

$$
\mathrm{T}_{2(د ر ج ة)}=\Delta \mathrm{T}+\mathrm{T}_{1}
$$

Worked Examples

§ $21.5^{\circ} \mathrm{C}$ C ما كمية الحرارة اللازمة لرفع درجة حرارة g 100 من الماء النفى بممُدار
(a) 8.987 J
(b) 8.987 kJ
c) 2.15 J
(d) 2.15 kJ

$$
q_{p}=?, m=100 \mathrm{~g} \cdot \Delta \mathrm{~T}=21.5^{\circ} \mathrm{C}, \mathrm{c}=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}
$$

$$
q_{p}=m c \Delta T
$$

$$
=100 \times 4.18 \times 21.5=8987 \mathrm{~J}=8.987 \mathrm{~kJ}
$$

(b) : الحـل : الاختيار الصحيع

(1000 g) 1 kg منلة (1000 mL (الماء النقى تساوى 1 L
 $1 \mathrm{~g} / \mathrm{cm}^{3}$ لأن كثافة الماء النقى

ما كمية الحرارة المصاحبة لعملية ذوبان مول من نترات الأمونيوم فى مقدار من الماء لعمل محلول حجمه 100 mL
(a) 17556 J
(b) 3344 J
(c) -3344 J
(d) -17556 J

$$
\mathrm{q}_{\mathrm{p}}=?, \mathrm{~m}=100 \mathrm{~g}, \mathrm{~T}_{1}=25^{\circ} \mathrm{C}, \mathrm{~T}_{2}=17^{\circ} \mathrm{C}, \mathrm{c}=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}
$$

$$
q_{p}=m c \Delta T
$$

$$
=100 \times 4.18 \times(17-25)
$$

$$
=-3344 \mathrm{~J}
$$

(c): :

Test Yourself

(a) 51.1214 cal
(b) 12.23 cal
(c) 2.926 cal
(d) 0.012 cal

1

$q_{p(\text { cal })}=\frac{\cdots \cdots \cdot}{4.18}=$
الحـل :الاختيار الصـميع
 $40^{\circ} \mathrm{C}$ لى $25^{\circ} \mathrm{C}$
ما الحرارة النوعية لهذه الملادة 9
(a) $34.5 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(b) $24.5 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(c) $2.45 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(d) $0.245 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$

$$
\mathrm{c}=?, \mathrm{~m}=\ldots \ldots \cdot \mathrm{T}_{1}=\ldots \ldots \cdot \mathrm{T}_{2}=\ldots \ldots \cdot \mathrm{q}_{\mathrm{p}}=\ldots \ldots
$$

$$
c=\frac{q_{p}}{m \Delta T}=\frac{\ldots \cdots}{\ldots \ldots \times(\ldots \ldots-\ldots \ldots . \cdot)}=
$$

الحـل : الاخختيار الصنحـِ

Worked Examples

J/kg. ${ }^{\circ} \mathrm{C}$ () احسب قيمة الحرارة اللوعية للماء بوحدة
$\because \mathrm{c}=4.18 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}}=\frac{4.18}{10^{-3}} \frac{\mathrm{~J}}{\mathrm{~kg} \cdot{ }^{\circ} \mathrm{C}}$
$\therefore \mathrm{c}\left(\mathrm{J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}\right)=4.18 \times 1000=4180 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \Delta \mathrm{T}=\mathrm{T}_{2}-\mathrm{T}_{1}= \\
& =\ldots . . \\
& \text { (J) لتحويل كيلة الهرارة من وحدة الهول } \\
& \text { اللى وهدة السُعر (cal) يتم القسمd على } 4.18
\end{aligned}
$$

 الحرارة مقدارها 65000 J840 J/kg.
(a) $0.32897^{\circ} \mathrm{C}$
(b) $0.7103^{\circ} \mathrm{C}$
(C) $7.103^{\circ} \mathrm{C}$
(d) $32.897^{\circ} \mathrm{C}$

فكـرة الصـل :

$$
\mathrm{m}=6 \mathrm{~kg} \cdot \mathrm{~T}_{1}=20^{\circ} \mathrm{C} \cdot \mathrm{q}_{\mathrm{p}}=65000 \mathrm{~J} \cdot \mathrm{~T}_{2}=?, \mathrm{c}=840 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}
$$

$\because \Delta \mathrm{T}=\frac{\mathrm{q}_{\mathrm{p}}}{\mathrm{mc}}=\frac{65000}{6 \times 840}=12.897^{\circ} \mathrm{C}$
$\therefore \mathrm{T}_{2}=\Delta \mathrm{T}+\mathrm{T}_{1}=12.897+20$

إذا كانت الكتلة مقدرة بوحدة (kg)
والحرارة النوعية مقدرة بوحدة (J/kg. ${ }^{\circ}$ (فيتم التعويض عنهها فف القانون

$$
=32.897^{\circ} \mathrm{C}
$$

(d) : الحـل :الاختيار الصحيح

 37º C
$q_{p}=m c \Delta T$

$\because q_{p(ا ل م ت ص \text {) }}=-q_{p(ا ل م ق و د ة) ~}$
$\therefore[100 \times 4.18 \times(\mathrm{T}-25)]=-[200 \times 4.18 \times(\mathrm{T}-37)]$
$[418 \mathrm{~T}-10450]=-[836 \mathrm{~T}-30932]$
$418 \mathrm{~T}+836 \mathrm{~T}=10450+30932$
$1254 \mathrm{~T}=41382$

$$
\therefore \mathrm{T}=33^{\circ} \mathrm{C}
$$

\qquad
 علقــا بأتـهـه يلزم لتحويل 1 mol 1 من ماء ســالل درجـــة حرارتــه $100^{\circ} \mathrm{C}$ إلى بخار ماء عند نفـس درجة الحرارة $\left[\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g} / \mathrm{mol}\right]$

كمية من الطاقة مقدارها
(a) 33.44 kJ
(b) 266.56 kJ
(C) 300 kJ
(d) 333.44 kJ

فكـرة الحـل :
. كمية الحرارة اللازمة لرفع درجة حرارة 100 من الماء من $100^{\circ} \mathrm{C}$: $20^{\circ} \mathrm{C}$ م
$\begin{aligned} \mathrm{q}_{\mathrm{P}_{(1)}} & =\mathrm{mc} \Delta \mathrm{T} \\ & =100 \times 4.18 \times(100-20)=33440 \mathrm{~J}=33.44 \mathrm{~kJ}\end{aligned}$

$\mathrm{H}_{2} \mathrm{O}$	$\rightarrow \mathrm{q}_{\mathrm{p}}$
$18 \mathrm{~g} / \mathrm{mol}$	$54 \mathrm{~kJ} / \mathrm{mol}$
100 g	? kJ

. $100^{\circ} \mathrm{C}$ كمية الحرارة اللازمة لتحويل 100 من الماء السائل إلئى بخار ماء عند $\mathrm{q}_{\mathrm{p}_{(2)}}=\frac{100 \times 54}{18}=300 \mathrm{~kJ}$

- محصلة الطاقة الللازمة لتصويل 100 من الماء إلى بخار ماء :
$q_{p(1 / 1)}=q_{p_{(1)}}+q_{p_{(2)}}$ $=33.44+300=333.44 \mathrm{~kJ}$
(d): الحـل : الاختيار الصحيح

cilal nomál

مُسمر حرارى "(مُسعر كوب القهوهةٌ"

- • ترمومتر. - مواد متفاعلة رتمثل النظام المعزوله.

الاستخدامז

 درجة الحرارة الابتائية T1

فكرة العمل

 مُسعر القنبلة

الاستخدام

- يستخدم فى قياس حرارة احتراق بعض المواد.

طريقة الاستخدام
 حرارة احتراتهـا فى وعاء الاحتراق والذى يحاط بسائل

التبادل الحرارى (الماء غالبًا).

 سلك الاشتعال الكهربى.

- تنتقـل كميـة من الحرارة من المادة المحترقة إلى الماء فترتفع درجة حرارة الماء على حسب مقدار الطاقة الناتجة عن عملية الاحتراق.
- يتم تحيين حرارة احتراق المادة بدلالة الارتفاع فى درجة حرارة كمية الماء المستخدمة فى المُسِر.

يستخدم الماء كمادة يتم معها التبادل الحرارى فى مُسعر القنبلة لارتفاع حرارته النوعية مما يسمح له باكتساب كمية كبيرة من الطاقة

Worked Example

 قراءة الترمومتر الل $45^{\circ} \mathrm{C}$ ويستلتج من ذلك ان كمية الحرارة الممتصة بواسطة المُسعرتساوى (i) كمية الحرارة المفقودة بواسطة الماء الساخن. (ب) كمية الحرارة المكتسبة بواسطة الماء ألبارد. ٪ مجموع الطاقة المققودة بواسطة الماء الساخن والطاقة المكتسبة بواسطة الماء البارد. (د) الفرق بين الطاقة المفقودة بواسطة الماء الساخن والطاقة المكتسبة بواسطة الماء البارد.

عند الاتزان الحرارى تكون :
كمية الحرارة المفقودة بواسطة الماء الساخن = كمية الحرارة الممتصة بواسطة المُسعر + كمية الحرارة المكتسبة بواسطة الماء البارد . كمية الحرارة المفقودة بواسطة المأء الساخن - كمية الحرارة المكتسبة بواسطة الماء البارد (د): الصـل : الاختيار الصحيح

الحرسָ الأول

JqIIl لill

43

 alfand
Read

تان

a

(Y) فی التفاعلات الكيميائية قَثل لككأس التى يحدث بها التفاعل
(i) النظام.

٪
ج $\xlongequal{\text { الوسط المحيط. }}$

(ع) وحدة قياس الحرارة النوعية هى .
(a) $\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
(b) $\mathrm{J} /{ }^{\circ} \mathrm{K}$
(C) $\mathrm{J} / \mathrm{mol}$
(d) J
(ه) أى الكواد التالية حرارتها النوعية أكبر ؟

$$
\begin{aligned}
& . ء \log \text { (i) } \\
& \text {. } 1 \text { g } \\
& \text { lg } \lg \text { ألومنيوم. } \\
& \text { l g } 1 \text { زئبق. }
\end{aligned}
$$

(7) تتوقف الحرارة النوعية لكرة معدلية على (i) نوع مادة الكرة. ج ج حجم الكرة.
(د) مساحة سطح الكرة.

ع علل لما يأتى :

(1) الطاقة الكلية لأى نظام معزول ثابتة.
(Y) تنخفض درجة حرارة سائل عندما يفقد كمية من الطاقة الحرارية.
(Y) يستخدم المُسعر الحرارى فی تجارب الديناميكا الحرارية.
(ع) يستخدم الماء فى المُسعر الحرارى كهادة يتم معها التبادل الحرارى.
ماذا يددث عند :
(1) زيادة كتلة جسم إلى الضعف „بالنسبة لحرارته النوعية".
(Y) اكتساب 1 (1 من مادة ما كمية من الطاقة الحرارية مساوية فى المقدار للحرارة النوعية لهذه المادة.

الحرارة النوعية $\left(\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$	1
0.133	بلاتين
0.528	تيتانيوم
0.388	زنك

§ لديك ثلاث عينات من معادن مختلفة لها نفس درجة ا'حرارة
الابتدائية وكتلة كل منها 70 يوضحها الجدول المقابل : أى هذه المعادن الثلاثة ترتفــع درجــة حرارته أولاً وبمقدار
أكبـر عنــد تســخينهم بمصـدر حـرارى والحد لفتـرة زمنية
متساوية ؟ مع ذكر السبب.

Open book un_ Limi

مشاب علما

23 dio jo 1 L Hitill alifil (6)

الalalal
أى مها يأتى يعتبر تطبيقًا لقانون بقاء الطاقة ؟ 1

الطاقة الكلية لنظام معزول يحتوى على ثلع تظل كها هي عند تحمل الثع إلى ماء.

(

علم الكيمياء الحرارية
أى العبارات الآتية تعبر عن النظام المغلق ؟
(1) الكتلة الداخلة إلى الخظام تسـاوى الكتلة الخارجة من النظامَ، (ب) المادة لا تتنقل من أو إلى النظام.
(- (المادة الداخلة إلى النظام قد تكون أكبر أو أقل من المادة الخارجة هنه. (3) لا يتبادل حرارة أو شغل مع النظام الـلـيط.

ما النظام اللى يتضمن كتلة ثابتة ؟
(ــ) النـلام المتزن حرارئا.
|l يكتبر خزان الوتود بالسيارة من أمثلة الأنظمة

الشـكل المقابـل : لحلـة الضغـط المعروفـة باسـم حلـة البريسـتو
 وهـى لا تسـمح بخـروج السـوانل الموجـودة بداخلها أثنـاه عملية الطهىى، لهـذا تعتـبر حلـة الضغـط نموذجـا لنظـام

(i) مغلق.
(\% مفتوح.
¢
(3) متزن.

ها لشــكل المقابل : يوضح ثلاثة أوعية تحتوى على كتل متســاوية من الشــاى درجة حرارته 70² أى مها يلى يعبر عن كتلة ودرجة حرارة الشاى فـ الأوعية الثلاثة بعد مرور 20 min

الوعاء (3)	الوعاء (2)	الوعاء (1)	الاختيارات
درجهّ حرارة الشاى تقل	كتلة الشاى تقل	درجة حرارة الشاى لا تتغير	(i)
كتلة الشاى تقل	درجة حرارة الشاى تقل	كتلة الشاى لا تتغير	(-)
درجة حرارة الشاى تقل	كتلة الشاى لا تتغير	درجة حرارة الشاى تقل	\odot
كتلة الشاى لا تتغير	درجة حرارة الشاى لا تتغير	كتلة الشاى لا تكنير	(1)

أى العبارات الآتية تعتبر صحيحة ؟
(i) مفهوم درجة الحرارة هو نفس مفهوم الحرارة.
(ج مفهوم الحرارة هو نفس مفهوم طاقة حركة جزيئات المادة.
ج \rightleftharpoons
(ـ) مفهوم درجة الحرارة يعبر عن الطاقة الداخلية لجزيئات المادة.
يقل متوسط طاقة حركة جزيئات H2O عند تحول كتلة معينة من
$27^{\circ} \mathrm{C}$ الماء السائل درجة حرارته $64^{\circ} \mathrm{C}$ (إلى ماء سائل درجة حرارت

$-36^{\circ} \mathrm{C}$ C $73^{\circ} \mathrm{C} \mathrm{C}$ إلى ثلتج درجة $0^{\circ} \mathrm{C}$ C ${ }^{\circ} \mathrm{C}$ إلى ماء درجة حرارتي
(a) 0.05 J
(b) 500 J
(C) $5 \times 10^{3} \mathrm{~J}$
(d) $5 \times 10^{4} \mathrm{~J}$

الكيلوسُعر من وحدات قياس كمية الحرارة و يعادل
(a) 418 J
(b) 4.18 J
(c) 4180 J
(d) 41.8 kJ

$$
\text { 0.448 J/g.̊C إذا علمت أن الحرارة النوعية لكتلة مقدارها } 1 \text { من الحديد تساوى }
$$ فكم تكون الحرارة النوعية لكتلة مقدارها 10 g من الحديد ؟

(a) $44.8 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
(b) $4.48 \mathrm{~J} / \mathrm{g} . \mathrm{C}$
(c) $0.448 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
(d) $448 \mathrm{~J} / \mathrm{g} . \mathrm{C}$

الفلز	الحرارة النوعية) (J/g.C)
$\mathbf{A l}$	0.9
$\mathbf{A u}$	0.129
$\mathbf{C u}$	0.385
$\mathbf{C r}$	0.499
$\mathbf{H g}$	0.139

 فلـزات مختلفـة لهـا نفـس درجـة الحـرارة. ما الفلزان اللذان ترتفـع درجة حرارتهها بمقدار أكبر عند إمداد 1 و من كل منها بنفس القدر من الحرارة لفترة زمنية متساوية ؟
(a) Al, Au
(b) Cu, Hg
(c) Cr, Cu
(d) Au, Hg
(i)
(ـ (ـ تزداد إلى أربعة أمثالها.
\qquad
\qquad

Valluman

يعند خفض درجةٌ مرارة تُفس الكتلة من الزنبق بينفس القدر من درجات الحرارة.
 كية المرارة المنطلقة عند خفض درجة حرارة نفس الكتلة من الزئبق من 80° كن $80^{\circ} \mathrm{C}$ إلى
 بنُفس التدنر من كيدة الحرارة، فإن درجة الحرارة النهانية للزنّبق تكن أكبر مما للماه.

ضحف الارتفـاع فى درجـة حـرارة الجسم الأول، فإن الحرارة النوعية للجسم الثانى

حساب كمية الحرارة
كل مها يأتى يمكن الاستدلال عليه بعلومية قيمة الحرارة النوعية للفلز، عدا .

$25^{\circ} \mathrm{C}$ (7 كمية الحرارة المنطلقة عند تبريد 10 ($100^{\circ} \mathrm{C}$ من الفلز من
(
(د) الكتلة الذرية الجرامية من الفلز.

ما مقدار كمية الحرارة المنطلقة عند تبريد g 50 من الماء من $10{ }^{\circ} \mathrm{C}$ م
(a) $5 \times 10^{2} \mathrm{~J}$
(b) $1.67 \times 10^{5} \mathrm{~J}$
(c) $2.09 \times 10^{3} \mathrm{~J}$
(d) $1.13 \times 10^{6} \mathrm{~J}$

م $44.1^{\circ} \mathrm{C}$ ما كمية الحرارة اللازمة لرفع درجة حرارة $20.2{ }^{\circ} \mathrm{C}$ من الإيثانول من
علمًا بأن الحرارة النوعية للإيثانول تساوى 2.42 J/g.ºC
(a) 5783.8 J
(b) -5783.8 J
(C) 28919 J
(d) -28919 J

هـ 1500 g مــن الزيــت - قبل اسـتخدامه فی قــلى البطاطس من 1970 J/kg. ${ }^{\circ} \mathrm{C}$ ²0¹
(a) $519 \times 10^{3} \mathrm{~J}$
(b) $4728 \times 10^{2} \mathrm{~J}$
(c) $2595 \times 10^{2} \mathrm{~J}$
(d) $2364 \times 10^{2} \mathrm{~J}$
 20º يساوى نفس مقدار الطاقة الحرارية التى يكتسبها 40 من الماء لرفع درجة حرارته بِقدار فكم تكون الحرارة النوعية للزيت ؟
(a) $4.18 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(b) $2.38 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(C) $1.59 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(d) $0.895 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
 ما درجة الحرارة النهائية التى تصل إليها العينة ؟
(a) $18.3^{\circ} \mathrm{C}$
(b) $20^{\circ} \mathrm{C}$
(C) $25.7^{\circ} \mathrm{C}$
(d) $42^{\circ} \mathrm{C}$
(a) $38.2 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(b) $0.382 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(C) $46.21 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(d) $0.4621 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
$50^{\circ} \mathrm{C}$ ما درجـة حرارة الخـليط المكون مـن 100 مع 250 ماء درجـة حـرارته 250 ماء درجة حرارته فـ وضع يفترض أنه نظام معزول ؟
(a) $31.4^{\circ} \mathrm{C}$
(b) $40^{\circ} \mathrm{C}$
(C) $44^{\circ} \mathrm{C}$
(d) $50^{\circ} \mathrm{C}$

> هِه ما المادتان اللتان يِكن حساب حرارة احتراقهها باستخدام المُسعر الحرارى ؟
> (i) الاه و الكحول الإيئيلى.
> (ب) باني أكسيد الكربون و اللاء. ج (الميئان و الكحول الإيتيلى.
> (ـ) تانى أكسيد التيتروحِين و الميثان.

（i）iflito in lifliml

ما معنى قولنا أن رفع درجة حرارة 1 kg من مادة ما 1 يحتاج لكمية حرارة مقدارها 700 §
ما الذى يمكن استنتاجه من القيم التالية ：
$4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \mathrm{C}$ • الحرارة للنوعية للماء 2.01 J／g．゚C الحرارة النوعية لجخار الماء

هاذا ترتفع درجة حرارة الألومنيوم بمقدار أكبر من ارتفاع درجة حرارة الماء عند اكتسـاب كتلتِن متسـاويتِن منهما لنفس كمية الحرارة لفترة زمنية متساوية ؟ علمًا بأن لهما نفس درجة الحرارة الالابتدائية． هِ هِ رحلة إلى أحد الشواطئ وجد التلاميذ فرقًا واضحًا بين درجة حرارة كل من الماء والرمل وقت الظهيرة، أَيهها تكون درجة حرارته هى الأعلى فى كل من الحالتين الآتيتين ؟ »مع تفسير إجابتكه ：
（1）وقت الظهيرة．
（Y）فی منتصف الليل．
ماذ
（1）تسخين كلتان متساويتان من الماء والحديد كلِ على حدى لهما نفس درجة الحرأرة الابتدائية لفترة زمنية متساوية باستخدام نفس مصدر الحرارة．
（ץ）إجراء تفاعل احتراق داخل مُسعر حرارى »بالنسبة للماء الموجود بداخلهه）．
هل هل يكن التعبير عن كتلة المحلول الماني المخفف بدلالة حجمه ؟ مع التفسير．
 فى نفس الفترة الزمنية．احسب درجة حرارتهما النهانية، وماذا تستنتج ؟ ：8もした。
$840 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}=$ الحرارة النوعية للرمل ： $4180 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}=$ الحرارة النوعية اللماء

المحتوى الحرارى

؛ُ تختزن كل مادة قدرُا محددُا من الطاقة، يُعرف بالطاقة الداخلية، وهو يساوى محصلة الطاقات الثالث الآتية :

* ت تمثل فى قوى التجاذب بين جزيئات المادة حيث يوجد عدة قمى، منها : - قوى جذب ثاندرثال وهـى مبارة عن طاقـة وضـع

والتى تتوقف على طبيعة الجـزيئـات وقطبيتها.

الطاقةالمختزنة فی الجزىء

تتمثل فى طاقة الروابط الكيميائية الموجودة بين
ذرات كل جزیء
(أو أيونات كل وحدة صديغة)،
سواء كانت
تلك الروابط تساهمية أو أيونية

T
 الطاقة المختزنة فى الذرة

تتمثل فى طاقة الإلكترونات فى مستويات الطاقة، وهى محصلة طاقتى الوضع والحركة لكل إلكترون فی مستوى طاقته

kJ/mol المحتوى الحرارى أو الإنثالبى المولارى (H) والذى يقدر بوحدة
ويختلف المحتوى الحرارى من مادة لأخرى، تبعًا لاختلاف المواد عن بعضها فى عدد ونوع الذرات الداخلة فى تركيب الجزيئات (أو أيونات وحدات الصيغة) ونوع الروابط الموجودة بين تلك الذرات (أو الأيونات).

ما معنى أن الإنثالبى المولارى لغاز NO يساوى

ك لا يمكن عمليًا قياس الإنتالبى المولارى (المحتوى الحرارى) لمادة معينة، ولكن يمكن تعيين التغير فى المحتوى الحرارى للتفاعل ΔH أثناء التغيرات المختلفة التى تطرأ على المادة.

التغير فى المحتوى الحرارى = مجموع المحتوى الحرارى للنواتج = مجموع المحتوى الحرارى للمتفاعلات

الظروف القياسية عند هساب - الضغط = - درجة الحرارة ه - التركيز

1 مـح مزاعاةً إلثشارات الموضدة بالجدول التالى :

العمليات الطاردة للحرارة		
بإشارة سالبة	بإشارة موجبة	التغير فی درجة الحرارة (
طاقة ممتصة بإشارة سالبة	طاقة منطلقة بإشارة موجبة	الطاجة الحرارية المصاحبة للنظام ((كمية الحرارة) (
بإشارة موجبة	بإثارة سالبة	مقدار التغير ف المحتوى الحرارى للنظام (CH)

Worked Examples

(1) من المعادلة التالية :
$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})} \Delta \mathrm{H}^{\circ}=-890 \mathrm{~kJ} / \mathrm{mol}$ مــا كميــة الحــرارة المنطلقة مــن احــتراق g g 5.76 من غــاز الميثــان CH [$\mathrm{C}=12, \mathrm{H}=1$]
(a) +320.4 kJ
(b) +160.2 kJ
(C) -223.5 kJ
(d) -445 kJ
: لحـ
$16 \mathrm{~g} / \mathrm{mol}=(1 \times 4)+12=\mathrm{CH}_{4}$ الكتلة المولية من مركادة
$0.36 \mathrm{~mol}=\frac{5.76}{16}=\frac{\text { عدد المولات (n) }}{16}=\frac{\text { كتلكة الملادة }}{\text { المولية من المادة }}$
$\because \Delta H^{\circ}=\frac{-q_{p}}{n}$
$\therefore \mathrm{q}_{\mathrm{p}}=-\Delta \mathrm{H}^{\circ} \times \mathrm{n}$
$=-(-890 \times 0.36)=+320.4 \mathrm{~kJ}$
(a):

الشثكل المقابل يمبر عن عملية تسخين g g g
 مسدتمريًا بالجدول التالى :

$21^{\circ} \mathrm{C}$	دربجة الحرارة الابتدائية للهاء
$-41 \mathrm{~kJ} / \mathrm{g}$	هH
28 kJ	كمية الحرارة المفقودة

احسب درجة الحرارة النهائية للماء بعد الاحتراق التام لـ 2.97 من زيت الزيـتـون.
: الحـل
كميـة الحـرارة المنطلقـة من احتــراق 2.97 من زيت الزيتون :
$q_{p(ز)}=-(\Delta \mathrm{H} \times \mathrm{m})$

$$
=-(-41 \times 2.97)=121.77 \mathrm{~kJ}
$$

إذا كانت قيمة 4 مقدرة بوحدة (kJ/g)
فيتم التعويض في القانون بالكتلة (m) بدلًا من عدد المولات (n)

كمية الحرارة اللازمة لتسخين g 500 من الماء = كمية الحرارة المنطلقة من احتراق الزيت - كمية الحرارة المفقودة

$$
=121.77-28=93.77 \mathrm{~kJ}=93770 \mathrm{~J}
$$

$\because q_{p(\omega)}=m c \Delta T$
$\Delta \mathrm{T}=\frac{\mathrm{q}_{\mathrm{p}}}{\mathrm{mc}}=\frac{93770}{500 \times 4.18}=44.87^{\circ} \mathrm{C}$
$\therefore \mathrm{T}_{2}=\Delta \mathrm{T}+\mathrm{T}_{1}=44.87+21=65.87^{\circ} \mathrm{C}$

Test Yourself

$$
\begin{aligned}
& \mathrm{NH}_{3(\mathrm{~g})} \longrightarrow \frac{1}{2} \mathrm{~N}_{2(\mathrm{~g})}+\frac{3}{2} \mathrm{H}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}^{\circ}=+46 \mathrm{~kJ} / \mathrm{mol} \quad: \quad \text { تبعا للمعادلة المقابلة } \\
& \text { [} \mathrm{N}=14, \mathrm{H}=1 \text {] } \\
& \text { ما كمية الحرارة الممتصة عند تفك } 85 \text { g من غاز النشادر } 9 \\
& \text { (a) }-2.3 \mathrm{~kJ} \\
& \text { (b) }-9.2 \mathrm{~kJ} \\
& \text { (C) }-138 \mathrm{~kJ} \\
& \text { (d) }-230 \mathrm{~kJ} \\
& \because \Delta H^{\circ}=\frac{-q_{p}}{n}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore q_{p}=\ldots \ldots . \times \ldots \ldots=-(\ldots \ldots \times \ldots \ldots)=
\end{aligned}
$$

保

هـ تحنف التفاعلات الكيميانية تبعا للتغيرات المرارية المماحبة لها إلى :

تفاعلات ماصة للحرارة

التفاعلات الماصة للحرارة هى تفاعلات يلزم لحدونها امتصاص طافة حرارية من الوسط المحبط ، فتنخفض درجة حرارته.

تفاعلات ماصة للحرارة

تفاعلات طاردة للحرارة التفاءلات الطاردة للحرارة هی تفاعلات ينتج عنها انطلاق طاءّة حرارية، كناتج من نواتج التفاعل إلى الوسط المحيط، فترتفع درجة حرارته

تفاعلات طاردة للحرارة

* تنتقل الطاقة الحرارية من الوسط المحيط إلى النظام، مما يؤدى إلى : - ارتفاع درجة حرارة النظام - انخفاض درجة حرارة الوسط المحيط. „يقصد بالوسط المحيط المنيب والهواء المحيط بابناء التفاعل"

تفاعل طارد للحرارة

$$
\text { (التنير فى المحتوى الحراري القياسى (} \Delta \mathbf{H}^{\circ}
$$

 بإشارة موجبة، لان المحتوى الحرارى (الإنثالبى المولادى) للنواتج أكبر من المحتوى الحرارى للمتفاعلات. $\because \mathrm{H}_{\text {prod }}>\mathrm{H}_{\text {react }}$
$\therefore \mathrm{H}_{\text {prod }}-\mathrm{H}_{\text {react }}=\Delta \mathrm{H}^{\circ}>0$

* * *

$\because \mathrm{H}_{\text {prod }}<\mathrm{H}_{\text {react }}$
$\therefore \mathrm{H}_{\text {prod }}-\mathrm{H}_{\text {react }}=\Delta \mathrm{H}^{\circ}<0$
\qquad
المذطط العام للتفاءل

تفاعل تفكل كربونات لماغنسيوم بالحرارة إلى أكسيد الماغنسيوم وغاز ثانى أكسيد الكربن
$\mathrm{MgCO}_{3(\mathrm{~s})}+117.3 \mathrm{~kJ} / \mathrm{mol} \longrightarrow$

$$
\mathrm{MgO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

مخطط الطامَة للتفاعل
$\mathrm{MgCO}_{3(\mathrm{~s})} \xrightarrow{\Delta} \mathrm{MgO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$

$$
\Delta \mathrm{H}^{\circ}=+117.3 \mathrm{~kJ} / \mathrm{mol}
$$

تفاعل اتحاد غازى الهيلروجِين والأكسحِين
لتكوين الماء

$$
\mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}+285.8 \mathrm{~kJ} / \mathrm{mol}
$$

$$
\mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

$$
\Delta \mathrm{H}^{\circ}=-285.8 \mathrm{~kJ} / \mathrm{mol}
$$

(1) التفاعل الطارد للحرارة يككن مصحوب بانطلاق قدر منٍ الطاقة الحرارية، لأن مجموع المحتَى الحرارى
 المحتوى الحرادى للمواد الناتجة فیى صورة طاقة منطلقة. (1) التفاعـل المـاص للحرارة يكــن مصحوب بامتصناص قدر مـن الطاقة الحراريـة، لأن مجموع المحتوى الحرارى اللمواد الناتجة يكهن أكبر مما للمواد المتفاعلة، وتبعًا لقانون بقاء الطاقة لابد من تعويض النقص

فى المحتوى الحرادى للمواد المتفاعلة فى صورة طاتة ممتصة.

(1) من الشكل المقابل : عند إذابة كبريتات النحاس (II) اللامائية فـى المـاء تـرتـفـع قـراءة الــتـرمــومـــــــر، وهـذا يـعـنى أن هـذه العـمــــــــة
(i) ماصة للحرارة وقيمة (i)
?

(1) طاردة للحرارة وقيمة ΔH لها بإشارة موجبة.

- درجة حرارة الماء قد ارتفعت.
: هذه العملية طاردة للحرارة.
وعليه يستبعد الاختيارين (i) ، (i)
- \because قيمة H للتفاعل الطارد للحرارة تكهن بإشارة سالبة.
(د) يستبد الاختيار \therefore
الحـل : الاختيار الصحيح :
(i) أى من مخططات الطاقة الآتية يعبر عن تفاعل انحلال حرارى يتم فى أقصر وقت ممكن ؟

(1)

\bigodot

(ب)

(i)
:
ت تفاعل الاندلال الحرارى يكن تفاعل ماص للحرارة، أى أن المحتوى الحرارى للنواتج أكبر من المحتوى الحرارى للمتفاعلات. (د) ، يستبع الاختـارين

(i) (\therefore
(الاختيار الصحيع :
\qquad

Test Yourself

مـن مـخـطط الطـاقـة المــابـل :

 ما قيمة التغير فى المحتوى الحرارى للتفاعل الحادث ؟(a) $-170 \mathrm{~kJ} / \mathrm{mol}$
(b) $-75 \mathrm{~kJ} / \mathrm{mol}$
(C) $+70 \mathrm{~kJ} / \mathrm{mol}$
(d) $+240 \mathrm{~kJ} / \mathrm{mol}$

فكـرة الحـل :

: المتصى الحرارى للنواتج المتوى الحرارى اللمتفاعلات.
: التفاعل للحرارة وتكون قيمة $4 H$ له بإثـارة وعليه يستبعد الاختيارين
$\Delta \mathrm{H}=\mathrm{H}_{\text {prod }}-\mathrm{H}_{\text {react }}$
\qquad
الحـل : الاختيار الصحيح :

المعادالة الكيميائية الحراربة

- الععادلة الكيمبائية الحرارية هى معادلة كبميائية رمزية موزونة تتضمن قيمة التغير فى المحتوى الحرارى (الإنثالبى المولارى) المصاحب للتفاعل والذى يمثل أحبانًا فى المعاُلة كأحد المتفاعلات أو النواتج. الجدول التالى يوضح الشروط الواجب مرأعاتها عند كابة المعادلة الكيميائية الحرارية : شروط كتابة المعادلة الكيميانية الحرارية

$\mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(l)} \Delta \mathrm{H}^{\circ}=-285.8 \mathrm{~kJ} / \mathrm{mol}$	(1) يلـزم أن تكـــن المعـادلة موزونة، ويمكن كتابة المعاملات فى صورة كسود.
$\mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})} \Delta \mathrm{H}^{\circ}=-242 \mathrm{~kJ} / \mathrm{mol}$ "	 اللمتفاعلات والنواتع.
$\begin{aligned} & \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{N}_{2} \mathrm{H}_{4(\mathrm{l})} \quad \Delta \mathrm{H}^{\circ}=+91 \mathrm{~kJ} / \mathrm{mol} \\ & \mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})} \Delta \mathrm{H}^{\circ}=-890 \mathrm{~kJ} / \mathrm{mol} \end{aligned}$	© أن تكهن قيمة C ، مسبوقة بإشارة : - موجبة إذا كانت العملية ماصة للحرارة. - سالبة إذا كانت العملية طاردة للحرارة.

	 نفـس العمليـة علــى قيمــة التغيـر فــى المتــوى الحـرارى
$\begin{array}{ll} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(l)} & \Delta \mathrm{H}^{\circ}=+6 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} & \Delta \mathrm{H}^{\circ}=-6 \mathrm{~kJ} / \mathrm{mol} \end{array}$	(0) عند عكس العملية (اتجاه سير التفاعل)، يتم عكس إشارة

- عند ونن المعادلة الكيميائية الحرارية يمكن كتابة المعاملات فى صورة كسود وليس بالضصروة أعداد صحيحة، لأن المعاملات تمثل عدد مولات المتفاعلات والنواتج وليس عدد الجزيئات.
- يلزم كتابة الحالة الفيزيائية لكل من المتفاعلات والنواتج فى المعادلة الكيميائية الحرارية، لأن المحتوى الحرارى (الإنتالبى المولارى) للمادة يتغير بتغير حالتها الفيزيائية.

Worked Examples

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta \mathrm{H}^{\circ}=x \mathrm{~kJ} / \mathrm{mol} \quad: \quad \text { من العملية الآتية (1) } \\
& \text { أى مما يأتى يعبر عن نوع هذه العملية وقيمة (X) ؟ }
\end{aligned}
$$

قيمة)	نوع العملية	الاختيارات
$+6.03 \mathrm{~kJ} / \mathrm{mol}$	طاردة للحرارة	(i)
$-6.03 \mathrm{~kJ} / \mathrm{mol}$	طاردة للحرارة	(-)
$+6.03 \mathrm{~kJ} / \mathrm{mol}$	ماصة للحرارة	\bigcirc
$-6.03 \mathrm{~kJ} / \mathrm{mol}$	ماصة للحرارة	(${ }^{\text {(}}$

فكـرة الهــل :
" تحل الثلج إلى ماء سائل يلزمه امتصاص قدر من الطاقة الحرارية لإضعاف الروابط الهيدروپينية بين جزيئات الثلج.
: هذه الحملية ماصة للحرارة.
(ب) ، (i) وعليه يستبد الاختيارين
ق قيمة $\because H^{\circ}$ للتفاعل الماص للحرارة تككن بإشارة موجبة.
(د) يستبع الاختيار

\qquad
(D احسب مقدار التفير فی الإنثالبى لعملية انحلال g 252 من كربونات الماغنسيوم بالحرارة. $\mathrm{MgCO}_{3(\mathrm{~s})} \longrightarrow \mathrm{MgO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}^{\circ}=+117.3 \mathrm{~kJ} / \mathrm{mol} \quad: \quad$ تبعا للتفاعل $[\mathrm{Mg}=24, \mathrm{C}=12, \mathrm{O}=16$]

$$
\begin{aligned}
& 84 \mathrm{~g} / \mathrm{mol}=(16 \times 3)+12+24=\mathrm{MgCO}_{3} \text { الكتلة المولية من مركب } \\
& 3 \mathrm{~mol}=\frac{252}{84}=\frac{\text { عدد مولات }}{\text { ع }}=\frac{\text { الككلة المولية من المادة }}{\text { المادة }}=\mathrm{MgCO}_{3} \\
& \mathrm{MgCO}_{3(\mathrm{~s})} \longrightarrow \Delta \mathrm{H} \\
& 1 \mathrm{~mol} \\
& +117.3 \mathrm{~kJ} / \mathrm{mol} \\
& 3 \mathrm{~mol} \\
& \text { ? kJ }
\end{aligned}
$$

$$
\begin{aligned}
& 351.9 \mathrm{~kJ}=117.3 \times 3=
\end{aligned}
$$

Test Yourself

مخطط الطاقة المقابل يعبر عن التفاعل : $X+Y \longrightarrow Z$

ما قيمة التفير فى المحتوى الحرلارى للتقاعل

$$
q 2 Z \longrightarrow 2 X+2 Y
$$

(a) +100 kJ
(b) +200 kJ
(C) -100 kJ
(d) -200 kJ

فكـرة الحـل :
للحرارة، \qquad : المخطط يعبر عن توفاعل $+100 \mathrm{~kJ} / \mathrm{mol}=$ \qquad
\qquad وقيمة ΔH لهذا التفاعل =
$2 \mathrm{Z} \longrightarrow 2 \mathrm{X}+2 \mathrm{Y}$ اللحصنول على التفاعل \therefore للحرارة، \qquad يتم الضرب $2 \times$ وعكس اتجاه التفاعل، فيصبح التقاعل وقيمة ΔH له تكمن بإشارة $\mathrm{kJ}=$ \qquad \times \qquad $=\Delta \mathrm{H} \therefore$

ةh

ك تختزن الروابط الكيميائية طاقة كيميانية فى مسرة طاقة وضع، طاقة الرابطة هى مفدار الطاقة اللازمة لكسر الرابطة أو الطافة المنطلفه عند نكوبن الرابطة فى مول واحد من المادة.
فى التّفاعل الكيميائى يتم

| كسر الروابط الموجودة بين ذرات جزيئات |
| :---: | :---: |
| المواد المتفاعلة |

تكوين الروابط يكون مصحوبً بانطلاق طاكة
(17)

نكوين ذرات

كسر الروابط يستلزم امتصاص طاقة

تكوين الروابط عملية طاردة للحرارد، لانها تكن مصحوبة بانطلاق مقدار من الطاتَه

إلى الوسط المحيط،
وتكمن قيمة ΔH° لها بإشارة سالبة

تكوين الروابط عملية طاردة للحرارة

كسر الروابط عملية ماصة للحرارة، لأنه يلزم لحدوثها امتصاص مقدار من الطاقة

من الوسط المحيط،
وتكن قيمة ΔH° لها بإشارة موجبة

كسر الروابط عملية ماصة للحرارة

* ويمثل التفير فى المحتىى الحرارى للتفاعل (DH) المجموع الجبرى للطاقات الممتصة و المنطلقة أثناء التفاعل الكيميائى
+ الطاقة المنطلقة أثناء تكوين روابط النواتع "بإشارة سالبةه، ("بإشارة موجبةه،
\qquad
 هيث انه فی ：

التفاعل الطارد للحرارة

يكن مقدار الطاقة المنطلقة أثناء تكوين الروابط فى جزيئات النواتج

أكبر من
مقدار الطاقة الممتصة أثناء كسر الروابط فى جزيئات المتفاعلات أثناء تكوين الروابط في جزيئات النواتع

بإشارة موجبة

بإشارة سالبة

		والجدولان التاليان يوضحان متوط الطاقة لبعض الرفابط ：	
متوسط طاقة الرابطة （ $\mathrm{kJ} / \mathrm{mol}$ ）	الرابطة	طاقة الزابطة （kJ／m	الرابطة
346	$\mathrm{C}-\mathrm{C}$	432	$\mathrm{H}-\mathrm{H}$
610	$\mathrm{C}=\mathrm{C}$	467	$\mathrm{O}-\mathrm{H}$
835	$\mathrm{C} \equiv \mathrm{C}$	413	$\mathrm{C}-\mathrm{H}$
358	C－O	389	$\mathrm{N}-\mathrm{H}$
803	$\mathrm{C}=\mathrm{O}$	498	$\mathrm{O}=\mathrm{O}$

ما معنى قولنا أن متوسط طاقة الرابطة（C－C）يساوى 346 kJ／mol
 346 kJ فى الظروف القياسية يساوى

Worked Examples

متوسط طاهج الرإبطة
(kJ/mol) الرابطة

413	$\mathbf{C}-\mathbf{H}$
498	$\mathbf{O}=\mathbf{O}$
803	$\mathbf{C}=\mathbf{O}$
467	$\mathbf{O}-\mathbf{H}$

(1) مستعينًا بقيم متوسط طاقة الروابط الموضحة

بالجدول المقابل, احسب $\mathbf{~ ا ل ل ت ف ا ع ل ~ ا ل ت ا ل ى ~ : ~}$

$$
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})}
$$

تُــم حدد نوع التفاعــل [طارد أم مــاص للحرارة]،
مع بيان السبب.

للإِضاح فقط

تمتص طاقة أثناء كسر الروابط

\sharp

تنطلق طاقة عند تكوين الروابط

- الطاقة الممتصه أثناء كسنر روابط المتفاعات
$=[4(\mathrm{C}-\mathrm{H})+2(\mathrm{O}=\mathrm{O})\}=[(4 \times 413)+(2 \times 498)]=+2648 \mathrm{~kJ}$
- الطاقة المنطلقة أثناء تكوين روابط النواتج
$=[2(\mathrm{C}=\mathrm{O})+2 \times 2(\mathrm{O}-\mathrm{H})]=[(2 \times-803)+(4 \times-467)]=-3474 \mathrm{~kJ}$
الطاقة الممتصة أثناء كسر روابط المتفاعلات + الطاقة المنطلقة أثناء تكوين روابط النواتج $=\Delta H$ $\Delta \mathrm{H}=(+2648)+(-3474)=-826 \mathrm{~kJ} / \mathrm{mol}$

ق \because قيمة O بإشارة سالبة.
․ التفاعل طارد للحرارد.

مقدار الطاقة الممتصة أثناء كسر الروابط فى جزيئات المتفاعلات

لأن دقدار الطايَة المنطلقَ أثناء تكوين الروابط فى جزيئات النواتِج : ما قِيمة متوسط طاقة الرابطة لغاز الأكسجين من المعادلة التالبية : $2 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \longrightarrow \mathbf{2 \mathrm { H } _ { 2 (\mathrm { g }) }}+\mathrm{O}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=+506 \mathrm{~kJ}$ علمّا بأن :
(a) $+242 \mathrm{~kJ} / \mathrm{mol}$
(b) $+389 \mathrm{~kJ} / \mathrm{mol}$
(c) $+498 \mathrm{~kJ} / \mathrm{mol}$
(d) $+62+\mathrm{kJ} / \mathrm{mol}$
\qquad

$$
2(\mathrm{H}-\mathrm{O}-\mathrm{H}) \quad \longrightarrow \quad 2(\mathrm{H}-\mathrm{H}) \quad+\quad(\mathrm{O}=\mathrm{O})
$$

\% الطاقة الممتصة أنثاء كسر روابط المتفاعلات
$=[2 \times 2(\mathrm{O}-\mathrm{H})]=4 \times 467=+1868 \mathrm{~kJ}$
الطاقة الممتصة أثناء كسر روابط المتفاعلات + الطاقة المنطلقة أثناء تكوين روابط النواتج $=\Delta H$ $\Delta H=(+1868)+$ الطاقة المنطلقة أثناء تكوين روابط النواتج
$+506=(+1868)-[2(\mathrm{H}-\mathrm{H})+(\mathrm{O}=\mathrm{O})]$
$+506=(+1868)-(2 \times 432)-(\mathrm{O}=\mathrm{O})$
$\therefore(\mathrm{O}=\mathrm{O})=+1868-864-506=+498 \mathrm{~kJ} / \mathrm{mol}$

> (c) : الصـل :الاختـيار الصحيح

Test Yourself

متوسط طاقة الرابط/ $(\mathrm{kJ} / \mathrm{mol})$
413
346
340
$\mathbf{C}-\mathbf{H}$

(1) من الجدول المقابل و التفاعل التالى :

$$
2 \mathrm{C}+5 \mathrm{H}+\mathrm{Cl} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}_{(\mathrm{g})}
$$

ما مقدار التغير فى الإنثالبى ؟
(a) $+3097 \mathrm{~kJ} / \mathrm{mol}$
(b) $-2751 \mathrm{~kJ} / \mathrm{mol}$
(C) $+2751 \mathrm{~kJ} / \mathrm{mol}$
(d) $-3097 \mathrm{~kJ} / \mathrm{mol}$

فكـرة الحــل :

? التفاعل يتضمن فقط تكوين روابط فى جزيئات النواتج : يستبعد الاختيارين
\qquad

$$
=\Delta \mathrm{H} \therefore
$$

متوسط طاقة الرابطة ($\mathrm{kJ} / \mathrm{mol}$)	الرابطة
946	$\mathrm{N} \equiv \mathrm{N}$
432	$\mathrm{H}-\mathrm{H}$
163	N-N
389	$\mathrm{N}-\mathrm{H}$

(1) من التفاعل التالى :

$$
\mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2(l)}
$$

وبالاستعانة بقيم متوسط طاقة الروابط الموضحة بالجدول المقابل : أى مما يـاتّى يعبر عن هيمة

نوع التفاعل	قيمة	الاختيارات
طارد للحرارة	-91 kJ/mol	(i)
ماص للحرارة	+91 kJ/mol	-
طارد للحرارة	$-950.5 \mathrm{~kJ} / \mathrm{mol}$	\bigcirc
ماص للحرارد	$+950.5 \mathrm{~kJ} / \mathrm{mol}$	(1)

- الطاتة الممتصة أثناء كسر روابط المتفاعلات
$=[(\mathrm{N} \equiv \mathrm{N})+2(\mathrm{H}-\mathrm{H})]=[$.
$+(\cdots$ \qquad x. \qquad .)] =
- الطاقة المنطلقة أثناء تكوين روابط النواتع $=[4(\mathrm{~N}-\mathrm{H})+(\mathrm{N}-\mathrm{N})]=[($ \qquad x \qquad .) + (.)] =
= الطاقة الممتصة أثناء كسر روابط المتفاعلات + الطاقة المنطلقة أثناء تكوين روابط النواتج $\Delta H=$ \qquad .$)+(\ldots \ldots \ldots \ldots$. \qquad ..

وعليه يستبعد الاختيارين

قيمة $\because H$ بابشارة
. التفاعل

الحـل : الاخختـيار الصحيع :

الختر الإجابة الصحيحة مما بين الإجابات المعطاة :

(1) طاقة الإلكترونات فـ مستوى الطاقة هى محصلة
((
ب(
٪ (طاتة الوضع + طاقة الحركة) لكل إلكترون.
(ـ) (طاقة الوضّع × طاقة الحركة) لكل إلكترون.

$$
\begin{aligned}
& \text { (Y) الظروف القياسية للتفاعل هى } \\
& 0^{\circ} \mathrm{C} \text { ضi) } 1 \text { atm و درجة حرارة (i) } \\
& 25^{\circ} \mathrm{C} \text { C } 1 \text { atm } 1 \text { و درجة } 1 \text { (i) }
\end{aligned}
$$

$$
\begin{aligned}
& 273{ }^{\circ} \mathrm{C} \text { (د) (د atm } 1 \text { و درجة حرارة }
\end{aligned}
$$

(ץ) إذا كان المحتوى الحرارى للنواتج أقل من المحتوى الحرارى للمتفاعلات، فإن التفاعل يكون
٪ (i) ماص للحرارة.

ج \because قيمة ΔH له بإثشارة موجبة.
zero =
(ع) أى مما يأتى يعبر عن كل من نوع عملية كسر الروابط وإشارة

إلشارة	نوع العملية	الاختيارات
سالبة	ماصة للحرارة	(i)
موجبة	ماصة للحرارة	(-)
سالبة	طاردة للحرارة	\bigcirc
موجبة	طاردة لالحرارة	($)$

الامتحان كيمياء- شرح/ا /ث/ترم ثان (P :

$$
2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}+112 \mathrm{~kJ}
$$

(1) يختلف الإنثالبى المولارى من مادة لأخرى.
(Y) يلزم كتابة الحالة الفيزيائية لكل من المتفاعلات والنواتج فى المعادلة الكيميانية الحرارية. (r) التفاعلات الماصة للحرارة تكون مصحوبة بامتصاص قدر من الطاقة الحرارية. () استخدام مفهوم متوسط طاقة الرابطة بدلًا من طاقة الرابطة.
:
33.58 kJ/mol (ا) الإنثالبى المولارى لغاز NO -383.5 kJ/mol قيمة (Y
(r) قيمة H (لتفاعل ما بإشارة موجبة.

432 kJ/mol (

المحتوى الحرارى
$\mathrm{CH}_{4(\mathrm{~s})}+2 \mathrm{O}_{2(\mathrm{k})} \longrightarrow \mathrm{CO}_{2(\mathrm{k})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})} \quad \Delta \mathrm{H}^{\circ}=-890 \mathrm{~kJ} / \mathrm{mol} \quad$: من التفاعل المقابل (1) كمية الحرارة المنطلقة من احتراق 3 mol 3 من الميثان تساوى
(a) -2670 kJ
(b) -890 kJ
(C) -296.6 kJ
(d) +2670 kJ
$2 \mathrm{Na}_{2} \mathrm{O}_{2(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{O}_{(1)} \longrightarrow 4 \mathrm{NaOH}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=-126 \mathrm{~kJ} \quad: \quad$:
(a) +252 kJ
(b) +63 kJ
(c) +3.9 kJ
(d) +78 kJ

(a) -0.98 kJ
(b) -1.96 kJ
(c) -196 kJ
(d) -98 kJ

(a) +23 kJ
(b) -9.26 kJ
(c) -18 kJ
(d) +12 kJ

التفاعلات الطاردة للحرارة و التفاعلات الماصة للحرارة
 © من الشكن الطقابل : عند إذابة ملح يوديد البوتاسيوم في اهاه
 هذه العملية وإشارة ΔH لها ؟

إلشارة	نوع العملية	الاختيارات
موجبة	ماصة للحرارة	(i)
سالبة	ماصة للحرارة	(\%)
سالبة	طاردة للحرارة	\bigcirc
موجبة	طاردة للحرارة	(1)

ها أى مما يأتى يعبر عن نوع التفاعل الكيميائى الحادث عند احتكاك عود الثقاب بجسم خشن ؟ (i) تفاعل ماص للحرارة / بسبب استخدام الطاقة عند حك عود الثقاب. ج تفاعل ماص للحرارة / بسبب انطلاق الطاقة عند احتراق عود الثقاب. ؟ تفاعل طارد للحرارة / بسبب استخدام الطاقة عند حك عود الثقاب. (د) تفاعل طارد للحرارة / بسبب انطلاق الطاقة عند احتراق عود الثقاب.

$$
2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \text { : من التفاعل المقابل }
$$ أى مها يأت يعبر عن هذا التفاعل ؟

(a) $\frac{\mathrm{H}_{\text {react }}}{\mathrm{H}_{\text {prod }}}=1$
(b) $\frac{\mathrm{H}_{\text {react }}}{\mathrm{H}_{\text {prod }}}>1$
(C) $\frac{\mathrm{H}_{\text {react }}}{\mathrm{H}_{\text {prod }}}<1$
(d) $\frac{\mathrm{H}_{\text {prod }}}{\mathrm{H}_{\text {react }}}>1$

اتجاه التفاعل

للتفاعل المعبر عنه بالشكـل البيانى المقابـل ؟ الما
(a) (1).
(b) (2).
(C) (3).
(d) (4).

© الحادث فى احد التفاعلات الكيميائية.

ما قيمة $4 H$ لهذا التفاعل ؟
(a) -120 kJ
(b) -30 kJ
(c) +30 kJ
(d) +120 kJ

		الشكل البيان المقابل : يوضح مخطط الطاقة لأحد التفاعلات الكيميانية. وقيمة ΔH له ؟		
		قا	نوع التفاعل	الاختيارات
		+20 kJ	ماص للحرارة	(i)
		+20 kJ	طارد للحرارة	-)
		-20 kJ	ماص للحرارة	\bigcirc
		$-20 \mathrm{~kJ}$	طارد للحرارة	(3)

(ألى من مخططات الطاقة التالية يعبر عن تفاعل انحلال حرارى يتم فی أطول وقت ممكن ؟

(a)

(b)

(c)

(d)
(ITI
المحتوى

(a)
المحتري
(b)

(c)

(d)

(a) $\mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{aq})} \longrightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
(b) $2 \mathrm{MgO}_{\text {(s) }} \longrightarrow 2 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}$
(c) $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})}$
(d) $2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

المحادلة الكيميانية الحرارية

$$
\begin{aligned}
& \mathrm{A}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{~A}_{(\mathrm{g})}, \\
& \Delta \mathrm{H}=\chi \mathrm{kJ} / \mathrm{mol} \\
& \text { من التفاعل المقابل : } \\
& \text { ما قيمة } 4 \mathrm{~A}_{(\mathrm{g})} \longrightarrow 2 \mathrm{~A}_{2(\mathrm{~g})} \text { : للتفاعل }
\end{aligned}
$$

(a) (2x) kJ
(b) $(-2 x) \mathrm{kJ}$
(c) $\left(\frac{x}{2}\right) \mathrm{kJ}$
(d) $\left(-\frac{x}{2}\right) \mathrm{kJ}$

$$
\mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=+66 \mathrm{~kJ}
$$

ما مقدار التغير فی الإنثالبى عند خلط 2 mol من النيتزوجين مع 2 mol 2 من الأكسچين ؟
(a) +132 kJ
(b) +66 kJ
(c) +33 kJ
(d) +16.5 kJ

عند تطهير يديك بالكحول، يتطاير الكحول سريعًا وتشعر أن يديك أصبحت أكثر برودة. ما المعادلة التى تعبر عن هذه العملية ؟
(a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{v})} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)}$
(b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(v)} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)}$

$$
\Delta \mathrm{H}=-846 \mathrm{~kJ} / \mathrm{kg}
$$

(c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{v})}$

$$
\Delta \mathrm{H}=+846 \mathrm{~kJ} / \mathrm{kg}
$$

(d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{v})}$

$$
\Delta \mathrm{H}=-846 \mathrm{~kJ} / \mathrm{kg}
$$

 (-) الزوابط فى جزيئات المتُاعلات أقوى كن الروابط فى جرينات النواتع. (ج) المتتوى المرارى للنواتته أقل من المحتوى الحرارى للمتفاعلات.
(3) يتم تـقائيُّا فى درجات الحزارة المنخفضة، $\mathrm{N}_{2}+$ Energy $\longrightarrow \mathrm{N}+\mathrm{N} \quad$:

ما العبارة التى تحبر عن العملية السابقة ؟
(1) يحدث كسز للزوابط والملية ماصة للحرارة.
(ج يدءث كسز للروابط والعملية طاردة للحرارة.
○
(1) يحدث تكوين للروابط والمملية مامةة للحرارة.

(i) الطاقة الممتصة أثناء كسر الروابط أكبر من تلك الناتجة أثناء تكوين الروابط. ج (الطاقة الناتجة أثناء تكوين الروابط أكبر من تلك اللازمة لكسر الروابط. ج $ع$ عدد الروابط المكسورة أكبر من عدد الروابط المتكونة. (ـ) عدد الروابط المتكونة أكبر من عدد الروابط المكسورة.

هـ تستغل الخلايا النباتية الطاقة الضوئية فـ القيام بعملية البناء الضونى.
أى مها يأت يعبر عن عملية البناء الضونى ؟
(i) عملية ماصة للطاقة / لأن الطاقة المنطلقة عند تكوين الروابط أقل من الطاقة اللازمة لكسر الروابط. ج عملية ماصة للطاقة / لأن الطاقة المنطلقة عند تكوين الروابط أكبر من الطاقة اللازمة لكسر الروابط. ٪ عملية طاردة للطاقة / لأن الطاقة المنطلقة عند تكوين الروابط أقى من الطاقة اللازمة لكسر الرو'بط. (〕 عملية طاردة للطاقة / لأن الطاقة المنطلقة عند تكوين الروابط أكبر من الطاقة اللازمة لكسر الروابط.
إ ف التفاعل الحرارى : RQ

أى مما يأتى يُعبر عن التفاعل الذى ينتج أكبر قدر من الحرارة ؟

RQ الرابطة فق	Q الرابطة	الرابطة فو	الاختيارات
فوية	قودية	قوية	(i)
ضِيفة	قوية	قوية	()
قوية	ضويفة	ضنيفة	\bigcirc
ضقيفة	ضصيفة	ضصيفة	($)$

罒
$(1) 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 4 \mathrm{H}+2 \mathrm{O}$
(2) $4 \mathrm{H}+2 \mathrm{O} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})}$
(3) $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

ما الخطوة (أو الخطوات) التى تعتبر طاردة للحرارة ؟
.
(1) (1) ، غقَط.
(2) \rightleftharpoons
(3) ، (2) ، (1) (1)

يتفاعل غاز الإيثان مع غاز الكلور، تبِعًا للمعادلة :

متوسط طاقة الرإكا (kJ/mol)	الرابطة
340	$\mathrm{C}-\mathrm{Cl}$
346	$\mathrm{C}-\mathrm{C}$
413	$\mathbf{C - H}$
240	$\mathrm{Cl}-\mathrm{Cl}$
430	H-Cl

مستَعينًا بالجدول المثابِ: ما قيمة $\mathbf{~ م ا ل ه ذ ا ~ ا ل ت ش ا ع ل ~ ؟ ~}$
(a) $+117 \mathrm{~kJ} / \mathrm{mol}$
(b) $+1420 \mathrm{~kJ} / \mathrm{mol}$
(C) $-1420 \mathrm{~kJ} / \mathrm{mol}$
(d) $-117 \mathrm{~kJ} / \mathrm{mol}$

$$
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})}
$$

علمًا بان متوسط طاقة الروابط بوحدة (H-H)=432, (O=O)=498، (O-H)=467: kJ/mol).
(a) +467 kJ
(b) -506 kJ
(C) +485 kJ
(d) 0

متوسط طاقة الرابطة ($\mathrm{k}, \mathrm{J} / \mathrm{mol}$)	الرابطة
240	$\mathrm{Cl}-\mathrm{Cl}$
430	H-Cl
413	C-H
340	C-Cl

(b) $-351 \mathrm{~kJ} / \mathrm{mol}$
(c) $+430 \mathrm{~kJ} / \mathrm{mol}$
(d) $-430 \mathrm{~kJ} / \mathrm{mol}$

مستعينًا بقيم متوسط طاقة الروابط الآتية :
$(\mathrm{H}-\mathrm{H})=432 \mathrm{~kJ} / \mathrm{mol},(\mathrm{Br} \frown \mathrm{Br})=193 \mathrm{~kJ} / \mathrm{mol},(\mathrm{H}-\mathrm{Br})=366 \mathrm{~kJ} / \mathrm{mol}$ ما قيمة $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{HBr}_{(\mathrm{g})}$: للتفاعل C (
(a) 1357 kJ
(b) 732 kJ
(C) -107 kJ
(d) -625 kJ
$\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}+\frac{5}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})}$: من التفاعل المقابل وعلمًا بأن متوسط طاقة الروابط بوحدة kJ/mol : $(\mathrm{C} \equiv \mathrm{C})=835 \quad,(\mathrm{C}-\mathrm{H})=413 \quad,(\mathrm{O}=\mathrm{O})=498 \quad,(\mathrm{C}=\mathrm{O})=803, ~(\mathrm{O}-\mathrm{H})=467$ ما مقدار التغير في الإنثالبى ؟
(a) $-4146 \mathrm{~kJ} / \mathrm{mol}$
(b) $-1240 \mathrm{~kJ} / \mathrm{mol}$
(C) $2906 \mathrm{~kJ} / \mathrm{mol}$
(d) $7052 \mathrm{~kJ} / \mathrm{mol}$

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})} \quad \Delta \mathrm{H}=-89 \mathrm{~kJ} \quad: \quad \text { من التفاعل }
$$

(H-H)=432 kJ/mol ، (N ミN)=941 kJ/mol : وعلمًا بان متوسط طاقة الروابط
ما قيمة متوسط طاقة الرابطة (N -
(a) $44.5 \mathrm{~kJ} / \mathrm{mol}$
(b) $387.67 \mathrm{~kJ} / \mathrm{mol}$
(c) $775.3 \mathrm{~kJ} / \mathrm{mol}$
(d) $2326 \mathrm{~kJ} / \mathrm{mol}$

متوسط طاقة الرابطة ($\mathrm{kJ} / \mathrm{mol}$)	الرابطة
240	$\mathrm{Cl}-\mathrm{Cl}$
432	$\mathbf{H}-\mathbf{H}$
430	H-Cl

من الجدول المقابل و التفاعل التالى :

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{HCl}_{(\mathrm{g})}
$$

$$
\text { -1442 kJ للتفاعل تساوى } \mathrm{H} \text { (i) }
$$

$$
\text { -348 kJ اللتفاعل تساوى } \Delta H \text { - }
$$

+94 kJ الطاقة الناتجة عن تكوين 1 المن 1 من النواتج تساوى +188 kJ () الطاقة الناتجة عن تكوين 1 mol من النواتج تساوى 1 من

متوسط طاقة الرابط/ $(\mathrm{kJ} / \mathrm{mol})$	الرابطة
330	$(\mathbf{P}-\mathbf{C l})$
240	$(\mathbf{C l}-\mathrm{Cl})$

(a) $-90 \mathrm{~kJ} / \mathrm{mol}$
(b) $-420 \mathrm{~kJ} / \mathrm{mol}$
(C) $+420 \mathrm{~kJ} / \mathrm{mol}$
(d) $+90 \mathrm{~kJ} / \mathrm{mol}$

Jilmg anlan anfini

| وضح بالرسم مخطط الطاقة لكل من التفاعلات الآتية :
(1) $2 \mathrm{~S}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$

$$
\Delta \mathrm{H}=-792 \mathrm{~kJ}
$$

(2) $\mathrm{CS}_{2(\mathrm{~g})}+3 \mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow \mathrm{CCl}_{4(\mathrm{~g})}+\mathrm{S}_{2} \mathrm{Cl}_{2(\mathrm{~g})}$

$$
\Delta \mathrm{H}=+238 \mathrm{~kJ} / \mathrm{mol}
$$

\qquad
C

(1) $\mathrm{N}_{2} \mathrm{H}_{4(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})} \quad \Delta \mathrm{H}=-622 \mathrm{~kJ} / \mathrm{mol}$
(2) $\mathrm{N}_{2} \mathrm{H}_{4(l)}+2 \mathrm{~F}_{2(\mathrm{~g})} \longrightarrow \mathrm{N}_{2(\mathrm{~g})}+4 \mathrm{HF}_{(\mathrm{g})} \quad \Delta \mathrm{H}=-1166 \mathrm{~kJ} / \mathrm{mol}$

(1) (1)

بإكـال مشفطط التفاعل المقابل.
(Y) أى كن هذين التفاعلين يفضل استخدامه فــ توفـيـر الطاقــهة لصواريـخ الفضـاء 9 -

مخطط الطاقة المقابل يعبر عن تفاعل الخارصين
مح حمض الكبريتيك المخفف :
(1) أضف إلى مخطط الطاقة المقابل :

1- رموز وصيغ النواتج، مـ كتابة حالتها الفيزيائية.
Y- سهم يعبر عن التغير فى الإنتالبى.
(Y) هل التفاعل طارد أم ماص للحرارة ؟ مـع التفسير

俍 والرابطة (X Y) رابطة قوية، حدد نوع التفاعل، مع ذكر السبب.

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{HCl}_{(\mathrm{g})} \quad: \quad \text { من التفاعل }
$$

 $(\mathrm{H}-\mathrm{H})=104,(\mathrm{Cl}-\mathrm{Cl})=58,(\mathrm{H}-\mathrm{Cl})=103$
(Y) هل التفاعل طبارد أم ماص للحرارة ؟ مـع بيان السبب. (ץ) ارسم مخطط الطاقة لهذا التفاعل.

$(-\mathrm{CI})=340 \mathrm{~kJ} / \mathrm{mol}$
$(-\mathrm{C})=346 \mathrm{~kJ} / \mathrm{mol}$
$(-\mathrm{F})=450 \mathrm{~kJ} / \mathrm{mol}$
(الaيثة البنائية المقابلة تُعبر من أهد مركبات الكلور وفلوروكي بون
التى تسبب تآكل طبقة الأوزون بفعل الأشعه فوق البنفسجية : (1) احسب مقدار الطاقة المتصس لكسر الروابط فى هول واحد من هذا المركب.
(Y) لماذا تتحرر ذرات الكلور عند سقوط الاششعة فوق البنفسجية على هذا المركب ولا تتحرر ذرات الفلور ؟
 400 kJ من هذا المركب تساوى

	الرابطة
534	$\left(\mathrm{SO}_{2}\right){ }_{\text {ف }} \mathrm{S}=\mathrm{O}$
498	$\mathrm{O}=0$

(S = O) (
 وضح ذلك بالحسابات الكيميائية على

التفاعل التالى :

صوز التخ'تير فی المحتوى الحرلןى

ال الán الثانىا

 .

flcillailg
بيد درالسة هذا الفصل يجب أن يكون الطالب قادزا على ان : (() (()

 (0) (0) (1)

(v) يحسب حرارة الاحتراق القياسية و حرارة التكونن القَياسية، (() بستنثج العلافة بين ثبات المركبات و حرارة التكونن. (1) (1) يستنبط نص قانون هس و اهميته.

-

O (ज)

 - تنيرًا فيزيائئًا.

من صود التغيرات الحرارية المصاحبة للتنيرات الفيزيائية : حرارة النخفيف المباسية

يصـاحب عملية ذوبان مادة صلبة فى سائل ارتفاع أو انخفاض غی درجة حرارة المحلول الناتع.
Oc| إذابة
تيدروكس درجيد الصوديوم لمحلول الناتى
بالذوبان الطارد للحرارة

$$
\text { وتكن قيمة حرارة الذوبان } \Delta H_{\text {sol }}^{\circ}
$$

بإشارة سالبة

ويُعبر عنه بالمعادلة

1 (الـحص.ول عال محاول مشبع فى الظروفـ القياسيل،.

P

$$
\mathrm{q}_{\mathrm{p}}=\mathrm{m}
$$

C

ΔT
$\left({ }^{\circ} \mathrm{C}\right)$

1 خرارة الدوبان الوولارية هى مقدار التغبر الحرارى الناتج عن ذوبان مول من المذاب فى كمية من المذيب لتكوين لتر من المحلول. 1 وإذا كانت كمية المادة المذابة لا تساوى 1 mol 1 يمكن حساب حرارة الذوبان المولارية، من العلاقة :

ما معنى قولنا أن :
(1) حــرارة الذويـان القياســية لبروميــد الليثيوم \mid (Y) حـرارة الذوبـان المولاريـة ليوديــد الفضـة $\mathrm{q}+84.4 \mathrm{~kJ} / \mathrm{mol}$ ¢ $-49 \mathrm{~kJ} / \mathrm{mol}$

1 mol كميـة الحـرارة الممتصة عند ذوبـان من يوديد الفضة فى كمية من المذيب لتكوين L 1 من المحلول 84.4 kJ تساوى

1 mol كمية الحرارة المنطلقة عند ذوبان
من بروميد الليثيوم فى كمية من المذيب
للحصول على محلول مشبع منه
49 kJ فى الظروف القياسية تساوى

Worked Example

عور (r) حرارة الذوبان المولارية.

من $44.4^{\circ} \mathrm{C}$ منس احسب: (1) كمية الحرارة المصاحبة لعملية الذوبان (r) هل هذا الذوبان طارد أم ماص للحرارة ؟
$\left.\mathrm{p}_{\mathrm{N}}=23,0=16, \mathrm{H}=1\right]$

الحـل :

$$
\begin{equation*}
\left.\mathrm{R}_{\mathrm{NOOH}}=80 \mathrm{~g} \cdot \mathrm{c}=4.18 \mathrm{~J} / \mathrm{g} . .^{\circ} \mathrm{C}\right] \cdot\left[\mathrm{m}_{(\mathrm{J}, \mathrm{~L} / 1)}=1000 \mathrm{~g} \cdot \mathrm{~T}_{1}=20^{\circ} \mathrm{C}\right] \cdot \mathrm{T}_{2}=44.4^{\circ} \mathrm{C} \tag{}
\end{equation*}
$$

$4=\mathrm{mc} \Delta \mathrm{T}$
$=1000 \times 4.18 \times(44.4-20)=+101992 \mathrm{~J}=+101.992 \mathrm{~kJ}$
$40 \mathrm{~g} / \mathrm{mol}=1+16+23=\mathrm{NaOH}$ الكتلة المولية من مركب
$2 \mathrm{~mol}=\frac{80}{40}=\frac{1}{80}=\mathrm{NaOH}$ عدد مولات

الذوبان طارد للحرارة.

Test Yourself

(1) عند إذابة g 80 من نترات الأمونيوم فى كمية من الماء لتكوين لتر من المحلول كانت درجة الحرارة الاشيأة $\mathrm{N}=14, \mathrm{O}=16, \mathrm{H}=1$]

$q_{\mathrm{p}}=\mathrm{mc} \mathrm{\Delta T}$

$$
\mathrm{AH}_{\mathrm{sol}}=\frac{-q_{p}}{\mathrm{n}}=\frac{\ldots \ldots \ldots \ldots}{\ldots \ldots \ldots \ldots}=+\mathbf{2 5 . 0 8} \mathrm{kJ} / \mathrm{mol}
$$

يعبر التغير الحرارى لهذا الذوبان عن حرارة الذوبان المولارية /

$$
\begin{aligned}
& \text { لإنٍ : ه عدد مولات المادة المذابة (نترات الأمونيوم) = } \\
& \text { • حجم المحلول الناتج = } \\
& \text { (r) الذوبات . }
\end{aligned}
$$

$$
\begin{aligned}
& =\ldots \ldots \ldots \times \ldots \ldots \ldots . \times(\ldots \ldots \ldots-\ldots \ldots \ldots . .)=\ldots \ldots \ldots . \mathrm{J}=-25.08 \mathrm{~kJ} \\
& 80 \mathrm{~g} / \mathrm{mol}=(16 \times 3)+14+(1 \times 4)+14=\mathrm{NH}_{4} \mathrm{NO}_{3} \text { الكتلة المولية من مرك }
\end{aligned}
$$

الدرسٌ اللاول

(a) $10 \mathrm{cal} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(b) $4.18 \mathrm{cal} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(C) 0.418 cal $/ \mathrm{g},{ }^{\circ} \mathrm{C}$
(d) $1 \mathrm{cal} / \mathrm{g},{ }^{\circ} \mathrm{C}$

الحـل : الاختيار الصحيح

* قوى التجاذب بين دقائق (جزيئات) المذيب وبيضهـا
 ٪ قوى التجاذب بين دقائق (جزيئات) كل من المذيب والمذاب. و.لهذا تتم عملية الذوبان على ثلاث خطوات، كما يتضـي فيما يلى :

$$
\Delta H_{\text {sol }}=\Delta H_{1}+\Delta H_{2}+\Delta H_{3}
$$

 المفككة بجريئات الاه.

تُعرف كمية الحرارة المنطلفة عند ارتباط أبونات أو جـزينات المذاب بحزينات الاء باسشم ذأِة الإمادة.
§-510 kJ/mol

ويتحدد نوع الذوبان من إشارة قيمة حرارة الذوبان $\left(\Delta H_{\text {sol }}\right)$ المصاحبة له :

Worked Examples

 400 kJ وطاقة تفكك جزينات المذاب عن بعضهها 100 وطاقة الإماهو فأى مما يأنى يمبر عن كل من نوع ذوبان هذا الملح فى الماء وقيمة

فيمة	لوع الذوبان	الاختيارات
250	طارد	(1)
550	ماص	(-)
550	طارد	\bigcirc
250	ماص	(${ }^{\text {a }}$

$\Delta \mathrm{H}_{1}=+50 \mathrm{~kJ}, \Delta \mathrm{H}_{2}=+100 \mathrm{~kJ}, \Delta \mathrm{H}_{3}=-400 \mathrm{~kJ}$
: الطاقـة المنطلقـة عـن عمليـة الإماهــة ($\Delta \mathrm{H}_{3}$ أكـبـر مـن مجمـوع الطاقـات الممتصــة الفمــل كل مـن جزيئات المذيب عن بعضها وجزيئات المذاب عن بغضها $\left(\Delta H_{1}+\Delta H_{2}\right)$. : الذوبان طارد للحرارة.
(د)، وعليه يستبعد الاختيارين (ب)
$\because \Delta \mathrm{H}_{\text {sol }}=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}$
$\therefore \Delta \mathrm{H}_{\text {sol }}=50+100+(-400)=-250 \mathrm{~kJ}$
(i) : الصـل : الاختيار الصحيح
(1) عنــد إذابـة 1 mol 1 من الملح AB فمية من الماء انخفضت درجة حــرارة المحلول وكانت طاقة فصل دقائق
 أى مما يأتى يعبر عن كل من نوع هذا الذوبان وقيمة طاقة الإماهة ؟

قيمة طاقة الإماهة (kJ)	نوع الذوبان	الاختيارات
أكبر من (3x)	ماص للحرارة	(i)
أقل من (3x)	طارد للحرارة	(-)
أقل من (3x)	ماص للحرارة	\bigcirc
أكبر من (3x)	طارد للحرارة	($)$

$\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}>\Delta \mathrm{H}_{3}$
$x+2 x>\Delta \mathrm{H}_{3}$. $3 x>\Delta \mathrm{H}_{3}$
: : : الذوبان ماص للحرارة. (د). وعليه يستبع الاختيارين (ج "وفى حالة الذوبان الماص للحرارة"،

< تُعرف كمية الحرارة المنطلقة أو الممتصة لكل مول من المذاب عند تخفيف الحلول من تركيز أعلى إلى تركبز أقلِ. وهو فى الظروف القياسية باسم حرارة التخفيف القياسبة

ما معنى قولنا أن حرارة التخفيف القياسية لمحلمل ديدروكسيد الصوديوم
 4.5 kJ المحلـول من تركيز أعلى إلى تركيز أقل فى الظروف القياسية تساوى

فإن حرارة التخفيف تختلف باختلاف كمية الماء (المذيب)، كما يتضـ من المعادلتِين التاليتِن :

* $\mathrm{NaOH}_{(\mathrm{s})}+5 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \longrightarrow \mathrm{NaOH}_{(\mathrm{aq})} \quad \Delta \mathrm{H}_{1}=-37.8 \mathrm{~kJ} / \mathrm{mol}$
$\star \mathrm{NaOH}_{(\mathrm{s})}+200 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \longrightarrow \mathrm{NaOH}_{(\mathrm{aq})} \Delta \mathrm{H}_{2}=-42.3 \mathrm{~kJ} / \mathrm{mol}$

$$
\text { 4ه ويلاحظ فى هذا المثال أن مقدار } \Delta H_{2} \text { > مقدار }
$$

ك 4 تَ عملية التخفيف على خطوتين متعاكستين فى الطاقة، هما ؛ XLC (1)
(عملية ماصـة للحرارة).
 (عملية طاردة للحرارة).

يصناحب عماية التذفيف لفى بدايتها اهتصصاص ملاهة.
لان زيادة جزينّات الماء أثناه عملية التخفيف تعدل على إبعاد أيونات أو جزيئات المذاب كن بعضهـ

Worked Example

(1) $\mathrm{KCl}_{(\mathrm{s})}+10 \mathrm{H}_{2} \mathrm{O}_{(0)} \longrightarrow \mathrm{KCl}_{(\mathrm{aq})}$
$\Delta \mathrm{H}_{1}=(\mathrm{X}) \mathrm{kJ} / \mathrm{mol}$
(2) $\mathrm{KCl}_{(\mathrm{s})}+\mathrm{SOH}_{2} \mathrm{O}_{(0)} \longrightarrow \mathrm{KCl}_{(\mathrm{aq})}$ $\Delta \mathrm{H}_{2}=(\mathrm{Y}) \mathrm{kJ} / \mathrm{mol}$

أى مما يأتى يمثل
(a) $(X+Y) k J$
(b) $(X-Y) k J$
(C) $-(X+Y) k J$
(d) $(Y-X) \mathrm{kJ}$
:

$$
\begin{aligned}
\Delta \mathrm{H}_{\mathrm{dil}} & =\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{1} \\
& =(\mathrm{Y}-\mathrm{X}) \mathrm{kJ}
\end{aligned}
$$

(d) : الحـل :الاختيار الصحيح

四
（1）تسمى عملية الإذابة بالإماهة إذا كان المذيب المستخدم هو

$$
\begin{aligned}
& \text { (i) البنزين. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ج } \\
& .8010
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \\
& \text { (i) طاردة للحرارة. } \\
& \text { (7) ماصة للحرارة. } \\
& \text { ٪ قد تكن طاردة أو ماصة للحرارة. } \\
& \text { (〕) لا يصاحبها تغير حرارى. }
\end{aligned}
$$

$\mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{~s})} \xrightarrow{\text { water }} \mathrm{NH}_{4(\mathrm{aq})}^{+}+\mathrm{NO}_{3(\mathrm{aq})}^{-} \Delta \mathrm{H}^{\circ}=+25.7 \mathrm{~kJ} / \mathrm{mol}$ ：فـ المعادلة الحرارية（r） يسمى التغير الحرارى المصاحب لهذه العملية بحرارة
（i）التكوين القياسية．
（ب）الاحتراق القياسية．
٪ \rightleftharpoons
（ـ）التعادل القياسية．
\qquad عملية التخفيف يصاحبها
（i）انطلاق طاقة فقط．
（？）امتصاص طاقة فقط．
٪ امتصاص ثم انطلاق طاقة．
（）ثبات حرارى．
(1) ذوبان هيدروكسيد الصوديـوم (الصودا الكاوية) فـ الماء يصاحبه ارتفاع فـ ذرجة حرارة المحلول. (Y) ذوبان نترات الأمونيوم فـ الماء يصاحبه انخفاض فه درجة حرارة المحلول. (r) يصاحب عملية الذوبان تغير حرارى. (ع) يصاحب عملية التخفيف فى بدايتها امتصاص طاقة.
"
(1) حرارة النوبان القياسية لبروميد الليثيوم تساوى (Y ال -71.06 kJ/mol حرارة الذوبان المولارية لحمض الكبريتيك تساوى (Y) (Y) $-510 \mathrm{~kJ} / \mathrm{mol}$ (Y) طاقة إماهة أيونات الفضة تساور (Y) ()

(3) $\mathrm{AgNO}_{3(\mathrm{aq})} \xrightarrow{\text { water }} \mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{NO}_{3(\mathrm{aq})}^{-}$
(b) $\mathrm{AgNO}_{3(\mathrm{~s})} \xrightarrow{\text { water }} \mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{NO}_{3(\mathrm{aq})}^{-}$
C) $\mathrm{AgNO}_{3(\mathrm{~s})} \xrightarrow{\text { water }} \mathrm{Ag}_{(\mathrm{aq})}^{-}+\mathrm{NO}_{3(\mathrm{aq})}^{+}$
(d) $\mathrm{AgNO}_{3(\mathrm{~s})} \xrightarrow{\text { water }} \mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{NO}_{3(\mathrm{aq})}^{-}$
$\Delta \mathrm{H}_{\mathrm{sol}}^{\mathrm{\prime} \mathrm{\prime}}=+36.91 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{f}}^{\prime \prime}=+36.91 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{sol}}^{\mathrm{o}}=+36.91 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{\text {sol }}^{\mathrm{o}}=+36.91 \mathrm{~kJ} / \mathrm{mol}$
 $\mathrm{Ca}=40, \mathrm{Cl}=35.5]$
(3) $+111 \mathrm{~kJ} / \mathrm{mol}$
(b) $+1.1 \mathrm{~kJ} / \mathrm{mol}$
C) $-80.72 \mathrm{~kJ} / \mathrm{mol}$
(d) $-88.8 \mathrm{~kJ} / \mathrm{mol}$ عن ذوبان 1.1 منه يساوى

ما قيمة التغير في المحتوى الحرارى الناتج عن ذوبان KOH 2.8 من البوتاسا الكاوية C ف الماء،

(a) -2.925 kJ
(b) -0.92 kJ
(c) +2.68 kJ
(d) +2.8 kJ
17.368 g gilis

(a) $+9614 \mathrm{~kJ} / \mathrm{mol}$
(b) $+4807 \mathrm{~kJ} / \mathrm{mol}$
(C) $-24.03 \mathrm{~kJ} / \mathrm{mol}$
(d) $-48.07 \mathrm{~kJ} / \mathrm{mol}$
24.20C

$(N=14, H=1, O=16]$
ها مرارّرة الندوبان المولارية للمحلول ؟
(a) $+33.5 \mathrm{~kJ} / \mathrm{mol}$
(b) $+39.5 \mathrm{~kJ} / \mathrm{mol}$
(c) $+32.2 \mathrm{~kJ} / \mathrm{mol}$
(d) $+37.3 \mathrm{~kJ} / \mathrm{mol}$

يُحبر عن ذوبان ملح كلوريد الماغنسيوم في الماء لعمل محلول مشبع بالمعادلة التالية :

$$
\mathrm{MgCl}_{2(\mathrm{~s})} \xrightarrow{\text { water }} \mathrm{Mg}_{(\mathrm{aq})}^{2+}+2 \mathrm{Cl}_{(\mathrm{aq})}^{-} \quad \Delta \mathrm{H}_{\mathrm{sol}}^{0}=-155 \mathrm{~kJ} / \mathrm{mol}
$$

ما كمية الحرارة المنطلقة عند ذوبان 19 g من كلوريد الهاغنسيوم (كتلته المولية 19 g/mol للحصول على محلول مشبع ؟
(a) +31 kJ
(b) -31 kJ
(c) +755 kJ
(d) -755 kJ

أى مها يأتى يعبر عن الإشارات الصحيحة لقيم HH للعمليات الآتية ؟

| فصل جزيينات المذيب عن المذاب\| | \|فصل جزيئات الكّيب عن بهض| | \|فصل جزيئات الهذاب عن بعضها | الاختيارات |
| :---: | :---: | :---: | :---: |
| + | + | $+$ | (i) |
| - | + | $+$ | (-) |
| $+$ | - | - | \bigcirc |
| - | - | - | (1) |

يُعبر عن حرارة الذوبان المولارية لملح بروميد الليثيوم LiBr بالمعادلة التالية : $\mathrm{LiBr}_{(\mathrm{s})} \xrightarrow{\text { water }} \mathrm{Li}_{(\mathrm{aq})}^{+}+\mathrm{Br}_{(\mathrm{aq})}^{-} \quad \Delta \mathrm{H}_{\text {sol }}^{\mathrm{O}}=-48.78 \mathrm{~kJ} / \mathrm{mol}$

أى من العبارات الآتية تعتبر صحيحة ؟
(i) عملية الذوبان طاردة للحرارة،

لأن مجموع طاقتى فصل جزيئات المذاب عن بعضها والمذيب عن بعضها أكبر من طاقة الإماهة.
ب عملية الذوبان ماصة للحرارة،
لأن مجموع طاقتى فصل جزيئات المذاب عن بعضها والمذيب عن بعضها أكبر من طاقة الإماهة.
٪ عملية الذوبان طاردة للحرارة،
لأن مجموع طاقتى فصل جزيئات المذاب عن بیضها والمذيب عن بعضها أقل من طاقة الإماهة.
(د) عملية الذوبان ماصة للحرارة،
لأن مجموع طاقتى فصل جزيئات المذاب عن بعضها والمذيب عن بحضها أقل من طاقة الإماهة.

أى من العلاقات الآتية تعتبر صحيحة ؟
(2) $\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}=\Delta \mathrm{H}_{3}$
(b) $\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}<\Delta \mathrm{H}_{3}$
(c) $\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{3}>\Delta \mathrm{H}_{2}$
$0 \Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}>\Delta \mathrm{H}_{3}$

ذوبان تناعل طارد للحرارة
أى مهـا يات يمثل (1) ، (2)

(1)	(1)	(2)
(a)	$\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}$	$\Delta \mathrm{H}_{\text {sol }}^{\circ}$
(b)	$\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}$	$\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}$
(c)	$\Delta \mathrm{H}_{\text {sol }}^{\circ}$	$\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}$
(d)	$\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}$	$\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}$

+14 kJ/mol إذا علدت أن حرارة الذوبان القياسية للح يوديد البوتاسيوم تساوى
أى من العبارات الآتية يستحيل أن تكون صحيحة ؟ (i) ذوبان ملح KI فى الماء طارد للحرارة.
-322 kJ/mol تساوى K+
$-293 \mathrm{~kJ} / \mathrm{mol}$ تساوى I- ${ }^{-}$-
() طاقة ارتباط أيونات I I ، K بالماء أقل من طاقتى فصل أيونات ملح KI وجزيئات الماء عن بضضها. ع عند مقارنة $\Delta \mathbf{H}_{\text {sol }}^{0}$ للتفاعلين (1) ، (2) التاليين :
(1) $\mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{~s})} \xrightarrow{\text { water }} \mathrm{NH}_{4(\text { aq })}^{+}+\mathrm{NO}_{3(\text { (aq })}^{-} \quad \Delta \mathrm{H}_{\text {sol }}^{\circ}=+25.7 \mathrm{~kJ} / \mathrm{mol}$
(2) $\mathrm{NaF}_{(\mathrm{s})} \xrightarrow{\text { water }} \mathrm{Na}_{(\mathrm{aq})}^{+}+\mathrm{F}_{(\mathrm{aq})}^{-}$

$$
\Delta \mathrm{H}_{\mathrm{sol}}^{\circ}=+0.9 \mathrm{~kJ} / \mathrm{mol}
$$

(1) التفاعل (2) تككن طاقة فضل جزيئات المذاب عن بغضها تساوى تقريبًا طاقة الإماهة.

ج (التفاعل (2) تكنن طاقة فصل جزيئات المذاب عن بیضها أقل من طاقة الإماهة.
٪ التفاعل (1) تكنن طاقة فصل جزيئات المذاب عن بعضها أقل من طاقة الإماهة. () التفاعل (1) تكون طاقة فصل جزيئات المذاب عن بفضها تساوى تقريبًا طاقة الإماهة.

$$
)^{\mathrm{MR}_{(G)}^{2+}}+\mathrm{H}_{2} \mathrm{O}_{0} \longrightarrow \mathrm{M}_{\mathrm{g}_{(a n)}^{2+}}^{2+}
$$

$$
\mathrm{H}_{2} \mathrm{O}_{0} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(1)}
$$

$$
\mathrm{NH}_{4 \text { (aq) }}^{+}+\mathrm{NO}_{3(\text { aq) }}^{-} \longrightarrow \mathrm{NH}_{4} \mathrm{NO}_{3(9)}
$$

$$
\left(\mathrm{g}_{\mathrm{NaCl}}^{(\mathrm{s})}, \longrightarrow \mathrm{Na}_{(\mathrm{ayq})}^{+}+\mathrm{Cl}_{(\mathrm{aq4})}^{-}\right.
$$

$$
\left[\mathrm{NaOH}_{(\mathrm{s})} \longrightarrow \mathrm{NaOH}_{(\mathrm{arl})}\right.
$$

ما العمليتان اللتان تكون قيمة التغير في الإنثالبى لهما بإشارة موجبة ؟
(11).(2)
(B), (4)
(5), (3)
(3) (2), (4)
(

$$
\begin{array}{ll}
\begin{array}{ll}
0 \mathrm{NaCl}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow \mathrm{Na}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-} & \Delta \mathrm{H}=+3 \mathrm{~kJ} / \mathrm{mol} \\
\text { (2) } \mathrm{NaCl}_{(\mathrm{s})} \longrightarrow
\end{array} & \Delta \mathrm{H}=+786 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{Na}_{(\mathrm{g})}^{+}+\mathrm{Cl}_{(\mathrm{g})}^{-} & \Delta \mathrm{H}=-422 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{H}_{(l)}+\mathrm{Na}_{(\mathrm{g})}^{+} \longrightarrow \mathrm{Na}_{(\mathrm{aq})}^{+} & \mathrm{Na}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-} \\
& \Delta \mathrm{H}=-783 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{Na}_{(\mathrm{g})}^{+}+\mathrm{Cl}_{(\mathrm{g})}^{-} \longrightarrow \mathrm{Cl}_{(\mathrm{aq})}^{-} & \Delta \mathrm{H}=-340 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

3 kJ/mol ! ما اطعادلتان اللتان يُستعان بهها في حساب حرارة الذوبان المولارية لكلوريد الصوديوم ؟
(9) $(1),(2)$
(b) $(2),(3)$
(1) $(2),(4)$
(1) $(5),(2)$

$$
{ }_{88 \%}^{\mathrm{SO}_{4(\mathrm{aq})}}+\mathrm{nH}_{2} \mathrm{O}_{(l)} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}
$$

 الطـاحب لهنذه العداية بحرارة
.
.
(أى من المعادلات الهرارية الآتيل تُعبر عن حرارة التخفيلـ اللّياسية ؟
(a) $\mathrm{NaCl}_{(\mathrm{s})}+\mathrm{nH}_{2} \mathrm{O}_{(\ell)} \longrightarrow \mathrm{Na}_{(\ell)}^{+}+\mathrm{Cl}_{(\text {(})}^{-}$
(b) $\mathrm{NaCl}_{(\mathrm{s})}+\mathrm{nH}_{2} \mathrm{O}_{(\mathrm{nq})} \longrightarrow \mathrm{Na}_{\text {(aq) }}^{+}+\mathrm{Cl}_{(\mathrm{nq})}^{-}$
(c) $\mathrm{NaCl}_{(\text {(aq) })}+\mathrm{nH}_{2} \mathrm{O}_{(l)} \longrightarrow \mathrm{Na}_{\text {(aq) }}^{+}+\mathrm{Cl}_{\text {(aq) })}^{-}$
(d) $\mathrm{NaCl}_{(\mathrm{s})}+\mathrm{nH}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow \mathrm{Na}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-}$

Jitmog © in lin diant

ا:درس الشكلى الآت والذى يفسر مصدر حرارة الذوبان، ثم أجب عما يليه :

1000 mL 0 [Na=23, Cl =35.5] من المحلمل بحرارة الذوبان المولارية ؟

هـهِ المعادلة الحرارية العبرة عن ذوبان ملح فلوريد الكالسيوم فى الماء، علمًا بأن التغير فى الإنثالبى القياسى ل51 kJ/mol لذوبانه يساوى (170 g g من نترات الفضة في كمية من الهاء درجة حرارته $25^{\circ} \mathrm{C}$ لتكوين لتر من المحلول، أصبحت درجة $[\mathrm{Ag}=108, \mathrm{~N}=14, \mathrm{O}=16]$

هناك عدة صسور للتفيرات الحرارية المصاحبة للتفاعلات الكيميائية، منها : ,

تفاعل الاحتراق طارد للحرار
 دائمًا بإشارة سالبة

(1 حرارة الاحتراق القياسية.

< الاحتراق هو عملية اتحاد سريع للمادة مع الأكسجين. ؛ ينتج عن الاحتراق التام للحناصر أو المركبات انطلاق طاق الح فى صورة حرارة أو ضوء أو كلاهما، المار المرا وتُعرف كمية الحرارة المنطلقة عند احتراق المادة الما احتراقًا تامأا فى وفرة من الأكسجين بحرارة الاحتراق 4 وإذا تم الاحتراق فى الظروف القياسية فإن كمية الحرارة المنطلقة تُعرف بحرارة الاحتراق القياسية الاقي
لـ ينتج عن احتراق معظم المواد الحضوية (كالوقود والجلوكوز) : - ماء $)$ (H2O) فى صورة سائلة أو بخارية.

- طاقة حرارية.

ما معنى قولنا أن حرارة الاحتراق القياسية للجلوكوز -2808 kJ/mol

 2808 kJ الأكسحین فی الظروف القياسية تساوى

\$ أمثلة على تفاعلات الاحتراق

(1) تفاءمل احـتراق غاز البوتاجـاز

غاز البوتاجاز عبارة عن خليط من غازى : C4 C_{10} البيوتان هُ وينتج عن احتراقه فى وفرة من غاز الأكسحیین كميـة كبيرة من الحرارة تسـتذدم فى طهى الطهام وغيرهـا من الاستخدامـات.

التركيب القززئكى
$\mathrm{C}_{4} \mathrm{H}_{10}$ للبيوتان

التركيب الجزيئى
C3 ${ }^{\text {للبروبان }}$
\qquad

انجاه التهاعل
مخطل لهاعل احتراق غار البروبان

$$
\begin{aligned}
& \text { ، المعادلג التالية والمخطط المقابل يوضضمان } \\
& \text { تفاعل احتراق غاز البروبان : } \\
& \mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(1)} \\
& \Delta H_{c}^{\circ}=-2323.7 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

(r) تفاءل احـتراق الجلوكوز داخل جسم الكائن الحى
|ه يعتبر احتراق الجلوكوز داخل جسنم الكائن الحى من تفاعلات الاحتراق الهامة لْن الحرارة الناتجة عنه تمد جسم الكائن الحى بالطاقة اللازمة للقيام بالعمليات الحيوية المختلة. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})}+6 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 6 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \quad \Delta \mathrm{H}_{\mathrm{c}}^{\circ}=-2808 \mathrm{~kJ} / \mathrm{mol}$

Worked Examples

 (1) اكتب المعادلة الحرارية المعبرة عن ذلك. [C=12,H=1,O=16] احسب كمية الحرارة الناتجة عن احتراق g 100 من الإيثانول احتراقًا تامًا. : الحــل

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)}+3 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}_{(l)} \quad \Delta \mathrm{H}_{\mathrm{c}}^{\circ}=-1367 \mathrm{~kJ} / \mathrm{mol} \\
& 46 \mathrm{~g} / \mathrm{mol}=1+16+(5 \times 1)+(2 \times 12)=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \text { الكتلة المولية من مركب (Y) } \\
& \because \Delta H_{c}^{\circ}=\frac{-q_{p}}{n} \\
& 2.17 \mathrm{~mol}=\frac{100}{46}=\frac{\text { عدد مولات كتلة المادة }}{\text { علمادة }}=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \text { الكتلة المولية } \\
& \therefore \mathrm{q}_{\mathrm{p}}=-\left(\Delta \mathrm{H}_{\mathrm{c}}^{\circ} \times \mathrm{n}\right)=-(-1367 \times 2.17) \\
& =+2966.39 \mathrm{~kJ}
\end{aligned}
$$

ق $\Delta \mathbf{H}_{\mathbf{c}}^{\circ}(\mathbf{k J / g})$	الاداد
-49.7	$\mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{1 0}}$
-47.9	$\mathbf{C}_{\mathbf{8}} \mathbf{H}_{\mathbf{1 8}}$

(0) ما محصلــة الطاقــة المنطلقة مــن احتراق
$\mathrm{C}_{4} \mathrm{H}_{10}$ خليط مكون من 100 من البيوتان مع 200 من سائل الأوكتان $\mathrm{C} \mathrm{C}_{8} \mathrm{C}_{18}$ من
(a) 97.6 kJ
(b) 4970 kJ
(c) 9580 kJ
(d) 14550 kJ
$\mathrm{C}_{4} \mathrm{H}_{10} \longrightarrow \quad 4_{p}$
$1 \mathrm{~g} \quad+49.7 \mathrm{~kJ}$
$100 \mathrm{~g} \quad ? \mathrm{~kJ}$
(haten) $=100 \times 49.7=4970 \mathrm{~kJ}$
• كمية الحرارة المنطلقة عن احتراق g (10) بيوتان :
$\begin{array}{cc}\mathrm{C}_{8} \mathrm{H}_{18} & \longrightarrow \mathrm{q}_{\mathrm{p}} \\ \mathrm{g} \\ 200 \mathrm{~g} & \\ & +47.9 \mathrm{~kJ} \\ & ? \mathrm{~kJ}\end{array}$
$Q_{\text {h(ax. }}=200 \times 47.9=9580 \mathrm{~kJ}$
$=4970+9580=14550 \mathrm{~kJ}$
• كمية الحرارة المنطلقة عن احتراق 200 أوكتان :
• محصلة الطاقة المنطلقة :

(d) : الصـل :الاختـيار الصحيح

 $\left.\mathrm{CH}_{\mathrm{H2}} \mathrm{O}_{6}=\mathbf{1 8 0} \mathrm{g} / \mathrm{mol}\right]$
[بفرض عدم فقد حرارة]، تبعا للمعادلة :
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})}+6 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 6 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta \mathrm{H}_{\mathrm{c}}^{\circ}=-2808 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{q}_{\mathrm{p}}=m c \Delta \mathrm{~T}$
$=100 \times 4.18 \times(25-20)=2090 \mathrm{~J}=2.09 \mathrm{~kJ}$
$\because \Delta H_{c}^{\circ}=\frac{-q_{p}}{n}$
$\therefore \mathrm{n}=\frac{-\mathrm{q}_{\mathrm{p}}}{\Delta \mathrm{H}_{\mathrm{c}}^{\circ}}=\frac{-2.09}{-2808}=7.4 \times 10^{-4} \mathrm{~mol}$

$$
0.1332 \mathrm{~g}=7.4 \times 10^{-4} \times 180 \text { كتلة الجلوكوذ = الكتلة المولية } \times 1 \text { عدد المولات }
$$

Test Yourself

 [$\mathrm{C}=12, \mathrm{H}=1$] الاكستجين يساوى 422.49 kJ- فما حرارة الاحتراق القياسية ؟
(a) $-1373.1 \mathrm{~kJ} / \mathrm{mol}$
(b) $-1713.3 \mathrm{~kJ} / \mathrm{mol}$
(C) $-2337.7 \mathrm{~kJ} / \mathrm{mol}$
(d) $-2323.7 \mathrm{~kJ} / \mathrm{mol}$
inan: الاغتتيار الصحيح:

$$
2 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{MgO}_{(\mathrm{s})} \quad \Delta \mathrm{H}_{\mathrm{c}}=-1202 \mathrm{~kJ}
$$

ها مخطط الطاقة الذى يعبر عن حرارة الاحتراق القياسية للمافنسيوم ؟

(a)

(b)

(C)

(d)

¢ ΔH_{f} يُعرف بحرارة التكوين

(1) الجرافيت هو الحالة القياسية للكربون.

لأنه يمثل أكثر حالات الكربفن استقرارًا فى الظروف القياسية.
() حرارة التكوين القياسية لسكر الجلوكوز

$$
6 \mathrm{C}_{(\mathrm{s})}+6 \mathrm{H}_{2(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{\mathrm{\imath} 2} \mathrm{O}_{6(\mathrm{~s})} \quad \Delta \mathrm{H}_{\mathrm{f}}^{\circ}=-1260 \mathrm{~kJ} / \mathrm{mol}
$$

 أى أن كمية الحرارة المنطلقة عند تكوين 1 mol 1 من الجلوكوز من عناصره الأولية 1260 kJ وهى فی حالتها القياسية تساوى

كـ مع افتراض أن حرارة التكوين القياسية لجزىءء أى عنصر تساوى صفر.
الامتحان كبمياء - شرح/ان/ترم ثان (م : 11)

Test Yourself

ما المعادلٍ التى تكن ΔH اللثفاعل الحادث ليها مسارينًا لحرارة التكوين التياسية

$$
\text { (a) } 2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}
$$

$$
\text { (b) } \mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{3(\mathrm{~g})} \longrightarrow \mathrm{N}_{2} \mathrm{O}_{3(\mathrm{~g})}
$$

$$
\text { (c) } \mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2(l)}+2 \mathrm{HCl}_{(\mathrm{g})}
$$

$$
\text { (d) } \mathrm{Xe}_{(\mathrm{g})}+2 \mathrm{~F}_{2(\mathrm{~g})} \longrightarrow \mathrm{XeF}_{4(\mathrm{~g})}
$$

الحـل : الاختيار الصحيع :
 - التغير فى المحتوى الحرارى = المحتوى الحرارى للنواتج - الحتوى الحرارى للمتفاعلات ? المحتوى الحرارى للمركبات يتساوى مع حرارة تكوينها القياسية.
= $=\mathrm{H}$ H \therefore

Test Yourself

من التفاعل الآتى :

$\begin{aligned} & \text { حرارة التكوين القياسية } \\ & \Delta \mathbf{H}_{\mathrm{f}}^{0}(\mathbf{k J} / \mathbf{m o l}) \end{aligned}$	المركب
-21	$\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$
-273	$\mathrm{HF}_{(\mathrm{g})}$
-1220	$\mathrm{SF}_{6(\mathrm{~g})}$

$$
\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}+4 \mathrm{~F}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{HF}_{(\mathrm{g})}+\mathrm{SF}_{6(\mathrm{~g})}
$$

وبمعلومية حرارة التكوين القياسية للمركبات الموضحة بالجدون المقابل :

ما قيمة التغير فى المحتوى الحرارى لهذا التفاعل ؟
(a) -1745 kJ
(b) -1457 kJ
(C) +1457 kJ
(d) +1745 kJ
فكـرة الحـل :

$$
\begin{aligned}
& \mathrm{H}=\left[2 \Delta \mathrm{H}_{\mathrm{f}(\mathrm{HF})}^{\circ}+\Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{SF}_{6}\right)}^{\circ}\right]-\left[\Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{H}_{2} \mathrm{~S}\right)}^{\circ}+4 \Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{~F}_{2}\right)}^{\circ}\right] \\
& =\text {... }
\end{aligned}
$$

$$
\begin{aligned}
& \text { A+B C } \\
& \Delta \mathrm{H}=\left[\Delta \mathrm{H}_{\mathrm{f}(\mathrm{C})}^{\circ}+\Delta \mathrm{H}_{\mathrm{f}(\mathrm{D})}^{\circ}\right]-\left[\Delta \mathrm{H}_{\mathrm{f}(\mathrm{~A})}^{\circ}+\Delta \mathrm{H}_{\mathrm{f}(\mathrm{~B})}^{\circ}\right] \quad: \quad \text { : فإن }
\end{aligned}
$$

Worked Examples

C

 من المادة فى الظروف القياسية

حرارة التكوين القياسية $\Delta H_{f}^{\circ}(\mathrm{kJ} / \mathrm{mol})$	المركب
-74.6	$\mathrm{CH}_{4(\mathrm{~g})}$
-393.5	$\mathrm{CO}_{2(\mathrm{~g})}$
-285.85	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

(3) احسـب التـغــــــر فى الإنثــالبى القيـاسـى
لاحتراق الميثان
$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$
بمعلومية حرارة التكوين القياسية للمركبات
الموضحة بالجدول المقابل.

التنير فى المحتوى الحرارى ($ا$) = المجموع الجبرى لحرارة تكوين النواتج - المجمو الجبرى لحرارة تكوين المتفاعلات $\Delta \mathrm{H}_{\mathrm{c}}^{\circ}=\left[\Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{CO}_{2}\right)}^{\circ}+2 \Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{H}_{2} \mathrm{O}\right)}^{\circ}\right]-\left[\Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{CH}_{4}\right)}^{\circ}+2 \Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{O}_{2}\right)}^{\circ}\right]$
$=[(-393.5)+(2 \times-285.85)]-[(-74.6)+(2 \times 0)]$
$=(-965.2)-(-74.6)=-890.6 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{H}_{2} \mathrm{O}\right)}^{\circ}$ • حرارة التكوين القياسية للمارة الاحتراق القياسية للهيدروحين

$$
\mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})} \quad \Delta \mathrm{H}_{\mathrm{c}\left(\mathrm{H}_{2}\right)}^{\circ}=\Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{H}_{2} \mathrm{O}\right)}^{\circ}
$$

$\Delta H_{f\left(\mathrm{CO}_{2}\right)}^{\circ}$ (حرارة التكوين القياسية لثانى أكسيد الكربون $=\Delta H_{c(C)}^{\circ}$ •

$$
\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}_{\mathrm{c}(\mathrm{C})}^{\circ}=\Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{CO}_{2}\right)}^{\circ}
$$

$\Delta H_{c}^{\circ}(\mathrm{kJ} / \mathrm{mol})$	الهادة
-394	$\mathrm{C}_{(\mathrm{s})}$
-286	$\mathrm{H}_{2(\mathrm{~g})}$
-2877	$\mathrm{C}_{4} \mathrm{H}_{10(\mathrm{~g})}$

(Y) المعادلة الآتية تعبر عن عملية تكوين غار البيوتان من عناصره الأولية :

$$
4 \mathrm{C}_{(\mathrm{s})}+5 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{10(\mathrm{~g})}
$$

وبمعلـومـيـة حـرارة الاحتــراق القياسيـة للمـواد الموضحة بالجدول المقابل، ما قيمة ΔH_{f}^{0} للبيوتان ؟
(a) $-2877 \mathrm{~kJ} / \mathrm{mol}$
(b) $-129 \mathrm{~kJ} / \mathrm{mol}$
(C) $286 \mathrm{~kJ} / \mathrm{mol}$
(d) $3006 \mathrm{~kJ} / \mathrm{mol}$

يُكتب أولًا معادلة احتراق مول واحد من غاز البيوتان :

$$
\mathrm{C}_{4} \mathrm{H}_{10(\mathrm{~g})}+\frac{13}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 4 \mathrm{CO}_{2(\mathrm{~g})}+5 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \quad \Delta \mathrm{H}_{\mathrm{c}}^{\circ}=-2877 \mathrm{~kJ} / \mathrm{mol}
$$

$\because \Delta H_{\mathrm{f}\left(\mathrm{CO}_{2}\right)}^{\circ}=\Delta \mathrm{H}_{\mathrm{c}(\mathrm{C})}^{\circ}=-394 \mathrm{~kJ} / \mathrm{mol}$
$\because \Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{H}_{2} \mathrm{O}\right)}^{\circ}=\Delta \mathrm{H}_{\mathrm{c}\left(\mathrm{H}_{2}\right)}^{\circ}=-286 \mathrm{~kJ} / \mathrm{mol}$

- $\Delta \mathrm{H}_{\mathrm{c}}^{\circ}=\left[4 \Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{CO}_{2}\right)}^{\circ}+5 \Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{H}_{2} \mathrm{O}\right)}^{\circ}\right]-\left[\Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)}^{\circ}+\frac{13}{2} \Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{O}_{2}\right)}^{\circ}\right]$
$-2877=[(4 \times-394)+(5 \times-286)]-\left[\Delta \mathrm{H}_{\mathrm{f}_{\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)}^{\circ}}+\left(\frac{13}{2} \times 0\right)\right]$
$-2877=-3006-\Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)}^{\circ}$
$\therefore \Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)}^{\circ}=-3006+2877=-129 \mathrm{~kJ} / \mathrm{mol}$
(b) :

تختلف درجة ثبات المركبات حراريًا تبعًا لاختلاف قيم حرارة تكوينها ، كما يتضس فيما يلى :

المركبات غير الثابتة حرارينا

مركبات غير مستقرة تميل للانحالال التلقانى إلى عناصرها الأولية فى درجة حرارد الغرفة

مركبات مستقرة يصعب إنحلالها إلى عناصرها الأولية فى لرججة حرارة الغرفة
ΔH_{f}° قيمة حرارة التكوين القياسية

تكون بابشارة موجبة
المحتوى الحرارى لها يكن أكبر من المحتوى الحرارى لعناصرها الأولية

تكون بإشارة سالبة
المحتوى الحرارى لها يكون أقل من المحتوى الحرارى لعناصرها الأولية

تِ

- كلما قلت حرارة التكوين القياسية للمركب كلما ازداد ثباته الحرارى والعكس صحيح. - تميل معظم التفاعلات للسير فى اتجاه تكوين المركبات الأقل فى قيمة حرارة التكوين (الأكثر ثباتًا).

worked Examples

$\mathrm{HH}_{\mathrm{i}}^{0}$ $(1 \mathrm{flmol})$	$\mathbf{H B r}_{(\mathrm{g})}$
-36	$\mathbf{H I}_{(\mathrm{g})}$
+26	$\mathbf{H I}_{(\mathrm{g})}$
-271	$\mathbf{H F}_{(\mathrm{g}}$
-92	$\mathbf{H C l}_{(\mathrm{g})}$

(1) رتبالمركباتالموضحةبالجدول المقابل

تصاعديًا حسـب درجــة ثبـاتـهـا الحــرارى.
فكـرة الحـلـ :
كلما تلت حرارة تكويـن المركب،
كلما زادت درجة ثباته الحرارى.

الحـل :
$\mathrm{HF}_{(\mathrm{g})}>\mathrm{HCl}_{(\mathrm{g})}>\mathrm{HBr}_{(\mathrm{g})}>\mathrm{HI}_{(\mathrm{g})}$
(i) أى المعادلتين الآتيتين تعبر عن التفاعل الذى يحدث بالفعل ؟

$$
\mathrm{VFO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}
$$

$$
\text { (2) } 2 \mathrm{SO}_{3(\mathrm{~g})} \longrightarrow 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

فكـرة الحـلـ :
يسير التفاعل فى اتجاه تكوين المركب الأكتر ثباتًا „الأقل فى قيمة حرارة التكوين".
SO $_{2}$ أقل من حرارة تكوين SO 3 حرارة تكوين \because
: . المعادلة (1) تعبر عن التفاعل الذى يحدث بالفعل.
الحـل : المحادله (1).

Test Yourself

$\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{~kJ} / \mathrm{mol})$	المركب	الجدول المقابل : يوضت حرارة تكوين المركبين (B) (B) (B).
-84	(A)	(B) ، (B) (i)
-156	(B)	المحتوى الحرارى لعناصرها الأولية.
		(B) ، (B) ()

: ${ }^{4} H_{f}^{0}$ لكل من المركبين (B) ، (B) بإشارة سالبة. (B) ، مركبات الحتوى الحراریى لعناصرها والمحتوى الحرارى لها (A) : وعليه يستبعد الاختيارين للمركب $\Delta \mathrm{H}_{\mathrm{f}}^{\circ} \because$: المركب أكثر ثباتًا حراريًا من المركب

الحـل :الاختيار الصديحع

قانون هس

يصعب قياس حرارارة تفاعل صدأ الحديد بطريقة مباشرة

ها يلجأ العلماء إلى استخدام طرق غير مباشرة لحساب حرارة التفاعل لعدة أسباب، منها : (1) اختلاط المواد المتفاعلة أو النآتجة بمواد أخرى. (ץ) البطء الشديد لبحض التفاعلات كتفاعل صدأ الحديد الذى يستغرق وقتًا طويلًا.
(ץ) خطورة قياس حرارة التفاعل بطريقة تجريبية. (ع) صعوبة قياس حرارة التفاعل فى الظروف العادية من الضنط ودرجة الحرارة.
¢ ومن الطرق التى استخدمها العلماء لحساب حرارة التفاعلات التى يصعب قيـاس ${ }^{\text {ل }}$ لها بطريقـة مباشـرة، قانـن المجمـوع الجبرى الثابت للحـرارة والمعروف بقانون هس والذى ينص على أن حرارة التفاعل مقدَار ثابت فى الظروف القياسية، سواء تم التفاعل على خطوة واحدة أو على عدة خطوات. ويعتبر قانون هس أحد صور القانون الأول اللديناميكا الحرارية، لأنه يعتبر التفاعل الكيميائى نظام معزول تكن حرارته مقدار ثابت. ويتحامـل قانــن هـس مـع المعادلات الكيميائيـــة الحرارية، وكائنها معادلات جبرية يمكـن جمعها أو طرحها. أو ضرب معاملاتها فى قيم عددية ثابتة. ؛ ويمبر عن قانون هس بالصيفة الرياضية التالية :

$$
\Delta \mathrm{H}=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}+\cdots \ldots .
$$

Worked Example

Test Yourself

$\mathrm{C}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{(\mathrm{g})} \quad: \quad$: احسب حرارة تكوين غاز أول أكسيد الكربن تبًُا للمعادلة بمعلومية المعادلتين الحراريتين التاليتين :
$0 \mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}_{1}=-393.5 \mathrm{~kJ} / \mathrm{mol}$
(2) $\mathrm{CO}_{(\mathrm{g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}_{2}=-283.3 \mathrm{~kJ} / \mathrm{mol}$

الصـل
بطرح المعادلة (2) من المعادلة (1) :

وبنقل (gO ${ }_{\text {(g }}^{\text {من الطرف الأيسر للمعادلة إلى الطرن الايمن المعادلة (بإشارة مخالفة) : }}$

يستاتحيل عمليًا أن نقيس بدقة كمية الحرارة المنطلقة عند احتراق الكربون لتكوين غاز أول أكسيد الكروبها لأن عمليت أكسدة الكربون لا يمكن أن تتوقف عند مرحلة تكوين أول أكسيد الكرينن، بل تستمر مكونة غاز ثانى أكسيد الكربون

Worked Example

(1) $\mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(f)}$
(2) $2 \mathrm{Na}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})}$
(3) $\mathrm{Na}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{NaOH}_{(\mathrm{nq})} \quad \Delta \mathrm{H}_{3}=-425 \mathrm{~kJ}$
$\mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(1)} \longrightarrow 2 \mathrm{NaOH}_{(\mathrm{aqq})} \quad$ اخسب فيمة التغير فـ الإنثابى القياسى للتفاعل

من المعادلات الكبميانية الحرارية النالية :

$$
\Delta H_{1}=-286 \mathrm{k} . J
$$

$$
\Delta H_{2}=-414 \mathrm{~kJ}
$$

$$
\Delta \mathrm{H}_{3}=-425 \mathrm{~kJ}
$$

$$
\text { : بضرب المعادله (3) × } 2 \text { ؛. }
$$

$$
2 \mathrm{Na}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NaOH}_{(\mathrm{aq})} \quad \Delta \mathrm{H}_{5}=2 \times(-425)=-850 \mathrm{~kJ}(5)
$$

مبجمع المحادلتين (4) ، (5) وطرح المعادله (1) :

$$
\mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})}+2 \mathrm{Na}_{(\mathrm{s})}+\mathrm{Q}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}-\mathrm{H}_{2(\mathrm{~g})}-\frac{1}{2} \mathrm{Q}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{Na}_{(\mathrm{sg})}+\frac{1}{2} \mathrm{Q}_{2(\mathrm{~g})}+2 \mathrm{NaOH}_{(\mathrm{aq})}-\mathrm{H}_{2} \mathrm{O}_{(l)}
$$

$$
\Delta \mathrm{H}=\Delta \mathrm{H}_{4}+\Delta \mathrm{H}_{5}-\Delta \mathrm{H}_{1}=[(414)+(-850)-(-286)] \mathrm{kJ}
$$

-وبنقل (l) $\mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \longrightarrow 2 \mathrm{NaOH}_{(\mathrm{aq})} \quad \Delta \mathrm{H}=\mathbf{- 1 5 0} \mathbf{k J}$

$$
\begin{aligned}
\mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow 2 \mathrm{NaOH}_{(\mathrm{aq})} \quad \begin{array}{r}
\text { من معطيات المعادلة المطلوبة } \\
\\
\mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})} \text { ، } \mathrm{H}_{2} \mathrm{O}_{(l)} \because
\end{array}
\end{aligned}
$$

:

$$
\text { (4) } \mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow \mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})}
$$

$$
\text { (5) } \mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})} \longrightarrow 2 \mathrm{Na}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})}
$$

$$
\Delta \mathrm{H}_{4}=286 \mathrm{~kJ}
$$

$$
\Delta \mathrm{H}_{5}=414 \mathrm{~kJ}
$$

2 : 2 معامل 2 يساوى
: $2 \times$ ج $\Delta \mathrm{H}_{6}=2 \times-425=-850 \mathrm{~kJ}$
$\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})}+2 \mathrm{Na}_{(\mathrm{s})}+\mathrm{Q}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{Q}_{2(\mathrm{~g})}+2 \mathrm{Na}_{(\mathrm{s})}+\frac{\mathrm{C}^{2}}{2} \mathrm{Q}_{2(\mathrm{~g})}+2 \mathrm{NaOH}_{(\mathrm{aq})}$ $\Delta \mathrm{H}=(286+414-850)$
$\mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \longrightarrow 2 \mathrm{NaOH}_{(\mathrm{aq})} \quad \Delta \mathrm{H}=-\mathbf{1 5 0} \mathbf{k J}$

 $\Delta H_{1}^{\circ}=+1663 \mathrm{~kJ} / \mathrm{mol}$ $\mathrm{AH}_{2}^{\circ}=+498 \mathrm{~kJ} / \mathrm{mol}$ $\Delta H_{3}^{\circ}=+927 \mathrm{~kJ} / \mathrm{mol}$ $\Delta H_{4}^{\circ}=+1608 \mathrm{~kJ} / \mathrm{mol}$

ما قيمة حرارة احتراق 1 mol 1 من غاز الميثان ؟
2) $-308 \mathrm{~kJ} / \mathrm{mol}$
$.503 \mathrm{~kJ} / \mathrm{mol}$
(c) $+308 \mathrm{~kJ} / \mathrm{mol}$
$+803 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{OCH}_{4} \longrightarrow \mathrm{C}+4 \mathrm{H}$
$\mathrm{O}_{2} \longrightarrow 2 \mathrm{O}$
$\mathrm{OH}_{2} \mathrm{O} \longrightarrow 2 \mathrm{H}+\mathrm{O}$
$0 \mathrm{CO}_{2} \longrightarrow \mathrm{C}+2 \mathrm{O}$

فكـرة الحـل :

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \quad \text { معاذلة احتراق } 1 \text { من غاز الميثان }
$$

$$
\mathrm{CH}_{4}+\square \rightarrow \square+\square \mathrm{H}=\square
$$

unuril 4

اذتر الإجابة المديحة مما بين الإجابات المعطاة : (1) من التنغيات الحرارية المصاحبة للتفاعلات الكيمياية حرارة (i) التخفيف.

ب
(1) الانصهار.

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{F}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{HF}_{(\mathrm{g})} \quad \Delta \mathrm{H}=-534.7 \mathrm{~kJ} \quad \text { من التفاعل : } \mathrm{C} \text { (Y) }
$$

خرارة تكوين مول واحد من فلوريد الهيدروحين تساوى
(a) $-178.2 \mathrm{~kJ} / \mathrm{mol}$
(b) $-267.35 \mathrm{~kJ} / \mathrm{mol}$
(C) $-534.7 \mathrm{~kJ} / \mathrm{mol}$
(d) $-1069.4 \mathrm{~kJ} / \mathrm{mol}$
\qquad
(r) بزيادة المحتوى الحرارى للمركب، فإن درجة ثباته الحراري
(i) تزداد (i)
(1) تقل.
.
(1) تنعدم.
(غ) يسير التفاعل في اتجاه تكوين المركب

(0) كلما زادت الطاقة المنطلقة أنثاه تكوين المركب كلها زاد

$$
\begin{aligned}
& \text { (1) ورن المركب. } \\
& \text { (ب) كتلة المركب. } \\
& \text { (د) ثـبات المركب حراريًا } \\
& \text { (د) اندال المركب. }
\end{aligned}
$$

(T) المركبات الغير ثْبتة حراريًا .
(i) قيمة حرارة تكوينها موجبة.

ج
(3) يصعب تحللها لعناصرها الأولية.

عند زيادة عدد الخطوات التى يتم فيها تفاعل ما فـ الظروف القياسية، فإن حرارة التفاعل (V)

(i)
(+
(3)

انتر من العمود (B) المعادلة الحراربة المناسبة للتفاعل الموضح بالعمود (A) :

(B)		(A)
(I) $\mathrm{Al}_{(\mathrm{s})}+\frac{3}{2} \mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow \mathrm{AlCl}_{3(\mathrm{~s})}$	$\Delta \mathrm{H}=+704 \mathrm{~kJ}$	()
(2) $\mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}(\ell) \longrightarrow \mathrm{NH}_{4} \mathrm{NO}_{3(\text { aq) }}$	$\Delta \mathrm{H}=+25.7 \mathrm{~kJ}$	(Y) حرارة تكوين
$\mathrm{PHCl}_{\text {(conc) }}+\mathrm{nH}_{2} \mathrm{O}_{(l)} \longrightarrow \mathrm{HCl}_{\text {(dil) }}$	$\Delta \mathrm{H}=-45.61 \mathrm{~kJ}$	(r)
$\text { (i) } \mathrm{H}_{(\mathrm{g})}^{+}+\mathrm{F}_{(\mathrm{g})}^{-} \longrightarrow \mathrm{LiF}_{(\mathrm{s})}$	$\Delta \mathrm{H}=-1047 \mathrm{~kJ}$	(ع) حرارة ذوبان
$\mathrm{SO}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{SO}_{3(\mathrm{~g})}$	$\Delta \mathrm{H}=-99 \mathrm{~kJ}$	

Open book an hinn

whentas

(a) $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{O}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{OH} \longrightarrow \mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$

ما "'لهيدروكربون الذى يعطى عند احتراقه عدد متساوى من مولات ثان أكسيد الكربون وبخار الماه ؟
(a) $\mathrm{C}_{2} \mathrm{H}_{6}$
(b) $\mathrm{C}_{3} \mathrm{H}_{8}$
(c) $\mathrm{C}_{4} \mathrm{H}_{8}$
(d) $\mathrm{C}_{5} \mathrm{H}_{12}$
 [$\mathrm{C}=12$]
(a) -3.935 kJ
(b) -39.35 kJ
(c) -393.5 kJ
(d) -3935 kJ

ما قيمة حرارة الاحتراق القياسية للكبريت ؟
(a) $-1590 \mathrm{~kJ} / \mathrm{mol}$
(b) $-3180 \mathrm{~kJ} / \mathrm{mol}$
(c) $+1590 \mathrm{~kJ} / \mathrm{mol}$
(d) $-795 \mathrm{~kJ} / \mathrm{mol}$
 يساوى
12, $1=11$
$1+965.1 \mathrm{~kJ} / \mathrm{mol}$
فما قيمة حرارة الاحتراق القياسية للميثان ؟
$+723.8 \mathrm{~kJ} / \mathrm{mol}$
) $241.3 \mathrm{~kJ} / \mathrm{mol}$
$-965.1 \mathrm{~kJ} / \mathrm{mol}$

	الكتلة المولية $(\mathrm{g} / \mathrm{mol})$	الصيغة الكيميانية	الوقود
-880	16	CH_{4}	كيثان
-1380	46	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	\|الإيثانول
-2200	44	$\mathrm{C}_{3} \mathrm{H}_{8}$	البروبان
-4800	100	$\mathrm{C}_{7} \mathrm{H}_{16}$	الهبتان

,
1 للوقود الذى ينتج القدر الأكبر من الطاقة الحرارية عند احتراق 1 منه ؟
(a) CH_{4}
(b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(c) $\mathrm{C}_{3} \mathrm{H}_{8}$
(d) $\mathrm{C}_{7} \mathrm{H}_{16}$
-2323.7 kJ/mol تساوى C3 H_{8} ($\mathrm{HH}_{\mathrm{c}}^{\circ}$ للبروبان
 =12, $\mathrm{H}=1$] (بفرض عدم فقد حرارة) ؟

107195 g
3.1659 g

95432 g
13.8977 g

حرارة التكوين القياسية

(أى مها يأتى يعـبر عن الإشـارات الهحـتملة لكل من حرارة الذوبان و حرارة الاحتراق و حرارة التكوين ؟

حرارة التكوين	حرارة الاحتاق	حرارة الذوبان	الاختيارات
-1+	-	- ${ }^{+}$	(i)
-1+	- ، +	- . +	(-)
- فقط +	+	+	\bigcirc
-	+	-	(1)

园 أى المحادلات الآتية تُعبر عن حرارة التكوين القياسية ؟
（a） $\mathrm{Si}_{(\mathrm{s})}+4 \mathrm{Cl}_{(\mathrm{g})} \longrightarrow \mathrm{SiCl}_{4(l)}$
（b） $2 \mathrm{C}_{(\mathrm{s})}+3 \mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{l})}$
（c） $\mathrm{Zn}_{(\ell)}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{ZnO}_{(\mathrm{s})}$
（d） $2 \mathrm{C}_{(\mathrm{s})}+2 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{CH}_{4(\mathrm{~g})}$
凹 ها المعادلة التى تُعبر عن حرارة التكوين القياسية للم كلوريد الماغنسيوم ؟
（a） $\mathrm{Mg}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow \mathrm{MgCl}_{2(\mathrm{~s})}$
（b） $\mathrm{Mg}_{(\underline{g})}+\mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow \mathrm{MgCl}_{2(\mathrm{~s})}$
（c） $\mathrm{Mg}_{(\mathrm{g})}^{2+}+2 \mathrm{Cl}_{(\mathrm{g})}^{-} \longrightarrow \mathrm{MgCl}_{2(\mathrm{~s})}$
（d） $\mathrm{Mg}_{\text {（aq）}}^{2+}+2 \mathrm{C}_{\text {（aq）}}^{-} \longrightarrow \mathrm{MgCl}_{2(\mathrm{~s})}$
【ه أى من التفاعلات الآتية يكون فيه التغير في المحتوى الحرارى مساويًا لحرارة التكوين القياسية؟
（a） $2 \mathrm{Ca}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CaO}_{\text {（s）}}$
（b） $2 \mathrm{C}_{(\mathrm{s})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}$
（c） $3 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{N}_{2(\mathrm{~g})} \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2(\mathrm{~s})}$
（d） $\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}$
（a） $\mathrm{Br}_{2(1)}$
（b） $\mathrm{Fe}_{(s)}$
（c） $\mathrm{I}_{2(\mathrm{v})}$
（d） $\mathrm{Na}_{(\mathrm{g})}^{+}$

$\theta 2 \mathrm{C}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{(\mathrm{g})}$			
$\mathrm{C} \mathrm{CO}_{(\mathrm{g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}$			
(1) $\mathrm{S}_{(\mathrm{c})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{SO}_{2(\mathrm{~g})}$			
$\mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})} \quad \Delta \mathrm{H}=\chi \mathrm{kJ} / \mathrm{mol}$ من التفاعل :			
أى مما يأت يعبر عن نوع التغير فـ الإنثالبى وإشارة قيمة ΔH لهذا التفاعل ؟			
	إشارة	نوع التغير فـ الإنثالبى	الاختيارات
	موجبة	تكوين فقط	(i)
	سالبة	تكوين فقط	\bigcirc
	موجبة	احتراق و تكوين	\odot
	سالبة	احتراق و تكوين	(1)

, الشكل البيان المقابل : يستحيل أن يعبر عن

مسار التفاعل

azero

D) $-824 \mathrm{~kJ} / \mathrm{mol}$
c) $-1648 \mathrm{~kJ} / \mathrm{mol}$
d) $-3296 \mathrm{~kJ} / \mathrm{mol}$
（a）-180 kJ
（b）-90 kJ
（c） 490 kJ
（d）+180 kJ

，الا الكعلومات اللازم توافرها لحساب التطير لي الإثالبى للتهامل السابق ؟
$\mathrm{Pb}_{3} \mathrm{O}_{4}$ وحرارة تكوين Pb شرارة احتراق（i）
$\mathrm{Pb}_{3} \mathrm{O}_{4}$（ب）وحرارة تكوين PbO ورارة احتراق
O وحرارة كسر الروابط فى PbO وحر Pb
$\mathrm{Pb}_{3} \mathrm{O}_{4}$ وحرارة تكوين PbO（ز）

حرارة التكوين الدياسية （k．J／mol）	المادة
－187．8	$\mathrm{H}_{2} \mathrm{O}_{2(l)}$
－285．8	$\mathrm{H}_{2} \mathrm{O}(1)$

يتفكك فوق أكسيد الهيدروجين تبعًا للمعادلة ： $\mathbf{2} \mathrm{H}_{2} \mathrm{O}_{2(l)} \longrightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{O}_{\mathbf{2 (g)}}$ مستعينًا بالجدول المقابل، ما مقدار التغير فی الإنثالبى لتفكك فوق أكسيد الهيدروحين ؟
（a）-98 kJ
（b）-196 kJ
（C）-398 kJ
（d）-451 kJ

$\Delta \mathbf{H}_{\mathbf{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol})$	ةدا⿱中⿰㇀丶㇒
-286	$\mathbf{H}_{\mathbf{2}} \mathbf{O}_{(l)}$
-206	$\mathbf{C u C l}_{\mathbf{2 (s)}}$
-808	$\mathbf{C u C l}_{\mathbf{2}} \cdot \mathbf{2 \mathbf { H } _ { \mathbf { 2 } } \mathbf { O } _ { (\mathrm { aq }) }}$

（II）اللامائى مع الهاء مكونًا كلوريد النحاس（II）الانى، تبعًا للمعادلة ： $\mathrm{CuCl}_{2(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{O}_{(1)} \longrightarrow \mathrm{CuCl}_{2} \cdot \mathbf{2 H}_{2} \mathrm{O}_{(\mathrm{aq})}$ ما قيـمـة التغـيـر فـى المحتـوى الحرارى لهـذه العملية بـعلومية ΔH_{f}^{0} للمواد الموضحة بالجدول المقابل ؟
（a）$-1586 \mathrm{~kJ} / \mathrm{mol}$
（b）$-316 \mathrm{~kJ} / \mathrm{mol}$
（C）$-110 \mathrm{~kJ} / \mathrm{mol}$
（d）$-30 \mathrm{~kJ} / \mathrm{mol}$

MgO
$M g=24,0=16]$
(2) $-300.9 \mathrm{~kJ} / \mathrm{mol}$
(b) $+3009 \times 10^{2} \mathrm{~J} / \mathrm{mol}$
C) $+59: 32 \mathrm{kcal} / \mathrm{mol}$
(d) $-142.9 \mathrm{kcal} / \mathrm{mol}$

$$
\begin{aligned}
& \text { (i) } \\
& \text { • } \\
& \text { HCl } \bigodot \\
& \text { HI (د) }
\end{aligned}
$$

(الجدول المقابل : يوضح حرارة التكوين
القياسية لبعض المركبات.
أى مها يأتى يعبر عن المركبات (A) ، (B) ، (C) ، (D) ؟ (B)

$\mathbf{H}_{2} \mathbf{S}$	$\mathrm{C}_{2} \mathbf{H}_{2}$	SO_{2}	NO_{2}	$\mathbf{C O}$	$(\mathrm{~S}, \mathrm{~h}$
+90.4	+226.73	-300.4	+33.9	-110.5	$\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{k} . \mathrm{J} / \mathrm{mol})$

مـا المركبان اللذان يكون تفاعل تكوينهها أكثَ امتصاصٌا للحرارة ؟
(a) $\mathrm{CO}, \mathrm{H}_{2} \mathrm{~S}$
(b) $\mathrm{NO}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}$
(c) $\mathrm{SO}_{2}, \mathrm{NO}_{2}$
(d) $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}$

$-\mathrm{I}_{2(\mathrm{~g})}+3 \mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{ICl}_{3(\mathrm{~s})}$
$\Delta \mathrm{H}_{\mathrm{f}}^{\circ}=-214 \mathrm{~kJ}$
$-\mathrm{I}_{2(\mathrm{~s})} \longrightarrow \mathrm{I}_{2(\mathrm{~g})}$
$\Delta \mathrm{H}_{\mathrm{f}}^{\circ}=+38 \mathrm{~kJ} / \mathrm{mol}$

ها قيثة حرارة التكوين القياسية هركب ثالث كلوريد اليود
(a) $+176 \mathrm{~kJ} / \mathrm{mol}$
(b) $-88 \mathrm{~kJ} / \mathrm{mol}$
(c) $-176 \mathrm{~kJ} / \mathrm{mol}$
(d) $-214 \mathrm{~kJ} / \mathrm{mol}$

(1) $\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}$ $\Delta H_{1}=-394 \mathrm{~kJ} / \mathrm{mol}$
(2) $\mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})}$ $\Delta \mathrm{H}_{2}=-286 \mathrm{~kJ} / \mathrm{mol}$
(3) $\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}+\frac{5}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})} \quad \Delta \mathrm{H}_{3}=-1300 \mathrm{~kJ} / \mathrm{mol}$ ما قيمة حرارة التكوين القياسية للأسيتلين C2H2 من عناصره الأولية ؟
(a) $+226 \mathrm{~kJ} / \mathrm{mol}$
(b) $-1694 \mathrm{~kJ} / \mathrm{mol}$
(C) $+906 \mathrm{~kJ} / \mathrm{mol}$
(d) $-1980 \mathrm{~kJ} / \mathrm{mol}$

تسامى المادة يعنى تحولها من الحالة الصلبة إلى الحالة البخارية دون المرور بالحالة السائلة. $\mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})} \quad \Delta \mathrm{H}=+43.7 \mathrm{k} \mathrm{J} / \mathrm{mol}$ بدلالة المعادلتين المقابلتين :

ما قيمة $\mathbf{~ ل ع م ل ي ة ~ ت س ا م ى ~ ا ل ج ل ي د ~ ؟ ~}$
(a) $+49.75 \mathrm{~kJ} / \mathrm{mol}$
(b) $+37.65 \mathrm{~kJ} / \mathrm{mol}$
(c) $+43.7 \mathrm{~kJ} / \mathrm{mol}$
(d) $-43.7 \mathrm{~kJ} / \mathrm{mol}$

من المعادلتين الحراريتين التاليتين :
(1) ${ }^{2} \mathrm{Cr}_{(\mathrm{s})}+\frac{3}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{Cr}_{2} \mathrm{O}_{3(\mathrm{~s})} \quad \Delta \mathrm{H}_{1}=-1130 \mathrm{~kJ} / \mathrm{mol}$
(2) $\mathrm{C}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{(\mathrm{g})} \quad \Delta \mathrm{H}_{2}=-110 \mathrm{~kJ} / \mathrm{mol}$

$$
\text { ما قيمة } \Delta H C_{(s)}+\mathrm{Cr}_{2} \mathrm{O}_{3(\mathrm{~s})} \longrightarrow 2 \mathrm{Cr}_{(\mathrm{s})}+3 \mathrm{CO}_{(\mathrm{g})} \text { : لتفاعل }
$$

(a) -800 kJ
(b) +800 kJ
(c) -1460 kJ
(d) +1460 kJ
-92.3 kJ/mol HCl يسـاوى
وحـرارة الذوبـان القياسيـة لهذا الغـاز فـ الهاء تساوى

> ما قيمة إنثالبى تكوين كل من Cl
(a) $-17.16 \mathrm{~kJ} / \mathrm{mol}$
(b) $-167.44 \mathrm{~kJ} / \mathrm{mol}$
(C) $+17.16 \mathrm{~kJ} / \mathrm{mol}$
(1) $+167.44 \mathrm{~kJ} / \mathrm{mol}$
(1) $2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ - :
(2) $4 \mathrm{NH}_{3(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 6 \mathrm{H}_{2} \mathrm{O}_{(l)}+2 \mathrm{~N}_{2(\mathrm{~g})}$ $\Delta \mathrm{H}_{2}$
(3) $4 \mathrm{NH}_{3(\mathrm{~g})} \longrightarrow 6 \mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{~N}_{2(\mathrm{~g})}$ $\Delta \mathrm{H}_{3}$

ما قيمة ${ }^{\text {ما للتفاعل (3) ؟ }}$
(a) $\Delta \mathrm{H}_{3}=\Delta \mathrm{H}_{2}-\frac{\Delta \mathrm{H}_{1}}{2}$
(b) $\Delta \mathrm{H}_{3}=\frac{\Delta \mathrm{H}_{2}}{2}-3 \Delta \mathrm{H}_{1}$
(c) $\Delta \mathrm{H}_{3}=\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{1}$
(d) $\Delta \mathrm{H}_{3}=\Delta \mathrm{H}_{2}-3 \Delta \mathrm{H}_{1}$
(T) من التفاعلات الثلاثة الآتية :
(1) $\mathrm{S}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{SO}_{2(\mathrm{~g})}$
(2) $\mathrm{S}_{(\mathrm{s})}+\frac{3}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{SO}_{3(\mathrm{~g})}$
$\Delta H_{1}=-297 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{2}=-395 \mathrm{~kJ} / \mathrm{mol}$
(3) $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathbf{2} \mathrm{SO}_{3(\mathrm{~g})}$
$\Delta \mathrm{H}_{3}=$?
ما قيمة
(a) -196 kJ
(b) -98 kJ
(C) +98 kJ
(d) +196 kJ

 التغير في المحتوى الحرارى لبعض التفاعلات

ما قيم كل من $\mathbf{~ م ا ~} \mathbf{~ ا ل م ُ ش ـ ا ر ~ ا ٕ ل ي ه ه ا ~}$ فـ المخطط طبقًا لقانون هس ؟

(1)	$\mathbf{\Delta H}$	$\mathbf{\Delta H} \mathbf{H}_{\mathbf{2}}$
(a)	+136	+74
(b)	-136	+74
(c)	+136	-74
(d)	-136	-74

daluin an (im) (S)

هورارة الاحتراق القياسية يكنتق غاز الميثان تبعًا للمعادلة النالية :

$$
\underset{\mathrm{H}=11}{\mathrm{CH}_{4(\mathrm{~g})}}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta \mathrm{H}_{\mathrm{c}}^{\circ}=-890 \mathrm{~kJ} / \mathrm{mol}
$$

$$
[12, H=1]
$$

.0017 kJ/mol

(1) الهـتخدمت الحرارة الناشـئة عن احتراق مركب الهكسان فـ تسخين كتلة معلومة من الماء وسجلت نتائج التجربة فـ الجدول المار المقابل : (1) لحسب كمية الحرارة الناشئة من احتراق الهكسبان فى هذه التجربة بوحدة الجيل.
(Y) احسب قيمة التنير فی إنثالبى احتراق الهكنــان، $86 \mathrm{~g} / \mathrm{mol}$ علمًا بأن كتلته المولية
(r) اقترح احتمالين لاختلاف قيتى التفير فى إنثالبى احتراق الهكسان المقاسة والفطلية.
 -726 kJ/mol من 30° إلى $45^{\circ} \mathrm{C}$ فإذا علمت أن حرارة احتراق الميثانول تساوى هل هذا المسعر يمثل نظام مفتوح أم معزول ؟ مع التفسير. التجربة الموضحـــة بالشكـل المقـابــــل : توضـح عمليـة تسخين الم 100 g مـن المـاء بواسـطة الطاقـة الحراريـة الناتجـة مـن

احتراق 1.8 من الإيثانول $10{ }^{\text {a }}$ ، تبعًا للمعادلة :

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)}+3 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

احسيـب النسـبـــة المئويــة للطاقــة المفقــودة للوســط المحيـط
 إلى $40^{\circ} \mathrm{C}$ وإن حـرارة احتراق الإيثانـل $1364 \mathrm{~kJ} / \mathrm{mol}$ [$\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16$]

$$
\begin{equation*}
\mathrm{N}_{2(\mathrm{k})}+3 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})} \Delta \mathrm{H}=-92 \mathrm{k} . \mathrm{J} \quad \text { : } \tag{1}
\end{equation*}
$$ (r) ارسم مخطط الطاقة لهذا التفاعل.

$$
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})} \quad \Delta \mathrm{H}_{\mathrm{c}}=-484 \mathrm{~kJ} \quad: \quad: \quad \text { :لتُّا التفاعل : }
$$

(1) شرارة الاحتراق القياسية للهيدروحين.
 (r) حرارة التكوين القياسية لبخار الماء.
 احسب التغير فف الإنثالبى المولارى لاحتراق الإيثان، علمًا بأن : $\Delta \mathrm{H}_{\mathrm{c}(\mathrm{C})}^{\circ}=-393.5 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}_{\mathrm{c}\left(\mathrm{H}_{2}\right)}^{\circ}=-285.85 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}_{\mathrm{f}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)}^{\circ}=-140 \mathrm{~kJ} / \mathrm{mol}$ رتب المربات الموجودة فـ كل جدول تصاعديًا، حسب درجة ثباتها الحرارى :

$\Delta \mathbf{H}_{\mathbf{f}}^{\circ}$ $(\mathbf{k J} / \mathbf{m o l})$	(Y)	
-277.4	$\mathbf{P b O}_{\mathbf{2 (s)}}$	(1)
-919.94	$\mathbf{P b S O}_{\mathbf{4 (s)}}$	(Y)
-278.7	$\mathbf{P b B r}_{\mathbf{2 (s)}}$	(Υ)
-244.8	$\mathbf{P b B r}_{\mathbf{2 (a q)}}$	(ε)

(أى من المعادلتين الآتيتين تعبر عن التفاعل الذى يحدث بالفعل ؟ مع بيان السبب :
(1) $2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$
(2) $2 \mathrm{NO}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}$

علمٌا بأن حرارة تكوين كل من NO و $23.2 \mathrm{~kJ} / \mathrm{mol}$ و +90.25 kJ/mol NO قانون هس

حرارة التكوين القياسية لفوق أكسيد الهيدروجين H2O
(1) $2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$
(2) $\mathrm{H}_{2} \mathrm{O}_{(l)}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2(\ell)}$ $1 . \mu$

(i) زيادة الطاقة الحرارية للما ه.
(ب) ارتفا ع درجة حرارة النحاس عن درجة حرارة الماء. ج
(د ارتفاع درجة حرارة الماء عن درجة حرارة النحاس.

 للمواد الصلبة (B) ، (B) ، (B) ، (C) متساوية الكتلة وفى درجة الحرارة القيــاسيـة.
أى هـذه المواد تصل درجة حرارتها إلى 70² فی أكبر زمن ممكن ؟
(a) A
(b) B
(c) C
(d) D

Suld	الحرارة النوعية (J/g. ${ }^{\circ} \mathrm{C}$)
(A)	0.385
(B)	0.444
(C)	0.711
(D)	0.889

细 الجدول المقابل : يوضح قيم الحرارة النوعيـة لأربـع مواد فى درجة حرارة الغرفة. أى هذه المواد تصل درجة حرارتها إلى 80º في أقل زمن ممكن ؟
(a) A
(b) B
(c) C
(d) D
(a) $16^{\circ} \mathrm{C}$
(b) $64^{\circ} \mathrm{C}$
(c) $80^{\circ} \mathrm{C}$
(d) $100^{\circ} \mathrm{C}$
(أى مها يأتى يستخدم لقياس حرارة احتراق وقود ما ؟ (i) ألة الاحتراق الداخلى.
-
〒 \bigodot
(ـ) مُسعر كوب القهوة.

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})} \quad \Delta \mathrm{H}=-92 \mathrm{~kJ} \quad: \quad \text { : من المعادلة }
$$

يستنتج أن الإنثالبى المولارى للنشادر يساوى
(a) $-46 \mathrm{~kJ} / \mathrm{mol}$
(b) $+46 \mathrm{~kJ} / \mathrm{mol}$
(C) $-92 \mathrm{~kJ} / \mathrm{mol}$
(d) $+92 \mathrm{~kJ} / \mathrm{mol}$

المخطط المقابل : يعبر عن تفاعل تكوين غاز HI من عناصره الأساسية. أى مما يلى يصف التغير الحرارى المصآحب لهذا التفاعل ؟
(i) قيمة H للمتفاعلات أكبر من قيمة H للنواتج، وإشارة H (C (C موجبة. ب ق ¢ \bigodot قيمة H للنواتج أكبر من قيمة H للمتفاعلات، وإشارة H موجبة. (ـ) تيمة H للمتفاعالت أقل من قيمة H للنواتج، وإشارة HH

يُعبر عن تفاعل انحلال كبر يتات الحديد (II) بالمادلة الحرار ية الثالية : $2 \mathrm{FeSO}_{4(\mathrm{~s})}+420 \mathrm{~kJ} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2(\mathrm{~g})}+\mathrm{SO}_{3(\mathrm{~g})}$ أى من مخططات الطاقة الآتية يعبر عن التفاعل الحادث ؟

$$
\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})} \quad \Delta \mathrm{H}=+44 \mathrm{~kJ} / \mathrm{mol} \quad: \quad \text { من المعادلة الحرارية المقابلة }
$$ يُستنتج أن

(المحتوى الحرارى لبذار الماء أقل من نصف المحتوى الحرارى للماء السائل. ج (المتوى الحرارى لبخار الماء يساوى المحتوى الحرارى للماء السائل. ج المحتوى الحرارى لبخار الماء أكبر من المحتوى الحرارى للماء السائل. (① المتوى الحرارى لبخار الماء نصف المحتوى الحرارى للماء السائل.

ألى من المعادلات الآتية تعبر عن تفاعل طارد للحرارة ؟
(a) $X Y_{5} \longrightarrow X Y_{3}+Y_{2}, \Delta H=+420 \mathrm{~kJ}$
(b) $X Y_{5} \longrightarrow X Y_{3}+Y_{2}+420 \mathrm{~kJ}$
(c) $X Y_{5} \longrightarrow X Y_{3}+Y_{2}-420 \mathrm{~kJ}$
(d) $X Y_{5}+420 \mathrm{~kJ} \longrightarrow X Y_{3}+Y_{2}$

$$
2 \mathrm{C}_{(\mathrm{s})}+2 \mathrm{H}_{2(\mathrm{~g})}+52.3 \mathrm{~kJ} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}
$$

" نستنتج أن
() الوسط يكتسب حرارة. رَر) الحرارة تنتقل من الوسط المحيط إلى النظام. (\%) النظام يفقد حرارة. ر(د) الحرارة تنتقل من النظام إلى الوسط المحيط.
 (i) مجموع المحتوى الحرارى للمتفاعلات أكبر من مجموع المحتوى الحرارى للنواتج.〇 \bigcirc-الطاقة اللازمة لكسر الروابط فى المتفاعلات تساوى الطاقة المنطلقة عند تكوين الروابط فى النواتج. ج \bigodot مجموع المحتوى الحرارى للنواتج أكبر من مجموع المحتوى الحرارى للمتفاعلات. (3) الطاقة الللزمة لكسر الروابط فى المتفاعلات أكبر من الطاقة المنطلقة عند تكوين الروابط فى النواتج.

园 فـ أى من الحالات الآتية تكون كمية الحرارة الممتصة أقل ما يِكن ؟

(a)

(b)

(c)

(d)
$6.89^{\circ} \mathrm{C}$ C 1 L ارتفعت درجة الحرارة بمقدار 10 عند إذابة 28 من هيدروكسيد البوتاسيوم فی الهاء لعمل محلول حجمه [$\mathrm{K}=39, \mathrm{H}=1, \mathrm{O}=16$] ما قيمة حرارة الذوبان المولارية لهيدروكسيد البوتاسيوم ؟
(a) $-57.6 \mathrm{~kJ} / \mathrm{mol}$
(b) $+57.6 \mathrm{~kJ} / \mathrm{mol}$
(C) $+28.8 \mathrm{~kJ} / \mathrm{mol}$
(d) $-28.8 \mathrm{~kJ} / \mathrm{mol}$

 ما قيمة الحرارة النوعية لهذا المذيب ؟
(1) $10 \mathrm{cal} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(b) $4.18 \mathrm{cal} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(c) $0.418 \mathrm{cal} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(d) $1 \mathrm{cal} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
 100 kJ وطاقة تفكك الهاء تساوى
فأى مما يأت يعبر عن كل من نوع ذوبان هذا الملح فـ الماء وقيمة

هـ هند إضافة قطرات من حمض الكبريتيك المركز إلى الماء ترتفع درجة حرارة الماء:
(i) مجموع طاقتى نصل جزيئات كل من المذاب والمذيب عن بـضها تكون أكبر من طاقة الإماهة. ج ٪ \bigodot طاتة إبعاد الأيونات أكبر من طاقة الإماهة. (د) طاتة إبعاد الأيونات أقل من طاقة الإماهة.
$\mathrm{HCl}_{(\mathrm{g})} \xrightarrow{\text { water }} \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-} \quad \Delta \mathrm{H}=-83.6 \mathrm{~kJ} / \mathrm{mol} \quad$: من المعادلة المقابلة أى مما يأت يعبر عن كل من نوع الذوبان والتفسير العلمى لنوع الذوبان ؟

(الاختيارات	نوع الذوربان	ماص للحرارة
(a)	$\Delta H_{3}>\left(\Delta H_{1}+\Delta H_{2}\right)$	
(b)	$\Delta H_{3}<\left(\Delta H_{1}+\Delta H_{2}\right)$	
(C)	$\Delta H_{3}<\left(\Delta H_{1}+\Delta H_{2}\right)$	
(d)	طارد للحرارد	$\Delta H_{3}>\left(\Delta H_{1}+\Delta H_{2}\right)$

تدريبات عامة

$$
\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}+\text { Heat water } \mathrm{NH}_{4(\mathrm{aqq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-} \text {: }
$$ أى من العبارات الآنية تعبر عن عملية الذوبان السابقة ؟

 (؟) باقة فصل جزيئات المذيب وطاقة الإماهة أكبر من طاقة فمل جزيئات المذاب. ج (ـ) (ـ) مجموع طاقتى فصل جزيئات كل من المذيب والمذاب عن بهضها تككن أكبر من طاقة الإماهة.

 فما المعادلة الحرارية المعبرة عن حرارة التكوين القياسية لغاز بروميد الهيدروجين ؟
(a) $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{l})} \longrightarrow 2 \mathrm{HBr}_{(\mathrm{g})}$
$\Delta \mathrm{H}=+36.23 \mathrm{~kJ}$
(b) $\frac{1}{2} \mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{Br}_{2(\mathrm{l})} \longrightarrow \mathrm{HBr}_{(\mathrm{g})}$
$\Delta \mathrm{H}=-36.23 \mathrm{~kJ}$
(c) $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{l})} \longrightarrow 2 \mathrm{HBr}_{(\mathrm{g})}$
$\Delta \mathrm{H}=-36.23 \mathrm{~kJ}$
(d) $\frac{1}{2} \mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{Br}_{2(\mathrm{l})} \longrightarrow \mathrm{HBr}_{(\mathrm{g})}$
$\Delta \mathrm{H}=+36.23 \mathrm{~kJ}$

$$
\begin{array}{ll}
C_{(s)}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{(\mathrm{g})} & \Delta \mathrm{H}=-110.3 \mathrm{~kJ} / \mathrm{mol} \\
C_{(s)}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})} & \Delta \mathrm{H}=-393.5 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

ستنتج ان ان...............
(
 CO الإنتالبى المولارى لغاز CO zero (3 الإنتالبى المولارى لنازى

Ang Mino onliml (E)

 0.24 J/g. ${ }^{\circ} \mathrm{C}$ احسب مقدار التغير في درجة حرارة هذا الجسم، علمًا بأن حرارته النوعية تساوى

الأحرارة النوعية $\left(\mathrm{J} / \mathrm{g}^{\circ} \mathbf{C}\right)$	المادة
0.240	(W)
0.889	(X)
0.444	(Y)
0.139	(Z)

(5 g 5 و منصت أحد المواد الموضحة بالجدول المقابل
كميـة مـن الحـرارة قـدرهـا 133 فـارتـفــت درجــة حـرارتـهـا
$55.1^{\circ} \mathrm{C}$ من $25.2^{\circ} \mathrm{C}$
استخدم العلاقة : qu = m c $\mathbf{~ ا ~ ف ى ~ ت ح د ي د ~ ه ذ ه ~ ا ل م ا د ة . ~}$
$\mathrm{Br}_{2(l)}+\mathrm{H}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{HBr}_{(\mathrm{g})} \quad \Delta \mathrm{H}=-72 \mathrm{~kJ} \quad: \quad$ من المعادلة عبٌّ بمعادلة كيميائية حرارية عن انحالل 1 mol من بروميد الهيدروجين.

(kJ/mol)	متوسط طاقة الرابط/
391	$\mathbf{N}-\mathbf{H}$
495	$\mathbf{O}=\mathbf{O}$
941	$\mathbf{N} \equiv \mathbf{N}$
463	$\mathbf{O}-\mathbf{H}$

$\mathrm{N}_{2} \mathrm{H}_{4(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})}+\mathrm{N}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=-577 \mathrm{~kJ} / \mathrm{mol}$ احسب قيمة متوسط طاقة الرابطة (N-N)

فی جزىء الهيدرازين
بمطلممية متوسط طاقة الروابط الموضحة بالجدول المقابل.

متوسط طاقة الرابطة （ $\mathrm{kJ} / \mathrm{mol}$ ）	الرابطة
467	$X-Y$
498	$Y=Y$
－ 432	$X-X$

بالاستعانة بالمعادلة التالية و الجدول المقابل ： $\mathrm{X}_{2} \mathrm{Y}_{(\mathrm{l})} \longrightarrow \mathrm{X}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{Y}_{2(\mathrm{~g})}$ احسب قيمة ΔH للتفاعل، ثم حدد نوع التغير فى المحتوى الحرارى（طارد أم ماص للحرارة）．

（kJ／mol）	الراقط（الرابط
240	$\mathrm{Cl}-\mathrm{Cl}$
432	$\mathrm{H}-\mathrm{H}$
430	$\mathrm{H}-\mathrm{Cl}$

من المعلومات الموضحة بالجدول المقابل،
والخاصة بالتفاعل التالى ：

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{HCl}_{(\mathrm{g})}
$$

（1）احسب مقدار التغير فى المحتوى الحرارى للتفاعل．
（Y）مل التفاعل طارد أم ماص للحرارة ؟ مـع التفسير．
（اكتب المعادلة الكيميائية الحرارية المعبرة عن تكوين 2 mol 2 من أكسيد الكالسيوم،

حرارة التكوين القياسية（kJ／mol）	（k）
$\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{6 (g)}}$	-84.67
$\mathbf{C O}_{\mathbf{2}(\mathrm{g})}$	-393.5
$\mathbf{H}_{\mathbf{2}} \mathbf{O}_{(\ell)}$	-286

团 من حمرارة التكوين القياسية الموضحة بالجدول المقابل
والخاصة بالمركبات المتفاعلة والناتجة من التفاعل التالى ：
$\mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}+\frac{7}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ （（ ）احسب قيمة 1 （للتفاعل．
（Y）هل التفاءل طارد أم ماص للحرارة ؟ مـع التفسير．
مكونًا غاز ثانى أكسيد الكربون وبخار الماء ：
（ا）اكتب المعادلة الحرارية المعبرة عن احتراق البروبان،
علمًا بأن حرارة احتراقه القياسية تساوى 2220 kJ／mol
$[\mathrm{C}=12, \mathrm{H}=1]$ （Y）احسبِ كمية الحرارة الناتجة عن احتراق 0.44 من غاز البروبان．

国 المعادلة الآتية تعبر عن انحلال غاز الأمونيا إلى عناهره الأولية القياسية ： $2 \mathrm{NH}_{3(\mathrm{~g})} \longrightarrow \mathrm{N}_{2(\mathrm{~g})}+\mathbf{3 \mathrm { H } _ { 2 (\mathrm { g }) }} \quad \Delta \mathrm{H}=+\mathbf{9 2} \mathrm{kJ}$

اكتب المعادلة الحرارية المعبرة عن حرارة التكوين القياسية للأكونيا．

 $R_{2}+Q_{2} \longrightarrow 2 R Q$

فى التفاعل الحرارى :
أى مما يأتى يعبر عن التفاعل الذى ينتج أكبر قدر من الحرارة ؟
الروابط فـ RQ

Q2 الروابط	الروابط فـ	الاختيارات
قوية	قوية	(i)
قوية	قوية	(-)
ضصيفة	ضعيفة	\bigcirc
ضصيفة	ضنيفة	($)$

...................... النظام المعزول
(()

يُعـبر عـن تـفـاعـل حــمـض الهـيـدروكـلـوريـك مـع
محلول هيدروكسيد الصوديوم بمخطط الطاقة المقابل.
0.1 mol ما كمية الحرارة المنطلقة عند تفاعل من كل من الحمض والقاعدة ؟
(a) 0.575 kJ
(b) 2.815 kJ
(C) 5.75 kJ
(d) 1.44 kJ

أى من القيم الآتية تناسب هذه العملية ؟
(a) $q_{p}=0$
(b) $\Delta \mathrm{H}=0$
(c) $\Delta \mathrm{H}=+334 \mathrm{~J}$
(d) $\Delta \mathrm{H}=-334 \mathrm{~J}$
(0) (0) مما يأتى يعبر عن نوع التفاعل الكيمياثى الحادث عند احتكال عود الثقاب بجسم خشن ؟ (i) ماص للحرارة بسبب استخدام الطاقة عند حك عود الثقاب. ج ماص للحرارة بسبب انطلاق الطاقة عند احتراق عود الثقاب. ¢ طارد للحرارة بسبب استخدام الطاقة عند حك عود النقاب. (3) طارد للحرارة بسبب انطلاق الطاقة عند احتراق عود الثقاب.

حرارة التكوين القياسية	الهركب
+49	$\mathrm{C}_{6} \mathrm{H}_{6(l)}$
-394	$\mathrm{CO}_{2(\mathrm{~g})}$
-286	$\mathrm{H}_{2} \mathrm{O}_{(l)}$

(7) تبعًا للمعادلة التالية :

$$
\begin{array}{r}
\mathrm{C}_{6} \mathrm{H}_{6(l)}+\frac{15}{2} \mathrm{O}_{2(\mathrm{~g})} \\
\longrightarrow 6 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}_{(l)} \\
\text { حرارة الاحتراق الحسابات الآتية يكن بواسطتها تقدير للبنزين ؟ } ؟ ~
\end{array}
$$

(a) $[(12 \times-394)+(6 \times-286)]-(2 \times 49)$
(b) $[(12 \times 394)+(6 \times 286)]-(2 \times-49)$
(c) $[(6 x-394)+(3 x-286)]-49$
(d) $[(6 \times 394)+(3 \times 286)]-(-49)$

(a) $0.59 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(b) $11.9 \mathrm{~J} / \mathrm{g}^{\circ}{ }^{\circ} \mathrm{C}$
(c) $1.7 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
(d) $25.4 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$

 يساوى (at STP) $\mathbf{~} \mathbf{2 2 . 4}$ L/mol

$$
\mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta \mathrm{H}=-286 \mathrm{~kJ} / \mathrm{mol}
$$

حرارة التكوين القيابية (kJ/mol)	الهركب
-935	CdSO_{4}
-162	CdS
- -561	$\mathrm{Cd}(\mathrm{OH})_{2}$
-258	CdO

ما الصيغة الكيميائية للمركب الأثبت حراريًا ؟
(a) CdSO_{4}
(b) CdS
(c) $\mathrm{Cd}(\mathrm{OH})_{2}$
(d) CdO

مبر عن التفاعل الآتى بإكمال مخطط الطاقة الموضح :

$$
\mathrm{N}_{2} \mathrm{H}_{4(l)}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})} \quad \Delta \mathrm{H}^{\circ}=-622 \mathrm{~kJ} / \mathrm{mol}
$$

المخطط التالى يوضح التغير ات الحادثة لهى الطاقة لعمليتين مختلفتين :
(80)

$$
\begin{aligned}
& \text { W } \xrightarrow{\Delta H=-130 \mathrm{~kJ} / \mathrm{mol}} \mathrm{X} \xrightarrow{\Delta H=+80 \mathrm{~kJ} / \mathrm{mol}} \mathrm{Z} \\
& \text { احسب } \Delta H \text { للحملية (Z) (W) (W) (}
\end{aligned}
$$

\qquad

فوإذا علمت أن ذوبان أكسيد الكالسـيوم فى الماء طارد للحرارة،
فأى قيـمة من قيم ΔH السابقـة تكون هـى الأكبر ؟ وما الذى تعبر عنه ؟
\qquad
يُ يُستخلم فى مُسعر القنبلة غاز و سائل لا يتفيران عند حساب حرارة احتراق أى مادة، ما أهمية الغاز المستخدم ؟ وما اسم هذا السائل ؟

no....

(1) $\mathbf{L i B r}_{(\mathrm{s})} \xrightarrow{\text { water }} \mathbf{L i B r}_{(\mathrm{aq})}$
$\Delta H_{\text {sol }}^{\circ}=-49.8 \mathrm{~kJ} / \mathrm{mol}$
(2) $\mathrm{KCl}_{(\mathrm{s})} \xrightarrow{\text { water }} \mathrm{KCl}_{(\mathrm{aq})}$ $\Delta H_{\text {sol }}^{\circ}=+17.8 \mathrm{~kJ} / \mathrm{mol}$
(1) أى المركبين 'السابقين يكن ذوبانه فى الماء ماصًا للحرارة ؟
(ץ) احسب كمية الحرارة (المنطْقة أو الممتصة) عند ذوبان 0.87 من LiBr
87 g/mol علمًا بأن كتلته المولية
\qquad
\qquad
\qquad
\qquad
\qquad

حرارة الاحتراق القياسيا $\Delta \mathbf{H}_{\mathbf{c}}^{\circ}(\mathrm{kJ} / \mathrm{mol})$	الهادة
-393.5	$\mathrm{C}_{(\mathrm{s})}$
-285.85	$\mathrm{H}_{2(\mathrm{~g})}$
-1300	$\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}$

ΔH_{c}° بمعلومية حرارة الاحتراق القياسية اللمواد الموضحة بالجدول المقابل : اكتب المعادلة الكيميائية الحرارية المعبرة عن حرارة تكوين كل من ثانـى أكسـيد الكربـن والأسـيتيـلـين من عناصرهما الأولية.
\qquad
\qquad

اهــداف البـاب

ه بعد دراسة هذا الباب يجب ان يكون الطالب قادرًا على انَ :

- يدسب الكتل الذرية للعناصر بمعلومية الكتل النسبية لنظائرها. - يطبق العلامَه بين الكتله و الطاقة بالوحدات المختلفة فـى حل المسائل. - يحسب طاaة الترابط النووى بين جسيمات لواة ذرة العنصر. - يطبق العلاقة بين نسبة عدد النيوترونات الى عدد البروتونات للعناصر ومدى ثباتها النووى.
- يربط بين عدد البروتونات و النيوترونات و الكواركات. - يستنتح تاثيرِ انبحاث إشعاعات (ألفا - بيتا - جاما) من نواةَ ذرة عنصر مشع. - إستّنتج فترة عمر النصف و كيفية حسابها لعنصر مشع. - يميز بين التحول الطبيعى و التحول النووى للعناصر. - يقارن بين الانشطار النووى و الاندماج النووى.
- ـيفسر الالساس العلمى للمفاعلات النووية.

نواة الذرة و الجسيمات الأولية.

نواة الأرة و المداسياتات الأولية

الفصّ
 الأول

نواتج التعلــم

بعد دراسة هذا الفصل يبب أن يكون الطالب قادرّا على أن : (1) يذكر مكونات الذرة.
 (Y) بستنبط مفهوم النظائر ويذكر امثلة منها. () يحسب الطاقة الناتجة من تحول كتلة معينة من مادة ما باستخدام معادلة اينشتين.
(ه) بستنتج خصائص القوى النووية القوية.
(7) يحسب طاقة الترابط النووى و طاقة الترابط النووى لكل نيوكلون. بذكر مكونات البروتون و النيوترون من الكواركات.

0 05

(لالى

مكونات الذرة

\$ بتكون المادة من ذرات، وهى التى يرجع إليها الخواص الفيزيائية والكيميائية للمادة. / هنى نهاية القرن التاسع عشر : - تأكد اللماء أن الإلكترونات من المكونات الأساسية فى الذرة وهى جسيمات سالبة الشحنة، كتلتها ضثيلة جدًا تدور حول نواة الذرة.

- استنتج العلماء أن الذرة تحتوى أيضًا على شـنات موجبة مساوية لشحنة الإلكترونات السالبة وذلك بناءً على أن الذرة متحادلة كهربيًا. إلا أنه لم يكن معروف حتى ذلك الحـن، كيفية توزيع الشحنات الموجبة والسالبة فى الذرة. < نموذج رذرفورد (1911) و بور (1913) لوصف الذرة ترتب على إجراء تجربة رذرفودد ونظرية بود تغير جوهرى فى وصف تركيب الذرة،

نموذج بور للذرة

* تدور الإلكترونات سالبة الشحنة حول النواة، فى مدارات معينة ثابتة، أطلق عليها اسم مستويات الطاقة.
* كل مستوى طاقة يشغله عدد محدد من الإلكترونات لا يمكنَ أن يزيد عنه.

اكتشاف البروتولات (1919)
أثبت العالم رذرفورد أن نواة الذرة تحتوى على جسيمات تحمل شحنة هوجبة أطلق عليها اسم البروتونان.
اكتشاف النيوترونات (1932)
اكتثـــف العالم شــادويك أن النواة تحتوى على جسيمات متعادلة الشـنة، أطلق عليها اسم النيوثروناه, وأن كتلة النيوترون تساوى تقريبًا كتلة البروتن.

- تتركز كتلة الذرة فى النواة، لضآلة كتلة الإلكترونات مقارنةُ بكتلة النواة حيث إن ككلة البروتون أكبر من كتلة الإلكترون بحوالى 1800 مرة. - الذرة متعادلة كهربيًا، لتساوى عدد الثحنات الموجبة (البروتونات) داخل النواة مع عدد الشحنات السالبة (الإلكترونات) التى تدور حول النواة.

Worked Example

| دقائق الذرة |
| :---: | :---: |
| $1.67 \times 10^{-24} \mathrm{~g}$ (X)
 $9.11 \times 10^{-28} \mathrm{~g}$ (Y) |

فكرة الصـل :
من الجدول يتضح أن كتلة (X) أكبر من كتلة (Y).
: كتلة النيوترون تساوى تقريبًا كتلة البروتون.
©
: كتلة البروتون أكبر من كتلة الإلكترون وليس العكس.
(د) يستبد الاختيار :-

\qquad

يليزم لوصف نواة ذرة أى عنصر ، معرفة الثُلاثة مصنطلحات التالية :

1	الرمز	المصطلح
عدد البروتونات + عدد النيوترونات	A	العدد الكتلى
¢	Z	الهدد الذرى
العدد الكتلى - عدد البروتونات $(\mathrm{N}=\mathrm{A}-\mathrm{Z})$	N	كا.

\{ ويُطلق على البروتونات و النيوترونات الموجودة داخل نواة الذرة، اسم النيوكلونات.

Worked Example

اكـتب الرمز الكيميائى لنواة ذرة الألومنيوم، علما بأنها تحتوى على 13 بروتون، 14 نيوترون.
${ }_{13}^{27} \mathrm{Al}_{14}$
رمز نواة ذرة الالومنيوم

$$
27=14+13=\text { = (A) العدد الكتلى }
$$

?

$$
13=(Z) \text { (Z } 13 \text { بروتون * العدد الذرى }
$$

* 14 نيوترون

Test Yourself

عدد النيوكونات فى نواة ذره اليودانيوم 92 ${ }^{235}{ }^{\text {يساوى }}$
(a) 327
(b) 235
(C) 143
(d) 92

الحـل : الاختيار الصحيح

반II

نظار المنصر الواحد نتفق فى المدد الذرى وتختلف فى المدد الكتلى

1 4 النطانُر هى ذرات الصنصر الواحد النى تتفق فى العدد الذرى وتختلف فیى الحدد الكنلى، لاختلاف عدد النبوترونان فى نواه

كل منها. < تتفت نظائز الحنصر الواحد فى الخواص الكيميائية. لاتفاقها فى عدد الإلكترونات وترتيبها حول نواة ذرة كل نظـير منها.

ج1 معظم عناصر الجدول الدورى لها أكثر من نظير .

عنصر الهيدندوحیِ - أبسط العناصر الموجودة فى الطبيعة - له 3 نظائر، يوضحها الجدول التالى :

يتخــ من الجدول السـابق أن :

* العدد الذرى يتساوى مـ العدد الكتلى فى نواة البروتيوم، لعدم احتوائها على نيوترونات. * عدد النيوترونات :

ه يتساوى مع عدد البروتونات فى نواة ذرة اللديوتيريوم. :
\qquad
4

${ }_{8}^{18} 0$	${ }_{8}^{170}$	${ }_{8}^{16} 0$	النظير
8	8	8	(P) (P)
18	17	16	عدد النيوكلونات (A)
$18-8=10$	$17-8=9$	$16-8=8$	عدد النيوترونات (N)

Worked Example

(a) ${ }_{206}^{82} \mathrm{~Pb}$
(b) ${ }_{82}^{164} \mathrm{~Pb}$
(C) ${ }_{128}^{164} \mathrm{~Pb}$
(d) ${ }_{82}^{207} \mathrm{~Pb}$

ما المزعز المحتمل لنظير عنصر الرصاص؟

فى أنوية العناصر الثقيلة كالرصاص يكن : - العدد الكتلى أكبر من العدد الذرى للعنصر. (c) ، (b) عـد النيوترونات أكبر من عدد البروتونات. (d): الصـل : الاختيار الصحيح

amu وحدة الكتل الذزية

لا تقدر كتل ذرات النظائر بوحدة كيلوجرام kg ، لان كتلها صغيرة جدًا. $1.66 \times 10^{-27} \mathrm{~kg}$ والتى تختصر إلى u وهى تعادل amu و

$$
1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}=1.66 \times 10^{-24} \mathrm{~g}
$$

فack

حساب وحدة الكتل الذرية بالجرام :
من المعروف أن المول الواحد من أى عنصر يحتوى على عدد أڤوجادرو من ذرات هذا العنصر.
 $\therefore 12 \mathrm{~g}=6.02 \times 10^{23} \times 12 \mathrm{u}$
$1 \mathrm{u}=\frac{1 \mathrm{~g}}{6.02 \times 10^{23}}=1.66 \times 10^{-24} \mathrm{~g}$
ج ويمكن تعيين الكتل الذرية للعناصر بمعلومية الكتل الذرية النسبية لنظائرها ونسبة وجود كلل منها.

Worked Examples

لسبة وجود نظيرى عنصر النحاس فى الشبـ\&
(1) يوأجد عنصر اللحاس فق الطبيعة على هينة نظيرين، هما : . ${ }^{33} \mathrm{Cu}$ • . ما الكتلة الذرية لعنصر النحاس ؟
l $\left.{ }^{63} \mathrm{Cu}=62.9298 \mathrm{amu},{ }^{65} \mathrm{Cu}=64.9278 \mathrm{amu}\right]$
(a) 61.4574 u
(b) 62.7354 u
(C) 63.5474 u
(d) 65.2354 u

فكـرة الصـل :
43.4782 u = $\frac{69.09}{100} \times 62.9298=$ مساهمة نظير النحاس 63 فى الكتلة الذرية
20.0692 u = $=\frac{30.91}{100} \times 64.9278=$ =مساهمة نظير النحاس 65 فى الكتلة النرية 63.5474 u = $20.0692+43.4782=$ Cu الكتلة الذرية لعنصر النحاس
(C) : الصـل : الاختـِيار الصديح
(B) الشـكل البيــانى المقابل : يوضــح العلاقة بين نســب وجود نظيرين لعنصر البورون فى الطبيعة و الكتلة الذرية النسبية لكل منهما. ما الكتلة الذرية لعنصر البورون؟
(a) 2.82 u
(b) 7.57 u
(C) 8.8 u
(d) 10.8 u

مساهمة نظير البورون 10 فى الكتلة الذرية (u) $\quad 2 \mathrm{l}$ (الكتلة الذرية النسبية للنظير

$$
8.8 \text { u = } \frac{80}{100} \times 11 \text { = مساهمة نظير البورون } 11 \text { فى الكتلة الذرية }
$$

$$
10.8 \text { u = } 8.8+2 \text { = الكتلة الذرية لعنصر البورون : }
$$

\qquad

Test Yourself

6.01572 u عينة من الليثيوم تحتوى على نظيرين، الاول نظير الليثيم 6 ركثلهَ اللارية النسبية 7.016 u u والثانى نظير الليثيوم 7 وكتله الذرية النسبية ما الكتلة الذرية لعنصر الليثيوم، علمًا بأن نسبة وجو نظير الليثيوم 6 فى العينة 7.42\%
(a) 2.9178 u
(b) 4.3215 u
(c) 6.9418 u
(d) 8.1627 u

نسبة وجود نظير الليثيوم 7 فى العينة = $\%$ = 100 - 7.42% مساهمة نظير الليثيوم 6 فى الكتلة الذرية $=\frac{\cdots \cdots \cdots}{\ldots . ~}$

الصـل : الاختيار الصحيح

حسابات تحويل الكنلة إلى طاقة

وضع العالم أينشتين معادلة رياضية توضح العلاقة بين الكتلة المتحولة و الطاقة

بتحول المادة إلى طاقـــة فى التفاعــلات النوويـة ويمكن حسـاب الطـاقـة (مقدرة بوحدة الجول J) الناتجة عن تحول كتلة (مقدزة بالكيلوجرام kg)

من مادة ما بتطبيق معادلة أينشتين :

4 ولحساب الطاقة (مقدرة بوحدة مليون إلكترفن ڤولت MeV) النـاتـجـة عـن تحـول كتلة (مقـدرة بوحدة الكتل الـذريـة u)

	من مادة ما بتطبيق معادلة أينتين :
الطاقة (J) بوحدة	(المكا
E	$m \times c^{2}$

هل

$$
1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
$$

$\because 1 \mathrm{MeV}=1 \times 10^{6} \mathrm{eV}$
$\therefore 1 \mathrm{MeV}=1.6 \times 10^{-13} \mathrm{~J}$

Worked Examples

(1) احسب كمية الطاقة الناتجة عن تحول g 5 من مادة ما إلى طاقة، مقدرة بوحدات : (2) مليون إلكتزون ڤولت.
(1) $\mathrm{m}(\mathrm{kg})=\frac{5}{1000}=0.005 \mathrm{~kg}$

$$
\begin{aligned}
\mathrm{E} & =\mathrm{m} \times \mathrm{c}^{2} \\
& =0.005 \times\left(3 \times 10^{8}\right)^{2}=4.5 \times 10^{14} \mathrm{~J}
\end{aligned}
$$

تحويل الكتلة من وحدة (g) إلى وحدة (kg) بالقسمة على 1000
(2) $\mathrm{m}(\mathrm{u})=\frac{5}{1.66 \times 10^{-24}}=3.012 \times 10^{24} \mathrm{u}$
$\mathrm{E}=\mathrm{m} \times 931$
$=3.012 \times 10^{24} \times 931=2.8 \times 10^{27} \mathrm{MeV}$

$$
\mathrm{E}=\frac{4.5 \times 10^{14}}{1.6 \times 10^{-13}}=2.8 \times 10^{27} \mathrm{MeV}
$$

تحويل الكتلة من وحدة (g) إلى وحدة (10) بالقسمة على $1.66 \times 10^{-2.4}$
: اللتاكد من الحسابات *
 1.6×10^{-13} w
¢
(a) $1.8 \times 10^{9} \mathrm{~kJ}$
(b) $18 \times 10^{7} \mathrm{~kJ}$
(c) $1.8 \times 10^{10} \mathrm{~kJ}$
(d) $18 \times 10^{12} \mathrm{~kJ}$
$\because \mathrm{m}(\mathrm{kg})=200 \times 10^{-3} \mathrm{~g}=0.2 \mathrm{~g}=2 \times 10^{-4} \mathrm{~kg}$
$\therefore \mathrm{E}=\mathrm{m} . \mathrm{c}^{2}=2 \times 10^{-4} \times\left(3 \times 10^{8}\right)^{2}=1.8 \times 10^{13} \mathrm{~J}=1.8 \times 10^{10} \mathrm{~kJ}$
(C) : الحـل : الاختيار الصحيح
§ 190 MeV
(a) $3.39 \times 10^{-28} \mathrm{~kg}$
(b) $3.04 \times 10^{-11} \mathrm{~kg}$
(C) $3.04 \times 10^{-5} \mathrm{~kg}$
(d) $3.39 \times 10^{28} \mathrm{~kg}$
: فكـرة

$$
\begin{aligned}
\mathrm{m}(\mathrm{u}) & =\frac{\mathrm{E}}{931}=\frac{190}{931}=0.204 \mathrm{u} \\
\mathrm{~m}(\mathrm{~kg}) & =0.204 \times 1.66 \times 10^{-27} \\
& =3.39 \times 10^{-28} \mathrm{~kg}
\end{aligned}
$$

- حساب الكتلة بوحدة (u)
- تحويـل الكتلة من وحــدة (u) إلى وحدة (10)

بالضرب فـ 1.66×10^{-27}

فكـرة هــل أخرى :
$\mathrm{E}(\mathrm{J})=190 \times 1.6 \times 10^{-13}=3.04 \times 10^{-11} \mathrm{~J}$

$$
\begin{aligned}
\mathrm{m}(\mathrm{~kg})=\frac{\mathrm{E}}{\mathrm{c}^{2}} & =\frac{3.04 \times 10^{-11}}{\left(3 \times 10^{8}\right)^{2}} \\
& =3.39 \times 10^{-28} \mathrm{~kg}
\end{aligned}
$$

(a): الــل : الاختيار الصحيح

Test Yourself

ما كمية الطاقة (بالحِل) الناتجة عن تحل 25\% من مادة مشعة كثلتها 1.4 g إلى طاقة ؟
(a) $3.15 \times 10^{-13} \mathrm{~J}$
(b) $31.5 \times 10^{13} \mathrm{~J}$
(c) $3.15 \times 10^{13} \mathrm{~J}$
(d) $35.1 \times 10^{13} \mathrm{~J}$
$\mathrm{m}=1.4 \times \frac{25}{100}=\cdots \cdots \cdots \cdots \cdots \mathrm{g}$
\qquad
$\mathrm{E}=$ \qquad \times \qquad
\qquad $=$ \qquad

$$
+\cdots \cdots
$$

الحدرس الأول

: أكمل الجدول التالی :

عده النيوترونات (N)	(P) عدد البروتونات	(A)	العدد	رمز العنصر	
.	${ }_{2}^{4} \mathrm{He}$	(1)
...............	${ }_{11}^{23} \mathrm{Na}$	(r)
.............	${ }_{20}^{40} \mathrm{Ca}$	(r)

(انتر الإجابة المحيحة مما بين الإجابات المعطاة : (1) تركز كتلة الذرة فى

$$
\begin{aligned}
& \text { (i) النواة. } \\
& \text { ٪ } \\
& \text { ٪ النيوترونات. } \\
& \text { (e) الإلكترونات. }
\end{aligned}
$$

(الرمز الكيمِيانى لذرة الكلور التى تحتوى نواتها على 17 بروتون ، 18 نيوترون
(a) ${ }_{35}^{18} \mathrm{Cl}$
(b) ${ }_{18}^{35} \mathrm{Cl}$
(C) ${ }_{35}^{17} \mathrm{Cl}$
(c) ${ }_{17}^{35} \mathrm{Cl}$
\qquad
(o) كنّ هيا يلى من وحدات قياس الطاقة، عدا
(a) MeV
(b) J
(c) amu
(d) eV

(a) 931×10^{6}
(b) 931
(C) 1.489×10^{-10}
(d) 1.545×10^{-24}
 (r) تَفتى نظائر الحنصر الواحد فن الخواص الكيميائية.
(ع) تساوى الحدد الذرى مع الحدد الكتلى لنواة البروتيوم. (c) يعتبر البروتيوم والديوتيريوم والتريتيوم نظائر لعنصر واحد.

Open book en Ifind

مaty علها
${ }_{27}^{60} \mathrm{C} 0$ ه
${ }_{27}^{60} \mathrm{C} 0$ ه

(الاختيارات	عدد البروتونات	60
(a)	27	33
(b)	27	33
(c)	27	60
(d)	87 عدونات\|	87

أى من أزوأج العناصر التالية تحتوى أنوية ذراتها على نفس العدد من النيوترونات ؟

فـ الذرة المتعادلة عند مقارنة شحنة البروتون بشحنة الإلكترون، تكون شحنة البروتون
(i) أكبر قيمة من شحنة الإلكترون وينفس الإشارة.

ج (أكبر قيمة من شـحنة الإلكترون وبإشارة مخالفة.

$$
\text { } \bigodot \text { لها نهس الهس القيمة وبينفس الإشارة. }
$$

تحتوى نواة الحنصر R على عدد P من البروتونات.

c)	عدد البروتونات	عدد النيوترونات	عدد الإلكتونات
(a)	P	N	P-1
(b)	P	N	$\mathrm{P}+1$
(c)	$\mathrm{P}+1$	N	$\mathrm{P}+1$
(d)	$\mathrm{P}+1$	N	P-1

عهد النيوكلونات	عدد البرونونات	رمز العنصر
289	114	Uuq
292	116	Uuh

Uuh على نفس عدد الإلكترونات الموجودة فى ذرة Uuq ${ }^{\text {U }}$ 2-
Uuq على نفس عدد الإلكترونات الموجودة فى ذرة Uuh ${ }^{+}$بحتوى أيون Uuq ${ }^{+}$على نفس عدد البروتونات الموجودة فى أيون Uuq ${ }^{\text {الم }}{ }^{2-}$ () يحتوى أيون ()
(a) 36
(b) 48
(C) 84
(d) 120
${ }_{36}^{84} \mathrm{Kr}$ ؟

(a) ${ }_{51}^{112} x$
(b) ${ }_{51}^{113} x$
(c) ${ }_{49}^{112} \mathrm{x}$
(d) ${ }_{50}^{113} \mathrm{X}$

الجدول التالى يوضح عدد البروتونات وعدد النيوكلونات لنظانر بعض العنامر :

(Z)	(Y)	(X)	(W)	(A)	النظير
23		3	1	1	عدد البروتونات
	7	6	3	1	عدد النيوكلونات

أى الأزواج الآتية تعتبر نظيرين لعنصر فلزى واحد ؟

$$
\begin{aligned}
& \text { نيوترن وإلكترون زائدين. } \\
& \text { •ج بروتون وإلكترن زائدين. } \\
& \text { ٪ } \\
& \text { (د) بروتونـين زائدين. }
\end{aligned}
$$

(أى مما يأتى يعبر عن العلاقة بين عدد النيوترونات و عدد البروتونات فى نواة نظير التريتيوم ؟

$$
\begin{aligned}
& \text { (i) عدد النيوترونات يساوى عدد البروتونات. } \\
& \text { (ب) عدد النيوترونات نصف عدد البروتونات. } \\
& \text { ؟ } \xlongequal{\text { عد النيوترونات ضrف عدد البروتونات. }} \\
& \text { (1) عدد النيوترونات أربعة أمثال عدد البروتونات. }
\end{aligned}
$$

($)$

Θ

(ب)

(i)

((r) ((1) (i)
((\boldsymbol{r}), (1) \odot
((r), (r) \odot
(() (1) \bigcirc

园 الشكل المقابل : يوضح تركيب أحد الذرات.
أى من الأشكال الآتيـة يـوضح تـركيب نظير هذه الذرة ؟
(a)

(b)

(c)

(d)

ها الحديد عدده الذرى 26 ويتواجد فـ صورة أربعة نظأر، هى : حديد (54) ، حديد (56) ، حديد (57) ، حديد (58). أى مها يأت يفسر السبب فـ أن لهذه النظائر نفس الخواص الكيميانية ؟ لها نفس

$$
\begin{aligned}
& \text { (i) العدد الكتلى. } \\
& \text { (} \\
& \text { ٪ } \bigodot \text { عدد النيوترونات. }
\end{aligned}
$$

(1) عدد الإلكترونات فى مستوى الطاقة الرئيسى الأخير.

نسبة الوجود فـ الطبيعة	الكتلة الذرية	النظير
75.76\%	34.97 u	${ }^{35} \mathrm{Cl}$
24.24\%	36.97 u	${ }^{37} \mathrm{Cl}$

 أى العلاقات الآتيـة تعـبر عن طـريـــــة حساب الكتثلة الذرية لعنصر الكلور ؟
(a) $(34.97)(75.76)+(36.97)(24.24)$.
(b) $(34.97)(0.2424)+(36.97)(0.7576)$.
(c) $(34.97)(0.7576)+(36.97)(0.2424)$.
(d) $(34.97)(24.24)+(36.97)(75.76)$.

1 الكتلة الذرية النسبية	النظر
1	${ }^{1} \mathrm{H}$
2	${ }^{2} \mathrm{H}$
16	${ }^{16} \mathrm{O}$

الماء الناتِجة ؟

-	$18 \mathbf{u}$	$19 \mathbf{u}$	$20 \mathbf{u}$
(a)	\checkmark	\checkmark	x
(b)	x	x	\checkmark
(c)	\checkmark	x	\checkmark
(d)	\checkmark	\checkmark	\checkmark

$$
68.93 \text { u وكتلتَ النذرية النسيبية }
$$

$$
70.92 \text { u وكتلته النذرية النتسبية }
$$

شا الككتلة النذرية لنذا الالعنصر؟
(2) 28.29 u
(b) 41.43 u
(c) 69.72 u
(d) 80.54 u

(2) 18.876 u
(b) 21.407 u
(c) 22.778 u
(d) 24.309 u
\qquad

ما الشكل البيانى الذى يعبر عن نسبة وجود نظانر النحاس فـ الطبيعة والكتلة الذرية النسبية لكل منها؟

حسابات: تتحويل الكتلة إلى طاقة
8.4×10^{13} J (@) إذا كانت الطاقة المتحررة من القنبلة الذرية التى حطمت مدينة نجازاكى اليابانية تساوى ما مقدار الكتلة المتحولة من هذه القنبلة بوحدة الجرام ؟
(a) 93 g
(b) 9.3 g
(c) 0.93 g
(d) 0.093 g
(a) $2 \mathrm{MeV}=2 \times 10^{5} \mathrm{eV}$
(b) $2 \mathrm{eV}=2 \times 10^{6} \mathrm{~J}$
(c) $2 \mathrm{MeV}=3.2 \times 10^{-26} \mathrm{~J}$
(d) $2 \mathrm{eV}=3.2 \times 10^{-19} \mathrm{~J}$

هـ 0.00234 u من البلاتين 215 إلى طاقة مقدرة بوحدة MeV
(a) 2.179 MeV
(b) 5.146 MeV
(c) 9.302 MeV
(d) 13.541 MeV

Jiflimg tind ling cillimi

(النتائج المترتبة على اتفاق نظائر العنصر الواحد فى عدد الإلكترونات حل نواة ذرة كل نظير؟
اكتب الرمز الكيميائى لأنوية نظائر العناصر الآتية :

$$
\begin{aligned}
& .(Z=29, A=65) X \text { ع ع ع }(1) \\
& \cdot(Z=20, N=25) Y \text { عنصر (}(Y) \\
& .(N=48, A=84) Z \text { عنصر })
\end{aligned}
$$

国 الشكل المقابل يِثل ذرة أحد نظائر الهيدروچين : (1) ما اسم هذا النظير ؟ وما اسم نواته ؟
(Y) ما عدد النيوكلونات فی نواة هذا النظير ؟ وما نوعها ؟

تحتوى ذرة أحد نظائر الصوديوم على 11 بروتون ، 11 إلكترون ، 13 نيوترون :
(1) أى من هذه الأعداد لا تتفير فى نظائر الصوديوم المتعادلة ؟ (Y) ما عدد النيوكونات فى هذا النظير من نظائر الصوديوم ؟

> (1) ما معنى أن لعنصر الإستاتين عدة نظائر ؟
> (Y) ما العدد الذرى للإستاتين ؟
(Y) ما عدد النيوترونات فى نواة هذا النظير ؟ (() اكتب الرمز الذى يـبر عن هذا النظير
: الأشكال الأربعة وآتية تعبر عن أربع أنوية لذرات مختلفة :

(ε)

(r)

(I)
(1) ما العدد الكتلى للنواة (T) ؟

? الشــكل البيانى المقابن يوضــح العلاقة بين نسـب وجود نظائر عنصـر X فى الطبيعة والكتــة الذرية النسـبية لــكل نظير منها. احسب الكتلة الذرية لهذا العنصر.

الكتلة النرية النسبية للنظير (u)
(1) احسب كمية الطاقة الناتجة عن تحول 0.2 من مادة ما إلى طاقه، مقدرة بوحدات : J الحْرل
(Y) مليون إلكترون ڤولت (YeV
(10) احسب كمية الطاقة الناتجة عن تحول 50\% من مادة مشعة كتلتها مقدرة بوحدات : (ا الحچول
(Y) مليون إلكترون ڤولت (YeV

احسب الكتلة المتحولة إلى طاقة مقدارها 6.8419 مقدرة بوحدات :

arqallăqوill sqül Jnditain जll

قوى نووية

4 تَحافـط أنوية الذرات على اســتقرارها وتماسـكـها
 النيوكلونات وبعضها ، دقارنةّ بقوى التنافر الكهربى

 النرات المستقرَ تُعرف باسم القَوى النويةَ القوية، كَ سميت بهذا الاسم لانْ تَأثيرها على النيرِيكلونات كبير جدًا داخل الحيز الصغير للنواة.

خصائصالقوى النووية القوية
(1) ذات قوة هائلة.
(($)$ لانها تككن بين :

- بروتون و بروتون. - نيوترون و نيوترون. - بروتون و نيوترون.
(r) تعدل فی مدى قصصير (أى لا يبدأ التجاذب بين النيوكلونات، إلا عندما تكىن المسافة بينها صغيرة للغاية). والقوى النووية القوية باللون الأزرف

يستحيل تواجد النظير لأن تمى التنافر الكهربى بين البروتونات وبعضها فی النواة لن يقابلها تَى تَجاذب بين النيوترونات والبروتونات، لعدم وجود نيوترونات

Test Yourself

(ـ) الصوديوم.
ج الاككسچجين.
ب الهيليوم.
(i) الهيدروجِين.
الحـل : الاختــار الصحيح :

توجد قوى تنافر كهربى فى أنوية ذرات جميع العناصر الآتية، عـا
\qquad

طانئة الترإط الi

 والتى يمكن حسابها من القللقة :

$$
\begin{aligned}
& \text { (BE) طاقَ الترابط النوى الكيـ) } \\
& \text { (A) طاقة الترابط النووى لكل نيوKكف (BE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ؛ لان ثبات الأنوية يزداد بزيادة قيمة })
\end{aligned}
$$

Worked Examples

إذا علمت أن نواة ذرة عنصر ما :

$$
\text { - قيمة Z لها = } 3 \text { لها }
$$

$$
\text { هـ قَيمة A لها = } 6
$$

1.00728 u = كتلة البروتون بها e

$$
6.015 \text { u = كتلتها الفعلية }
$$

ما قيمة طاقة الترابط النووى لهذه النواة بوحدة الجول ؟
(9) $19 \times 10^{-12} \mathrm{~J}$
(b) $9.3 \times 10^{-12} \mathrm{~J}$

C $49 \times 10^{-12} \mathrm{~J}$
(1) $5.9 \times 10^{-12} \mathrm{~J}$

$$
\begin{aligned}
& 6.04782 u= \\
& 6.015-6.04782= \\
& 0.03282 u=
\end{aligned}
$$

uتم تحويل النقص فى الكتلة من وحدة

$1.66 \times 10^{-27} \times 0.03282=(\mathrm{kg})$ النقص فیى الكتلة
$5.44812 \times 10^{-29} \mathrm{~kg}=$

$$
\text { c² } \times(\mathrm{kg}) \text { النقص فى الكتلة }=
$$ $\left(3 \times 10^{8}\right)^{2} \times 5.44812 \times 10^{-29}=$ $4.9 \times 10^{-12} \mathrm{~J}=$

 $931 \times 0.03282=$ $30.55542 \mathrm{MeV}=$
(J) طاقة الترابط النوهى
$1.6 \times 10^{-13} \times(\mathrm{MeV})$ طاقة الترابط الننوى $=$ $1.6 \times 10^{-13} \times 30.55542=$ $4.9 \times 10^{-12} \mathrm{~J}=$
(C): الصـل : الاختيار الصديح

٪ (إذا علمت أن عنصر ما :

- $27.36 \mathrm{MeV}=$
6.84 MeV = طاقة الترابط النووى لكل نيوكلون فی نواة ذرته 1.00866 u = كتلة النيوترون •
2.01732 u = كتلة • النيوترونات فى نواة ذرته ما العدد الذرى لهذا العنصر؟
(a) 2
(b) 4
(c) 6
(d) 10

(a): الحـل : الاختيار الصحيح

Test Yourself

1.00866 u	كتلة النيوترون	(1) بمعلومية البيانات الموضحة بالجدول المقابـل : ما ${ }^{28}$ عا الكتلة الفعلية لنواة ذرة السيليكن
1.00728 u	كتلة البروتون	(a) 28.099 u
8.21275 MeV	طاقة الترابط النووى لكل ${ }_{14}^{28}$ Si نيوكلون بنواة ذرة	(b) 27.976 u (C) 14.049 u
\%		(d) 13.988 u

عـدد النيوترونـــات = العدد الكتلى - العدد الذرى = =
\qquad

$$
=(\cdots \cdots \cdots \times \cdots \cdots \cdots)+(\cdots \cdots \cdots \times \cdots \cdots \cdots \cdot)=
$$

الكتلة الفقليـة = الكتلة النظرية - النقص فى الكتلة = =....................... =.

> طاقة الترابط النوىى = طاقة الترابط النويى لكل نيوكلمن X عدد النيوكونات = \times $=$

$$
\begin{aligned}
& \text { عدد النيوكلونات } \\
& \text { عدد النيوترونات }=\text { كتلة النيوترونتات }=\frac{2.01732}{1.00866}=\frac{\text { نيوترون }}{}= \\
& \text { العدد الذرى = عدد النيوكلونات - عدد النيوترونات = 4-2 }
\end{aligned}
$$

$$
15.994915 \text { u = }=\left({ }_{8}^{160}\right. \text { (الكتة الفعلية للنظير . }
$$

$$
\text { - الكتة الفعلية للنظير (170. } 16.999132 \text { u= }
$$

$$
\text { - كتلة النيوترون = u } 1.008666
$$

$$
\text { - كتلة البروتون = u u } 1.00728
$$

كما زاد مقدار طاقة الترابط النووى لكل نيوكلم
$\left.\right|_{8} ^{17} \mathrm{O}$ نظير الأكسحیین

.............................. ${ }_{8}^{17} \mathrm{O}$ النظير ${ }_{8}^{16} \mathrm{O}$ الكثر استقرارًا من النظير :

 وعلى هذا الأساس تم تصنيف العناصر تينُا لث̣ات أنوية ذزانها إلى

\qquad
(r) (\%) تقع يدين أو يسار أو أعلى حزام الاستقرار، ولكى تصل إلى حالة الاستقرار ينبعث منها جسيمات من خلال نشاط إشعاعى، كما يتضح من الشكلين التالين :

كيفية وصول أنوية ذرات العناصر غير المستقرة إلى حالة الاستقرار

موقع أنوية ذرات المناصر غير المستقرة بالنسبة لحزام الاستقرار

الجدول التالى يوضت سبب عدم استقرار أنوية الذرات وكيفية وصولها لحالة الاستقرار : غير غير المستقرة الأنوية
بانبعاث جسيم بيتا (إلكترون نواة سالب) من نواة ذرة العنصر غير المستقر، لتحويل أحد النيوترونات الزائدة إلى بروتون حتى تتعدل النسبة (

عدد النيوترونات فيها أكبر من هد الاستقرار (النسبة	يسار حزام الاستقرار مثل ${ }_{6}^{14} \mathrm{C}$
عدد البروتونات فيها أكبر من حد الاستقرار (النسبة $\frac{\mathrm{N}}{\text { (الاريرة)" }}$	يمين حزام الاستقرار مثل ${ }_{19}^{35} \mathrm{~K}$
عدد النيوكونات فيها أكبر من خد الاستقرار	حزام الاستقرار

بانبعاث دقيقة ألفا من نواة ذرة العنصر غير المستقر، لفقد (2 بروتون ، 2 نيوترون) لتقترب من حزام الاستقزار

Worked Examples

> (1) ادرس الشكل المقابل, ثم أجب عما يلى :
> ((
لذرات عناصر غير مستقرة.
أى من هذه الأنوية تصل إلى حالة الاستقرار
بانبعاث :
مع تفسير إجابتك فى كل حالة.
الحـل :
(() حزام الاستقرار.
أكبر من حد الاستقرار »النسبة
أكبر من حد الاستقرار (النسبة

تساوى 1 (X) للعنصر $\frac{N}{Z}$ لهما نفس العدد من النيوكلونات، فإذا كانت النسبة (Y) ، (X) العنصران (X) وللعنصر (Y) تساوى 1.5 ونواة العنصر (X) تحتوى على 5 بروتونات. فما الرمز الكيميائى لنواة ذرة العنصر المستقر(Y) ؟
(a) ${ }_{1}^{10} \mathrm{Y}$
(b) ${ }_{4}^{10} Y$
(c) ${ }_{5}^{10} \mathrm{Y}$
(d) ${ }_{10}^{4} \mathrm{Y}$

- بالنسبة للعنصر (X) :
$\because \frac{\mathrm{N}}{\mathrm{Z}}=1 \quad, \quad \mathrm{Z}=5$
$\therefore \mathrm{N}=5$

فكـرة حـل اخرى :

$\because \frac{N}{Z}=1.5$
$\therefore \mathrm{N}=1.5 \mathrm{Z}$
$\because \mathrm{N}+\mathrm{Z}=10$
$\therefore 1.5 \mathrm{Z}+\mathrm{Z}=10 \quad, \quad 2.5 \mathrm{Z}=10 \quad \therefore \mathrm{Z}=4$
$\therefore \mathrm{N}=1.5 \times 4=6$
${ }_{4}^{10} Y$: الرمز الكيميائى لنواة ذرة العنصر :

- بالنسبة للعنصر (Y) :
$\because \frac{\mathrm{N}}{\mathrm{Z}}=\frac{1.5}{1} \xrightarrow{4 \times \text { بالضنرب }}=\frac{6}{4}$
$\therefore \mathrm{N}=6 \quad, \quad \mathrm{Z}=4$
${ }_{4}^{10} \mathrm{X}$: الرمز الكيميائى لنواة ذرة العنصر
(b) : :
(a) ${ }_{-1}^{0} \mathrm{e}$
(b) α
(c) γ
(d) ${ }_{+1}^{10}{ }^{2}$

نراة النظير

الحـل : الاختيار الصحيح : .

4)

 عبارة عن تجمع جسيمات أولية، أُطلق عليها مصطلح الكواركات،

- يتميث : كل منها برقم يرمز له بالرمز Q يعبر عن شحنتها . - تأخذ قيم منسوبة لشحنة الإلكترون (- يبلغ العدد المعروف منها ستة أنواع.

، المخطط التانى يوضح تصنيف الكواركات تبعًا لقيم Q لكل منها :

يتركب من ارتباط
d مع 2 كوارك سفلى u كوارك علوى 1

يتركب من ارتباط
u مك 2 كوارك علو سفلى d

لان شحـة النيوترن تساوى
Jجموع شحنات الكاراركات الككنة لـ

$$
e_{s}=u+d+d
$$

$$
=\frac{2}{3}+\left(-\frac{1}{3}\right)+\left(-\frac{1}{3}\right)=0
$$

لان شحنة البروتون تساوى مجموع شحنات الكواركات المكونة له

$$
Q_{p}=d+u+u
$$

$$
=-\frac{1}{3}+\frac{2}{3}+\frac{2}{3}=+1 \mathrm{e}
$$

Worked Examples

(1) الشرس الشكل التالى، ثم أجب عما يِليه :

(Y) عما يـبر الجسيم (X) ؟ وما نوع شحنته ؟
($0_{1}=\frac{2}{3}+\left(-\frac{1}{3}\right)+\left(-\frac{1}{3}\right)=0$
${ }^{\circ} O_{P}=-\frac{1}{3}+\frac{2}{3}+\frac{2}{3}=+1 \mathrm{e}$
.(n) (A) : (A)
.(B) (B)
() جسيم بيتا - ${ }^{-}$/ شحنة سالبة.
?
 الختيارات المدد الكتلى للمنصر عدد الكواركات العلوهية

28	19	(i)
29	19	(j)
28	29	(\rightarrow)
29	29	(1)

:

* ع u كل بروتون يتركب من ارتباط 1 كوارل سفلى له مع 2 كوارل علوى
: عدد الكواركات السفلية المكوثة للبروتونات = 9 كوارك سقلى.
: عدـ الكواركات السفلية المكونة للنيوترونات
= عدد الكواركات السفلية فى النواة - عدد الكواركات السفلية المكوتَة للبزَوتوَتات . $20=9-29=$
d كل نيوترون يتركب من ارتباط 1 كوارن علوى u هع 2 كوارك سقلى ه : $10=\frac{20}{2}=$ نيوترون.
19=10+9 = $=$: العدد الكتلى للعنصر = عدد البروتونات + عدد النيوترونات
وعليه يستبعد الاختَيارين - (ـ)
* عدد الكواركات العلوية فى نواة ذرة العنصر
$=$ $28=(10 \times 1)+(9 \times 2)=$

(1) : الحـل : الاختـيار الصحـح

Test Yourself

عنصر عدده الذرى 13 وطاقة الترابط النوىى لنواتة 186.03 MeV وطاتة التزابط النووى لكلك تيوكِّونَ فيّا

ما علد الكواركات السفلية فى نواة ذرة هذا المنصر ؟
(a) 14
(b) 27
(c) 41
(d) 54

(ا) تتمر الإجابة القوى النويةية مما بين القوية بكل مما ياتى، عدا إنها
(i) ذات قوة هائلة.
ج ج تعمل فی مدى قصير.
(

كتلة النيوكلونات المترابطة بـ
(a) $1: 2$
(b) $1: 1$
(c) $2: 1$
(d) $5: 1$
(a) $-\frac{1}{3} \mathrm{e}$
(b) -1 e
(c) $+\frac{2}{3} \mathrm{e}$
(d) 0

أى مها يأت يمثل تركيب البروتون من الكواركات ؟ (v)
(a) uuu
(b) und
(c) udd
(d) ddd
§ ddu (1) أى مها يأت يتركب من ثلاثة كواركات هى

$$
\begin{aligned}
& \text { (i) البروتن. } \\
& \text { • } \\
& \text { ج } \\
& \text { (د) جسيم ألفا . }
\end{aligned}
$$

园
(1) تقاسك نواة ذرة العنصر رغم وجود قوى تنافر داخلها. (Y) تعتبر نواة ذرة الكالسيوم (Y)
(Y) (Y) الكتلة الفعلية لنواة أى ذرة أقل من كتلتها الحسابية. (ع) أنوية ذرات العناصر التى تقع على يسار حزام الاستقرار تكون غير مستقرة. (0) أنوية ذرات العناصر التى تقع على يمين حزام الاستقرار تكون غير مستقرة. (1) أنوية ذرات العناصر التى تقع أُعلى حزام الاستقرار تفقد دقيقة ألفا. (V)
|aleyno

pen book it Linul

onain dos

(©

عن كل من (W) (
(Z)	(Y)	(X)	(W)	الاختيارات
قوى كهروستاتيكية	بروتون	بروتّن	قوى نوية قوية	(i)
قوى نوية قوية	نيوترون	نيوترون	قوى كهروستاتيكية	(-)
قوى كهروستاتيكية	نيوترن	بروتون	قصى نوية قوية	\bigcirc
قوى نوية قوية	نيوترن	بروتون	قوى كهروستاتيكية	(${ }^{\text {(}}$

(الأزواج التالية توجد بينها قوى نووية قوية، عـدا

عن كل من (Z) ، (Y) ، (X) ، (W)

> القوى النووية القوية
\qquad

$$
\begin{aligned}
& \text { (i) النيوترونات والنيوترونات (i) } \\
& \text { (الإلكترونات والبروتونات. } \\
& \text { ٪ البروتونات والنيوترونات. } \\
& \text { (د) البروتونات والبروتونات. }
\end{aligned}
$$

طاقة التزابط النووى

أى مها يأتى يوضح العلاقة بين كتلة النيوكلونات الحرة والكتلة الفعلية للنواة ؟ كتلة النيوكلونات الحرة (i) أكبر من الكتلة الفعلية للنواة فى حالة الأنوية الثقيلة فقط. (ب) أكبر من الكتلة الفعلية للنواة فى حالة الأنوية الخفيفة فقط. ج
() أكبر من الكتلة الفعلية للنواة.

طاقة الترابط النووى تكافئ كمية الطاقة
(i) الممتصة لتحويل النيوكونات المترابطة إلى بروتونات ونيوترونات حرة. (ب) المتصدة لتحويل النيوكلونات المترابطة إلى بروتونات وإلكترونات حرة. (المنطلقة عندما يتغير موضـ النيوترون فى مستويات الطاقة. (1) (لمنعقة عندما يتفير موضع الإلكترون فى مستويات الطاقة.
\qquad
 كُى شـا بأت يعرِ شن شذا النظّرِ ؟ 20.1732 u = 37 27 17.12376 u = 37 20

m_{H}	الكتلة الذرية للبروتيوم
m_{n}	كتلة النيوترون
$\mathrm{m}_{\text {S }}$	S الكتلة الذرية للحنصر

(a) $\Delta \mathrm{m}=\left(\mathrm{Z} \times \mathrm{m}_{\mathrm{H}}\right)-\left(\mathrm{N} \times \mathrm{m}_{n}\right)+\mathrm{m}_{\mathrm{S}}$
(b) $\Delta \mathrm{m}=\left(\mathrm{Z} \times \mathrm{m}_{\mathrm{H}}\right) \div\left(\mathrm{N} \times \mathrm{m}_{n}\right)-m_{5}$
(c) $\Delta m=\left(Z \times m_{H}\right) \div\left(N \times m_{n}\right)+m_{S}$
(d) $\Delta \mathrm{m}=\mathrm{m}_{\mathrm{S}}-\left(\mathrm{Z} \times \mathrm{m}_{H}\right)-\left(\mathrm{N} \times \mathrm{m}_{n}\right)$

(a) $E=m g h$
(b) $\mathrm{E}=\frac{1}{2} m \mathrm{~V}^{2}$
(C) $\mathrm{E}=\Delta \mathrm{mc}^{2}$
(d) $\mathrm{E}=\frac{\mathrm{BE}}{\mathrm{A}}$

عندـا تكون طاقة التزابط النووى لكل نيوكلون كبيرة، فهذا يعنى أن نواة هذا النظير

(a) 1.71 MeV
(b) 1.838 MeV
(c) 2.73 MeV
(d) 3.78 MeV

(c) 465.5 MeV
(c) 353.1 MeV

$$
\begin{aligned}
& \text { إذا علمت أن : }
\end{aligned}
$$

• كتلة كل من البروتون والنيوترون 1.00866 u ، 1.00728 على الترتيب.
فها قيمة الكتلة الفعلية لنواة ذرة الكربون 12 ؟
(a) $10 u$
(b) 12 u
(c) 14 u
(d) 16 u
90.8656 MeV وكتلتها الفعلية 13.0057 u تساوى

فما قيمة الكتلة النظرية لنوأة هذا النظير ؟
(a) 11.3301 u
(b) 12.3013 u
(c) 13.1033 u
(d) 13.3031 u
186.03 MeV وطاقـة الترابـط النـووى لكـل نيوكـلـون فيها تساوى 6.89 MeV وغلاف تكافؤ ذرته الثالث (M) يحتوى على 3 إلكترونات. ما عدد النيوترونات فى نواة هذا العنصر ؟
(a) 32
(b) 27
(c) 14
(d) 10
（a） 0.5
（b） 0.8
（c） 1
（d） 1.3

> الاستقرار النووى
（⿴囗⿱一一 أقصى عدد من البروتونات يكن أن يتوا（جد فى نواة ذرة ما وتظل مستقرة، هو
（a） 50
（b） 82
（c） 84
（d） 92
（ـ）أى مما يأت يعبر عن أثقل نواة مستقرة وعدد النيوترونات بها ؟

عدد النيوترونات	نواة ذرة العنصر	الاختيارات
6	${ }_{6}^{12} \mathrm{C}$ الكربن	（i）
143	${ }_{92}^{235} \mathrm{U}$ اليودانيوم	（7）
126	${ }_{82}^{208} \mathrm{~Pb}$ الرصاص	\odot
208	${ }_{82}^{208} \mathrm{~Pb}$ الرصاص	（1）

（a）${ }_{2}^{4} \mathrm{He}$
（b）${ }_{6}^{14} \mathrm{C}$
（c）${ }_{8}^{16} \mathrm{O}$
（d）${ }_{9}^{17} \mathrm{~F}$
（a）${ }_{19}^{38} \mathrm{~K}$
（b）${ }_{19}^{35} \mathrm{~K}$
（c）${ }_{20}^{40} \mathrm{Ca}$
（d）${ }_{19}^{40} \mathrm{~K}$

أى مما يأتى ثه خواص مماثللة لخواص الإلكترون ؟

(ب) دقيقة بيتا.
 -

 (i) دقيقة ألفا ..
أى من أزواج الانبعاثات الآتية يعتبر إلكتزولى نواة ؟

$$
\begin{aligned}
& \text {. دقيقة بوزيترون وإشعاع جام الاما (i) } \\
& \text { (ج جسيم ألفا و جسيم بيتا. } \\
& \text { ج جسيم بيتا و دقيقة بوزيترون. } \\
& \text { () إشعاع جاما و جسيم ألفا . }
\end{aligned}
$$

(1)

(
(لـ

$$
\begin{aligned}
& \text { ¢ } \mathrm{C} \text { دقيقة ألفا. } \mathrm{C} \text { ألا. }
\end{aligned}
$$

عدد البروتونات (Z)
من الشكل الطقابل المعبر عن حزام الاستقرار : ا- ما الرمز الذى يعبر عن نواة ذرة عنصر مستقرة ؟
(a) A
(b) B
(c) C
(d) D
r- ما الرمز الذى يعبر عن نواة ذرة العنصر التى تفقد دقيقة ألفا لتصل إلى حالة الاستقرار ؟
(a) A
(b) B
(c) C
(d) D

有

$$
\text { ץ- ما التفاعل النووى الذى تسلكه نواة 596 }{ }_{26} \text { حتى تصل اللى }
$$

حالة الاستقرار ؟
(i) انبـجاث بيتا.

$$
\text { ? نقـ } 2 \text { إلكترون. }
$$

؟ اندما ج نووى.
(ـ) انبعاث بوزيترون.

$$
\begin{aligned}
& \text { (1) لأهَ يقع أعالى يــين مزام الاستقرار. } \\
& \text { (9) لأهـ يقت أسفل يمين حزام الاستقرار. } \\
& \text { (} \rightarrow \\
& \text { (1) لأن عدد النيوترونات فيه كبير جدًا . }
\end{aligned}
$$

هِ عند انبعاث دقيقة بوزيترون من نواة عنصر غير مستقر
(i) تنطلق أشعة إكس.
.
-
(1) يزداد العدد الذرى للعنصر.

عدهر الكتلى 54 وتحتوى نواة ذرته على 27 بروتون، فإذا فقدت نواة ذرة هذا العنصر بوزيترون.
فها العدد الذرى والعدد الكتلى للعنصر الناتج ؟

العده الكتلى	العدد الذرى	الاختيارات
55	27	(1)
54	27	(7)
53	26	Θ
54	26	(1)

 أى مما يأق يعبر عن نظيرين لعنصر واحد ف هذه السلسلة ؟
(ii) A, B
(b) A, D
(C) B, C
(d) C, D

نواة تقع أعلى يسار حزام الاستقرار يمكنها خفض نسبة النيوترونات : البروتونات فيها عن طريق انبعاث جاما فقط.

$$
\begin{align*}
& \text { ج انبعاث بوزيترون فقط. } \tag{i}\\
& \text { ج } \\
& \text { (ـ) انبـاث بيتا وبوزيترون معًا. }
\end{align*}
$$

مفهوم الكوارك
.............
(i) عدد من الكواركات السفلية يساوى عدد الكواركات العلوية.

ج عدد من الكواركات السفلية يساوى ضعف عدد الكواركات العلوية.
¢ عدد من الكواركات السفلية يساوى نصف عدد الكواركات اللوية.
(3) عدد من الكواركات السفلية يساوى ع أمثال عدد الكواركات العلوية.
(أى مها يأتت يمثل عدد الكواركات فى نواة نظير التزيتيوم ؟

(a) 9
(b) 16
(c) 25
(d) 31

هـ أى الأزواج التالية تكون النسبة بين عدد الكواركات العلوية إلى عدد الكواركات السفلية في كل منهها متساوية ؟
(a) ${ }_{1}^{1} \mathrm{H},{ }_{1}^{3} \mathrm{H}$
(b) ${ }_{1}^{2} \mathrm{H},{ }_{2}^{4} \mathrm{He}$
(c) ${ }_{1}^{3} \mathrm{H},{ }_{1}^{2} \mathrm{H}$
(d) ${ }_{1} \mathrm{H},{ }_{2}^{4} \mathrm{He}$

团 عنهر عدده الذرى 19 وتحتوى نواة ذرته على 54 كوارك علوى.
أى مها يأتى يتبر عن نواة هذا العنصر ؟ (i) نواة مستقرة تقع على حزام الاستقراً (ج) نواة غير مستقرة ينبعث منها دقيقة ألفا . (\odot نواة غير مستقرة ينبعث منها دقيقة بيتا ـ (ل() نواة غير مستقرة ينبعث منها بوزيترون.

تحتوى نواة ذرته على 6 بروتون و 22 كوارك سفلى، فإذا فقدت نواة ذرة هذا إعنصر دقيقة بيتا واحدة.
ما عدد الكواركات العلوية فى نواة ذرة العنصر الناتج ؟
(a) 23
(b) 21
(C) 20
(d) 19

010 القوى التى تربط بين الكواركات العلوية والكواركات السفلية داخل نواة الذرة ؟ (1) توى نوية ضميفة.
(ج) قوى كهرومغناطيسية.
ج
(لـقوى نوية هائلة.

طاقة الترابط النووى بوحدة MeV لنواة عنصر ما علمًا بأن :国
6015 u كلتها الفعلية *

$$
\text { * قيمة } 3=7
$$

6 = A قيمة *

 احسب طاقة الترابط النووى فى نواة كل منهما، ثم وضح أيهما أكثر استقرارًا، وهاذا؟

> الدكتلة المتحولة

احسب الكتلة المتحولة لربط مكونات نواة ذرة الهيليوم
7.070945 MeV طاقة الترابط النووى لكل نيوكلن بها

الكتلة الفحلية
احسب كتلة نواة ذرة الهاغنسيوم
192.717 MeV طاقة الترابط النوهى لها * كتلة كل من البروتون والنيوترون 1.00866 u , 1.00728 على الترتيب. الـكتلة النظرية
احسب كتله البروتونات والنيوترونات الحرة فى نواة أحد نظانر الكوبلت، علمًا بأن :
$521.788 \mathrm{MeV}=$ = طاقة الترابط النووى لها *
824.3074 MeV = طاقة الترابط النووى * 1.00866 u = كتة النيوترون *
(Y) العدد الذرى للعنصر
60.93244 u = $\quad 6$

8

$$
60.93244 \text { u = كتلتها الفقلية * }
$$

$$
\begin{aligned}
& 95.889 \text { u = }{ }^{96} \mathrm{X} \text { الكتة الفعلية لنواة الحنصر : } \\
& 55.4763 \text { u = كتلة النيوترونات * } \\
& \text { فاحسب : }
\end{aligned}
$$

(1) الكتة النظرية لنواة هذا العنصر.

342 MeV له 8.55 MeV وطاهَه التزابط النووى لكل نيوكلون فى نواته翟 أى من نواتى هنين النظيرين غير المستقرين ينبعث منها جسيم ألفا ؟ مع التفسِر.

- ${ }_{95}^{241} \mathrm{Am}$
- ${ }_{13}^{28} \mathrm{Al}$

$$
\begin{aligned}
& \text { "quaioll glall , . it it }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4\% wisill ghe 1921) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { "paxall gikll .ail } \\
& \text { い }
\end{aligned}
$$

(li) Civighthe:
\qquad

clatinll bluthin anggill تlllatitil.

الفصل الثّاتى

ه نواتج التعلــــر
بعد دراسة هذا الفصل يبب أن يكون الطالب قادرًا على أن : (I (Y) يحدد انواع الإشعاعات الصادرة من العناصر المشعة ويذكر خواصها.
(Y) يمارن بين اشعة الفا و و بيتا و جاما.
(Y) يحسب عمر النصف لبعض العناصر.
(() يوضح كيفية إتمام تفاعلات التحول النووى (العنصرى).
(0) يذكر فكرة عمل المفاعل النووى الانشطارى و أهميته.
(7) يقارن بين تَفاعلات الانشطار النووى و الاندماج النووى.

يفسر الأساس العلمى للمفاعلات النووية.
(

Ansomer

5

المنجاعلات النووية

 أما التفاعلات الكيميائية فتتم بين ذرات العنا العاصر المتفاعلة عن طريق إلكترونات مستويات الطاقةَ الذارجيةّ لها. نى حين لا يحدث تغير فى أنوية هذه الذرات. وتصنف التفاعلات النووية إلى أربعة أنواع، هـى :
(النشاط الإشعاعى الطبيعى) تماعلات التحول الطبيعى للعنامر (م)

, تفاء

minall

مارى كورى

الإشعاعات الصادرة من مركب اليورانيوم تخترق الورق ولكنها لا تخترق الأجسام المعدنية

اكتشاف ظاهرة النشاط الإشعاعى

* فى عام 1896 اكتشف العالم هنرى بيكريل - عن طريق الصدفة ظاهرة انبعاث إشعاعات غير مرئية من أحد مركبات اليورانيوم. * وفـى عـام 1898 أطلقـت مـارى كــورى علــى هــذه الظاهرة، مصطلح النشاط الإشعاعى.
* وانصـب اهتمـام الباحثــين بعـــن ذلـك علـى معرفـة طبيـعة الإشهـاعــات المنـعثــة مــن المواد المــشعة ومقارنــة خواصهـا واتبعوا فى ذلـك طريقتان، هما : - اختبار مقدرة هذه الإشعاعات على اختراق المواد. - مـقـارنــة مــى انــراف هـذه الإشــــاعـات بتأثير كل من المـبـال المنــنـاطـيسى والمجال الكهربى.

، وقد دلت التجارب على أن هناك ثالاثة أنواع مختلفة من الإشعاعات

 تنبعث من المواد ذات النشاط الإشعاعى الطبيىى، وهى :
(1) اششعه جاما

\qquad 10 أشعة ألفا
α [RT (

$$
\begin{aligned}
& \text { دقيقـة ألفـا } \alpha \text { عبـارة عن نـواة ذرة هي هيليـوم، } \\
& \text { حيـث تتكون من } 2 \text { بروتـن ، } 2 \text { نيوتـرنـن } \\
& { }_{2}^{4} \mathrm{He} \text { ويرمز لها بالرمز }
\end{aligned}
$$

انبعاث دقيقة ألفا α من نواة ذرة عنصر مشع يؤدى إلى حدوث تحول عنصـرى، لتكرّن عنصر جديد :
عدره اللرى أقل بمقدار 2 ، 2
وعدده الكتلى أقل بمقدار 4 بالنسبة للنواة الأم.

انبعاث دقيقة ألفامن نواة ذرةاليورانيوم238المشع. \qquad Antar

انبعاث دقيقة ألفا من نواة ذرة يورانيوم غير مستقرة
، وياحظ أن :

* العدد الكتلى A للنواة الأم = مجموع الأعداد الكتلية لكل من النواة الناتجة (الوليدة) ودقيةة ألفا. * العد الـذرى Z للنواة الأم = مجموع الأعداد الذرية لكل من النواة الناتية (الوليدة) ودقيقة ألها.

تُعتبر أى معادلة نوية مونونة، لأن مجموع كل من الأعداد الكتلية والذرية للمتفاعلات يساوى مجموع كل من الأعداد الكتية والذرية للنواتع.

Worked Examples

(0) اكتب المعادلة النووية الدالة على فقد دقيقة ألفا من نظير الراديوم Rn

(B) مـا التغير الحــادث فى كل من عــدد البروتونـات p وعدد النيوترونــات n عند تحــول نظير اليورانيــوم (238) إلى نظير العنصر (X) بفقد دقيقة ألفا؟

فكـرة الحـل :
:" نقد دقيقة ألفا من نواة ذرة عنصر مشع يؤدى إلى تكوين عنصر جديد : . يقل عدد البروتونات.

- عدده الذرى أقل بمقدار 2 .
- عدده الكتلى أقل بمقدار 4الــل : الاختيار الصحيح

Test Yourself

$$
{ }_{83}^{211} \mathrm{Bi} \longrightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{X}
$$

(a) ${ }_{82}^{207} \mathrm{~Pb}$

ها النى يمته (X
(b) ${ }_{81}^{208} \mathrm{Tl}$
(C) ${ }_{81}^{207} \mathrm{Tl}$
(d) ${ }_{80}^{209} \mathrm{Hg}$

الحـل : الاختـيار الصحيح

كلإيفاح

- $5.49 \times 10^{-4} \mathrm{u}$: كتلـة الإلكترون - $1.6 \times 10^{-19} \mathrm{C}$:

لَ يُطلق على دقيقة بيتا - ${ }^{\text {ـُ اسم إلكترون النواة، }}$ لأنهـا تحمـل صفــات الإلكتـرون مـن حيـث الكتلة والشحنة والسرعة.

يمكن إثمال كتلة دقيقـة بيتا،
لضـاكتها بالنسبـة لوحدة الكتل الذريـة. ك يـرمـــز لاقيقــــة بيتــا بالرمــز e
 و 0 يعنى أن كتلتها مهملة مقارنةً بكتلة كل من البروتقن والنيوترون. لانبعـــاث دقيقة (جسيم) بيتـا
 عددهالذرى أكبر بمقدار 1 ،بينما عددها الكتلى (عدد النيوكلونات)
 وذلل لأن جسيم بيتا e

انبعاث دقيقة بيتا من نواة ذرةالكربون 14 المشع.

انبعاث دقيقة بيتا من نواة ذرة كربون غير مستقرة

و الحدد الكتلى A اللنواة الأم = مجموع الأعداد الكتلية لكل من النواة الناتجة (النوليدة) وجسيم بيتا.

* العدد الـذرى Z للنواة الأم = مجموع الأعداد الذرية لكل من النواة الناتجة (الوليدة) وجسيم بيتا.

Worked Example

اكتب المعادلة النووية الدالة على فقد دقيقة بيتا من نظير الصوديوم

Test Yourself

عند انبعاث بشسيم بيتا من نواة عنصر مشع عدد نيوكوناته 128، ينتج عنصر جديد عدد نيوكلوناته
(a) 124
(b) 127
(C) 128
(d) 129

الصـل : الاختيار الصحيح :

Worked Examples

(1) احسـبكـل مـن العـدد الكـتـلى و العـدد الـذرى لعنصر مشع يتحـول إلى عــنــــر مـستـقـرعــدده الذرى 82 وعدده الكتلى 206 بعدما يفقد 5 جسيمات ألفا و 4 جسيمات بيتا.

$$
{ }_{\mathrm{Z}}^{\mathrm{A} X} \longrightarrow{ }_{82}^{206} \mathrm{Y}+5_{2}^{4} \mathrm{He}+4_{-1}^{0} \mathrm{e}
$$

$$
\begin{aligned}
& A=206+(5 \times 4)+(4 \times 0)=226 \\
& Z=82+(5 \times 2)+(4 \times-1)=88
\end{aligned}
$$

العدد \$لكتلى
© (0 يتحول اليورانيوم ${ }_{92}^{238}$ إلى الرصاص ${ }_{92}$ 206 ${ }_{82}$ نتيجة لانبعاث جسيمات ألفا و بيتا. ما عدد جسيمات كل من ألفا و بيتا المنبعثة ؟

عدد جسيمات بيتا	عدد جسيمات ألفا	الاختيارات
8	8	(i)
6	8	(-)
6	6	\bigcirc
8	6	(1)

$$
\text { . عدد جسيمات ألفا المنبعثة = } 8 \text { جسيمات. }
$$

$$
92=82+(X \times 2)+(Y \times-1)
$$

(د) ، وعليه يستبعد الاختيارين (ـ)

$$
92=82+(8 \times 2)-Y
$$

$$
\therefore Y=6
$$

$$
\text { : عدد جسيمات بيتا المنبعثة = } 6 \text { جسيمات. }
$$

الحـل : الاختيار الصحيح :
(1) مـن الشكـل المقابـل استبـدل الأرقـام من (1) :

 الموضحة بالجدول التالى :

Z العنصر	Pu	$\mathbf{A m}$	$\mathbf{N p}$	\mathbf{U}	$\mathbf{P a}$
\mathbf{Z}	94	95	93	92	91

(i) ${ }_{94}^{241} \mathrm{Pu} \longrightarrow{ }_{95}^{241} \mathrm{Am}+{ }_{-1}^{0} \mathrm{e}$
(2) ${ }_{95}^{241} \mathrm{Am} \longrightarrow{ }_{93}^{237} \mathrm{~Np}+{ }_{2}^{4} \mathrm{He}$
(3) ${ }_{93}^{237} \mathrm{~Np} \longrightarrow{ }_{91}^{233} \mathrm{~Pa}+{ }_{2}^{4} \mathrm{He}$
(4) ${ }_{91}^{233} \mathrm{~Pa} \longrightarrow{ }_{92}^{233} \mathrm{U}+{ }_{-1}^{0} \mathrm{e}$

Test Yourself

(a)	$a-5$	$b-12$
(b)	$a-6$	$b-8$
(c)	$a-4$	$b-12$
(d)	$a-5$	$b-8$

الحـل : الاختيار الصحيع :

$$
\begin{aligned}
& { }_{a}^{b} \mathrm{X} \longrightarrow{ }_{c}^{d} \mathrm{Y}+{ }_{+1}^{0} \mathrm{e}+3{ }_{2}^{4} \mathrm{He}+2{ }_{-1}{ }^{0} \mathrm{e} \quad: \quad: \text { فى التداعل المقابل } \\
& \text { أى مدا يأتى يعبر عن قيم d ، d فی هذا التفاعل } \\
& \text { الاختيارات } \\
& \text { (c) } \\
& \text { (d) }
\end{aligned}
$$

$$
\begin{aligned}
& { }_{92}^{238} \mathrm{U} \longrightarrow{ }_{82}^{206} \mathrm{~Pb}+\mathrm{X}_{2}^{4} \mathrm{He}+\mathrm{Y}_{-1}^{0} \mathrm{e} \\
& 238=206+(X \times 4)+(Y \times 0) \\
& 238=206+4 X \\
& \therefore X=8
\end{aligned}
$$

\qquad

انبعاث أشعة جاما من نواة ذرة عنصر مشع
; خمانص آشعة جاما
 عـيمة الكتلة والشحنة.

- طولها الموجى قصنير جدًا. - سرعتها تساوى سرعة الضوء. - ترددها كبير •

 الموجات الكهرومغناطيســـية بعد الأشــــة الكونية

فى الطهل ألموجى•

؛ انبعاث أشعةَ جاما من نواه ذرة عنصر مشـع لا يؤدى إلى حدوث تغير فى العدد الكتلى أو العدد الذرى، لانها عبارة عن موجات كهرومغناطيسية (فوتونات) عديمة الكتلة والشحنة.

Worked Example

عند انبعاث دقيقة بِتا ثم أشعة جاما من نواة عنصر مشع 92 يتكون النظير ${ }^{238}$ يتكون
(a) ${ }_{92}^{239} \mathrm{~B}$
(b) ${ }_{92}^{239} \mathrm{~A}$
(C) ${ }_{93}^{238} \mathrm{~B}$
(d) ${ }_{93}^{238} \mathrm{~A}$

فكـرة الصـلى :
:" عند انبعاث دقيقة بيتا يتكون عنصر جديد عدده الذرى أكبر بمقدار 1 فى حين لا يتغير العدد الكتلى، بينما انبعاث أشعة جاما لا يؤدى إلى حدوث تغير فى العدد الذرى أو العدد الكتلى.
(b)• (a) يستبعد الاختيارين :
: : انبعاث جسيم بيتا يؤدى إلى حدوث تحول عنصرى (تكون عنصر جديد).
(d) يستبد الاختيار
(C): الصـل : الاختـيار الصحيح

1 يمكن تلخيص تأثير انبعاث كل من ألفا ، بيتا ، جاما من أنوية الذرات فى الجدول التالى :

Y جام	$\left.{ }_{-1}^{0} e\right) \beta^{-1}$	ألفا	
لا يحدث تغيير	يزداد	2قل بمقدار 2	(p) (p)
لا يحدث تغيير	يزداد بمقدار	يقل بمقدار 2	العدد الذرى (Z)
لا يحدث تغيير	يـــل بمقدار 1	بقل بمقدار 2	(n) هلد النيوترونات
لا يحدث تغيير	لا يحدث تغيير (يظل كما هو)	يقل بمقدار 4	(العدد الكتلى (A)

تأثير المجال الكهربى على إشعاعات ألفا وبيتا وطاما

نفاذية إشعاعات ألفا و بيتا و جاما

أشعة أفا
α
الرمز
موجات كهرومغناطيسية
(فوتونات)
${ }_{-1}^{0} e$ إلكترن نواة
${ }_{2}^{4} \mathrm{He}$ نواة ذرة هيليوم
الطبيعة

ع $\frac{1}{1800}$
الكتلة أربعة أمثال

عديمة الشحنة
سالبة الشحنة
موجبة الشحنة
الشحنة

عالية جدًا

(تستطيع النفاذ خلال
متوسطة
شريحة من الرصاص سُمكا كدة سنتيمترات وإن كانت شدتها تقل أثثاء النفاذ،

منخفضة

لا تاتثر
بالمجال الكهربي

لا لاتئثر
بالجال المفناطيسى

تنحرف انحرافًا كبيرًا
عالية

ناحية القطب الموجب

تتأثر
بانحراف كبير

ضميفة

عالية جدًا

تنحرف قلياًا
ناحية القطب السالب

تتأثر
بانـراف صغير

التأثر

بالهجال الكهربى

التأثر
باكاججال الـخناطيسى

عمر النمسن

، استنتج الهلماء من دراسة النشاط الإشعاعى أن : . نشُـاط المـادة المشعـة يقـل بمـرور الزمـنـن. . عـد أنويـة ذرات كل عنصر مشـــع ينحل إلى النمف بعد مرور فترة زمنية محددة

أطلقوا عليها مصنطلح عمر النصف ريتكرر عهـر النصــف علـى فتـرات زمنيـة هتساوية ومتتالية، ويتفاوت زمن عمر النصف من عنصر مشع إلى آخر ، فــقـد يكن ثوانى وقد يصل إلى ملايين السنين.

|ويمكن تحديد عمر الصخند و المومياوات بدلالة عمـر النصـ لنظير الكربـف 14

التحلل الإشعاعى لنظير اليود 131 C프눈 | 100 g ، إذا كان لدينا عينة من اليود 131 كتلتها
 كل زمن عمر نصف (8 days)، كما يـخـح من الجدول والشكل المقابل :

الكتلة المتبقية (g)	الزمن (day)
100	0
$100 \div 2=50$	$0+8=8$
$50 \div 2=25$	$8+8=16$
$25 \div 2=12.5$	$16+8=24$
وهكذا	

Worked Examples

45 days بعد مرور 1.5 g عينة من عنصر مشع كتلتها 12 ويتبقى منها (0)
ما عمر النصف لهذا العنصر ؟
(a) 45 days
(b) 30 days
(c) 15 days
(d) 7 days

$\because D_{(ع د د ~ م ر ا ت ~ ا ل ت ح ل ل)}=3$
$\therefore t_{1}=\frac{t}{D}=\frac{45}{3}=15$ days
(c): :

9 months 4.8×10^{12} atom 4 تحلل ملها 7 من عدن من عنصر الذرات بعد مشع عدد ذراته
(Y) عمر النصف لهذا المنصر المشع. (1) عدد الذرات المتبقية من هذا العنصر.
: الحــ)
(1)

عد عد الذرات المتبقية = $\frac{1}{8}=\frac{7}{8}-1$ عد الذرات الأصلية 0.6×10^{12} atom $=4.8 \times 10^{12} \times \frac{1}{8}=\frac{1}{=}$ عدر الذرات \therefore

$\because \mathrm{D}=3$
$\therefore \mathrm{t}_{\frac{1}{2}}=\frac{\mathrm{t}}{\mathrm{D}}=\frac{9}{3}=\mathbf{3}$ months
§32 min © 93.75% ما الزمن اللازم لتحلل (أنوية ذرات عنصر مشع، فترة عمر النصف له
: 93.75\% من الأنوية قد تحلت.
6.25\% = 93.75\%-100\% = النسبة المتبقية من الأنوية الانوبة
$\because \mathrm{D}=4$

$$
\therefore \mathrm{t}=\mathrm{D} \times \mathrm{t}_{\frac{1}{2}}=4 \times 32=\mathbf{1 2 8} \mathbf{~ m i n}
$$

72.3 days 1 mol 1 من عنصر الثوريوم 234 المشع بعد مرور احدد الذرات المتبقية من
24.1 days في الظروف القياسية؟ علما بأن عمر النصف له
$\mathrm{D}=\frac{\mathrm{t}}{\mathrm{t}_{\frac{1}{2}}}=\frac{72.3}{24.1}=3$
6.02×10^{23} atom = عدد ذرات 1 mol من انى عنصر فى الظروف القياسية \because
$\underset{\substack{6.02 \times 10^{23} \\ \text { atom }}}{\left.\stackrel{\mathrm{t}_{\frac{1}{2}}}{\substack{3.01 \times 10^{23} \\ \text { atom }}} \xrightarrow[(2)]{\frac{\mathrm{t}_{\frac{1}{2}}}{1.505 \times 10^{23}}} \xrightarrow[\text { atom }]{ } \xrightarrow{\frac{\mathrm{t}_{\frac{1}{2}}}{0.7525 \times 10^{23}}} \begin{array}{c}\text { atom }\end{array}\right]}$
0.7525×10^{23} atom $=$ عدد النرات المتبقية \therefore

2 days (1) 2 days = عمر النصف \therefore

$10 \mathrm{~g}=6$ days (r) $70 \mathrm{~g}=10-80=$ كتلة الأنوية المتحللة = الكتلة الأصلية - الكتلة المتبقية

$$
\begin{equation*}
80 \mathrm{~g} \xrightarrow[(1)]{\stackrel{t_{1}}{2}} 40 \mathrm{~g} \xrightarrow[(2)]{\frac{t_{1}}{2}} 420 \mathrm{~g} \xrightarrow[(3)]{\frac{t_{\frac{1}{2}}}{\longrightarrow}} 40 \mathrm{~g} \xrightarrow[(4)]{\mathrm{t}_{\frac{1}{2}}} \sqrt{2} \xrightarrow{\mathrm{t}_{\frac{1}{2}}} 2.5 \mathrm{~g} \tag{r}
\end{equation*}
$$

$\because \mathrm{D}=5$

$$
\therefore \mathrm{t}=\mathrm{t}_{\frac{1}{2}} \times \mathrm{D}=2 \times 5=\mathbf{1 0} \text { days }
$$

Test Yourself

5600 years عينة من الخشب تحتوى على 10 ¹6 9 نواة ذرة كربفن 14 عمر النصف له 14 (1)
ما عدد أنوية ذرات الكربون 14 التى تظل موجودة فى عينة الخشب بعد مرود 16800 years
(a) 0.5625×10^{16} nuclei
(b) 1.125×10^{16} nuciei
(C) 2.25×10^{16} nuclei
(d) 4.5×10^{16} nuclei

فكـرة الحـل :
$D=\frac{t}{t_{\frac{1}{2}}}=\frac{\cdots \cdots \cdots \cdots \cdots \cdots}{\ldots \ldots \ldots \ldots}=3$

. عدد الأنوية التى تظل موجودة فى عينة الخشب =
الحـل :الاختيار الصحيح

Jall umgal

12 min 0 ها عمر النمصف لهذا العنمر 9

(a) 2 min
(b) 6 min
(c) 8 min
(d) 12 min
。
$=$ \qquad - $100 \%=$ = 75% من الأنوية قد تحللت. $\ldots \ldots \ldots$.
$\because D=2$
$\therefore t_{\frac{1}{2}}=\frac{\mathrm{t}}{\mathrm{D}}=\frac{\cdots \cdots \cdots \ldots . .}{\ldots \ldots \ldots \mathrm{min}}=6 \mathrm{~m}$
الحـل :الاختيار الصحيح :
2.5 days 0.0625 g ما الكتة الأصلية لعنصر مشع تبقى منه 0.0. علمُا بأن معر النصف له 0.5 day
(a) 0.5 g
(b) 1 g
(C) 2 g
(d) 4 g
فكرة الحـلـ :
$\mathrm{D}=\frac{\ldots \ldots \ldots .}{\ldots \ldots \ldots .}=\frac{\ldots \ldots \ldots \ldots}{\ldots \ldots \ldots . .}=5$

: الكتلة الأصلية = الحـل :الاختيار الصـيح

(0) الشكل الييانى لمقابل يوضتح تحلل عينة من عنصر مشع بمرود الزمن :
(ا) ما عمر النصف لهذا العنصر ؟ ؟ 4 days ما الكتلة المتقية من هذا العنصر بعد (r) ؟ 6 days

Jgill umall

 Wilil lill linn 5
alimis

Beady

(1) ${ }_{92}^{238} \mathrm{U} \longrightarrow \cdots \cdots \cdots \cdots \cdots+{ }_{2}^{4} \mathrm{He}$
(2) ${ }_{6}^{14} \mathrm{C} \longrightarrow \cdots \cdots \cdots \cdots+{ }_{-1}^{0} \mathrm{e}$

انتر الإبابة المحية مما بين الإبابات المعطاة :
(1) أى العبارات التالية لا تنطبق على جسيمات ألفا ؟ (i) أنها عبارة عن أنوية نرات هيليوم.
(- أكثر قدرة على تأيين الهواء.
ج \bigodot أكثر قدرة على النفاذ خالال الأجسام المتمة. (3) تتأثر بالجال المناطيسىى
(٪) أى من هذه الدقائق تكون كتلته هى الأصغر ؟ (i) (i) دقيقة ألفا . (-) الإلكترون. ٪
-()
(r)
(a) ${ }_{\mathrm{A}}^{\mathrm{B}} \mathrm{X} \longrightarrow{ }_{\mathrm{A}-2}^{\mathrm{B}-4} \mathrm{Y}+{ }_{2}^{4} \mathrm{He}$
(b) ${ }_{\mathrm{A}}^{\mathrm{B}} \mathrm{X} \longrightarrow{ }_{\mathrm{A}+2_{2}}^{\mathrm{B}+4} \mathrm{Y}+{ }_{2}^{4} \mathrm{He}$
(c) ${ }_{\mathrm{A}}^{\mathrm{B}} \mathrm{X} \longrightarrow{ }_{\mathrm{A}-4}^{\mathrm{B}-2} \mathrm{Y}+{ }_{2}^{4} \mathrm{He}$
(d) ${ }_{\mathrm{A}}^{\mathrm{B}} \mathrm{X} \longrightarrow{ }_{\mathrm{B}-2}^{\mathrm{A}-2} \mathrm{Y}+{ }_{2}^{4} \mathrm{He}$
(₹) أى مها يأتح ينتج جسيم بيتا عند تحوله إلى بروتون ؟
(a) ${ }_{1} \mathrm{H}$
(b) ${ }_{2}^{4} \mathrm{He}$
(c) ${ }_{0}^{1} n$
(d) e^{-}
\qquad
(o) أى مدا يأتى ينطبق على أشعة جاما ؟ (i) (i) بها شُحنة موجبة. (ج) لها شحنة سالبة. ©
(د) عبارة عن موجات كهرومغناطيسية.
(1) حدوث تحول عنصرى عند خروج دقيقة ألفا من نواة ذرة عنصر مشع. (($)$ تحتّبر أى محادلة نووية موزونة.
(r) يُطلق على دقيقة بيتا ـ اسم إلكترون النواة.
() عند انبعاث جسيم بيتا من نواة ذرة عنصر مشع، يتكون عنصر جديد عدده الذذرى أكبر بمقدار 1 فـ حين لا يتغير العدد الكتلى.
(0) لا يتغير العدد الذرى أو العدد الكتلى لنواة العنصر المشع عند انبعاث أشعة جاما. (1) أثعه جاما لا تتأثر بالمجالين الكهربى والمغناطيسى.
(14.8 h ما معنى أن عمر النصف لنظير الصوديوم 24 يساوى

Open book ©i

(1) $\mathrm{C}_{2} \mathrm{H}_{\mathrm{Og})} \longrightarrow 2 \mathrm{C}_{(\mathrm{s})}+3 \mathrm{H}_{2(\mathrm{~g})}$
(b) ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}+$ Energy
C. ${ }_{7}^{14} \mathrm{~N}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{6}^{14} \mathrm{C}+{ }_{1}^{1} \mathrm{H}$
(d) ${ }_{\mathrm{SH}}^{218} \mathrm{Po} \longrightarrow{ }_{82}^{214} \mathrm{~Pb}+{ }_{2}^{4} \mathrm{He}$
. مستقرة وتمتص دقائق ألفا تلقائيًا (i)
ب- مستقرة وتنبعث منها دقائق ألفا تلقائيًا.
¢ \rightleftharpoons غ غير مستقرة وتنبعث منها دقائق ألفا تلقائيًا.

(a)

(b)

(c)

+ + +

${ }_{95}^{241} \mathrm{Am} \longrightarrow{ }_{91}^{233} \mathrm{~Pa}+2 \mathrm{X}$
ع ع التفاعل النووى الهقابل : ما اسم الجسيم (X) ؟
(i) ألفا
.

- نيوترن.
- (د) بوزيترونـون

1 1 . 1 نواة عنهر مشع تنبعث منها دقيقة ألفا.
ما عدد النيوكلونات والنيوترونات فـ النواة الناتجة عن هذا الالبعاث ؟

(1) الاختيارات	عدد الليوكلونات	236
(a)	236	236
(b)	144	144
(c)	144	54
(d)	النيوترونات	

هِ إى مها يأتى يعبر عن الجسيمين اللذين لهها نفس الكتلة تقريبًا ؟

(a) (1) , (2).
(b) (2) , (3).
(c) (3) , (4).
(d) (1) , (4).

(a) 1
(b) 2
C) 6
(d) 7
(19)
(a) ${ }_{25}^{53} \mathrm{Mn}$
(b) ${ }_{24}^{54} \mathrm{Cr}$
(C) ${ }_{24}^{52} \mathrm{Cr}$
(c) ${ }_{23}^{53} \mathrm{~V}$

(العدد الذرى و العدد الكتلى للنظير الناتج من (الـد التفـاعـل النـووى الموضــح بالشكــل الـقـابــل ؟

العدد الكتلى\|	العدد الذرى	الاختيارات
80	69	\ddots
80	68	\ddots
148	69	\bigodot
148	68	\ddots

 عند انبعاث دقيقة - ${ }^{-}$من نواة ذرته ؟

الاختيارات	عدد النيوكلونات\|	23
(a)	25	10
(b)	23	13
(c)	25	13
(d)	عدهيوترنات\|	10

$$
{ }_{x}^{214} \mathrm{Bi} \longrightarrow Z_{Z}^{Y} e+n_{84}^{W} P o
$$

أى مها يأتى يعبر عن قيمة اثنين من الرموز المجهولة في المعادلة السَابقة ؟
(a) $X=82, n=1$
(b) $Y=-1, X=82$
(c) $Z=0, W=214$
(d) $\mathrm{W}=214, \mathrm{n}=1$
${ }_{92}^{236} \mathrm{C} \longrightarrow 4{ }_{0}^{1} \mathrm{n}+{ }_{53}^{136} \mathrm{I}+\mathrm{X}$: فی المعادلة (X) (X)
(a) ${ }_{41}^{98} \mathrm{Nb}$
(b) ${ }_{38}^{96} \mathrm{Sr}$
(C) ${ }_{39}^{96} \mathrm{Y}$
(d) ${ }_{40}^{98} \mathrm{Zr}$
 ما ميغه أكسيد العنصر M الناتج ؟
(a) MO_{2}
(b) $\mathrm{M}_{2} \mathrm{O}$
(C) $\mathrm{M}_{2} \mathrm{O}_{3}$
(d) MO

(a) ${ }_{Z}^{\mathrm{A}-4} \mathrm{X}$
(b) ${ }_{\mathrm{Z}-4}^{\mathrm{A}-1} \mathrm{Y}$
(c) ${ }_{\mathrm{Z}-1}^{\mathrm{A}-4} \mathrm{Y}$
(d) $\mathrm{Z}_{\mathrm{Z}-2}^{\mathrm{A}-4} \mathrm{Y}$
(a) ${ }_{92}^{236} \mathrm{U}$
(b) ${ }_{90}^{238} \mathrm{Th}$
CC) ${ }_{91}^{24} \mathrm{~Pa}$
(d) ${ }_{92}^{234} \mathrm{U}$
 تكون النسبة
(a) $\frac{60}{41}$
(b) $\frac{61}{40}$
(C) $\frac{62}{41}$
(d) $\frac{61}{42}$

$$
{ }_{98}^{238} \mathrm{X} \xrightarrow{-\alpha} Y \xrightarrow{-2 \beta^{-}} Z \xrightarrow{-n \alpha}{ }_{90}^{218} \mathrm{M} \quad: \text { ف سلسلة التفاعلات النووية الآتية }
$$

ما قيمة (n) ؟
(a) 3
(b) 4
(c) 5
(d) 6

$$
{ }_{90}^{238} X \xrightarrow{(-2 \alpha)}{ }_{E}^{D} Y \xrightarrow{\left(-2 \beta^{+}\right)}{ }_{B}^{A} Z
$$

(a) 140
(b) 142
(C) 144
(d) 146
(أى مها يأتى يعـبر عن التـنرج التصـاعـدى لطاقة الإشعاعات النوويـة ؟
(a) $\alpha<\gamma<\beta^{-}$
(b) $\beta<\alpha<\gamma$
(C) $\alpha<\beta^{-}<\gamma$
(d) $\beta^{-}<\gamma<\alpha$

أى مها يأتى يعبر عن المسار الصحيح لهذه الدقائق ؟

(c)

(b)

(d)

ما الشكل المقابل : يَثل ثلاثة إشعاعات تمر عبر مجال كهربـ. أى مها يأتى يَثل كل من (1) ، (2) ؟

66 يستفيد العلماء من انحرافات الأشعة والجسيمات

فإذا أمرت حزمة منها فـ مجال كهربى كها بالشــــلـ
المثابـل، فإن بعضها ينحرف لأعلى وبعضها لأســـلـ وبتضها لا ينحرف.
أى مها يأت يعتبر صحيح ؟

(1) ما الإشعاعان اللذان يتاثران بالمجال المغناطيسى ؟

.

عمر النصف.

(a) 8 min
(b) 9 min
(C) 18 min
(d) 24 min
 فماذا يحدث بعد مرور 2 years تقل كتة الصندوق للنصف. ب تقل كتلة الصندوق للربع.
(\rightleftharpoons تزداد كتلة الصندوق للضنـف.
(د تظل كتة الصندوق ثابتة.
60 min الجدول التالى يوضح عدد الانبعاثات الصادرة كل ثانية مـن عـنصر مـشع خـلال
ما عمر النصف لهزا العنصر ؟

100	140	200	280	400	560	800	عدد الانبعاثات في كل ثانية) (min)
60	50	40	30	20	10	0	(mojor

(a) 10 min
(b) 20 min
(c) 40 min
(d) 60 min
(a) 1.125×10^{12} nuclei
(b) 1.125×10^{16} nuelei
(c) 2.25×10^{16} nuclei
(d) 4.5×10^{12} nuclei
(a) 0.33 month
(b) 0.67 month
(c) 1.82 months
(d) 2.34 months
(c) 1.82 months
(d) 2.34 months
(a) 3 h

2 months تملن, 87.5\%
(b) 9.6 h
(c) 12 h
(d) 24 h

- بعد مرور 48 على عينة من عنصر مشع تبقى 16 منها بدون تغير

ما عمر النصف لهذا العنصر ؟

4 years عينة من عنصر مشع وجد أنها تحتوى على 4.8×10^{12} بعد مرور 1 atom
(a) 9.6×10^{12} atom

ما عدد الذرات فـ هذه العينة قبل تحللها، علمًا بأن عمر النصف لها 1 با 1 ٪ear
(b) 19.2×10^{12} atom
(c) 38.4×10^{12} atom
(d) 76.8×10^{12} atom
(a) 0.3 g
(b) 2.4 g
(c) 4.2 g
(d) 4.5 g

110

إذا كان عمر النصف لعنصر مشع days 2 فإن عدد ذراته يقل إلى $\frac{1}{8}$ مقدارها بعد مرور
（a） 4 days
（c） 8 days
（b） 6 days
（d） 16 days

4 months عنصر مشع كتلته 64 وعمر النصف له ما الكتلة المتبقية من هذا العنصر بعد مرور سنة واحدة ؟
（b） 16 g
（C） 32 g
（d） 46 g
8 days عمر X atom عمر النصف له من عنصر اليود المشع تحتوى على ما عدد الذرات المتبقية منه دون انحلال بعد مرور 24 days （ $\frac{1}{2}$ عدد ذرات العينة الأمصلية．

號 $\frac{1}{8}$ عدد ذرات العينة الأصلية

（a）

（b）

（c）

（d）

 والزمن الذى يســتغرقه حتى يتحول إلى عنصر مستقر،
فـإذا كـانـت كـتـلة هـذا العنـــــر فـى البدايــة 20 days وعمر النصف له فها قيمة كلًا من

（الاختيارات	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$
（a）	20 days	20 days
（b）	20 days	40 days
（c）	40 days	20 days
（d）	40 days	40 days

Jifing ăntho alfinf

 والبروتونات لبعض النظائر المتكونة أثناء تفاعلات نووية : ${ }^{210} \mathrm{Po}$ (ا) احسب عغد النيوترونات فى نواة (Y) مـا التفــــر الحـادث فــى عــد كل الـ مـن البروتونـات والنيوترونات عند تحول نواة ${ }^{210}$ إلى نواة ${ }^{210} \mathrm{Bi}$ ع مع ذكر نوع التفاعل النوىى الحادث.

(1) ${ }_{88}^{226} \mathrm{Ra} \longrightarrow \mathrm{X}+{ }_{2}^{4} \mathrm{He}$
(2) $\mathrm{X} \longrightarrow{ }_{58}^{140} \mathrm{Ce}+{ }_{2}^{4} \mathrm{He}$
(3) ${ }_{36}^{95} \mathrm{Kr} \longrightarrow \mathrm{X}+{ }_{-1}^{0} \mathrm{e}$
(4) $\mathrm{X} \longrightarrow{ }_{92}^{233} \mathrm{U}+{ }_{-1}^{0} \mathrm{e}$
(5) $\mathrm{X} \longrightarrow{ }_{92}^{234} \mathrm{U}+{ }_{2}^{4} \mathrm{He}+2{ }_{-1}^{0} \mathrm{e}$
: اكبَ المعادلات النووية المعبرة عن التفاعلات الموضحة بسلسلة التحلل التَالية : ${ }_{90}^{232} \mathrm{Th} \rightarrow(1) \rightarrow{ }_{88}^{228} \mathrm{Ra}-(2) \rightarrow{ }_{89}^{228} \mathrm{Ac}-(3) \rightarrow{ }_{90}^{228} \mathrm{Th}-$ (4) $\rightarrow{ }_{88}^{224} \mathrm{Ra}$

وضح التغير الحادث فـ العدد الكتلى والعدد الذرى لعنصر مشع عدده الذرى 88 وعدده الكثلى 226. فقد 5 جسيمات ألفا ثم 4 جسيمات بيتا.
 أوجد العلاقة بين (A) A) و (Z A ، Z) ، وهل حدث تحول عنصرى ؟

$$
{ }^{{ }_{92}^{238} \mathrm{U}} \xrightarrow{-\alpha} \mathrm{A} \xrightarrow{-\beta^{-}} \mathrm{B} \xrightarrow{-\alpha} \mathrm{C} \xrightarrow{-3 \beta^{-}} \mathrm{D}
$$

وما العلاقة بين الحنمـر D و اليـوانـيـوم ${ }_{92}^{238}{ }^{\text {¢ }}$

> عمر النصف

5 days 2 فهل تتحلل بالكامل بعد مرور days 10 من بداية تحللها ؟ مع تفسير إجابتك.

89 الشكل المقابل يوضـح عمليـة تحـول طبيعى لأنويــة ذرات الماغنسيـوم 28 المـشــع إلى
أنويــــــة ذرات الألــومنيـــوم 28 المـشـع : (1) ما نوع الانبعاث الذى يؤلى إلى هذا التحول الطبيمى ؟ مـع تَليل إجابتك.
(Y) ما عدد فترات عمر النصف التى مرت على العينة الأصلية بعد مرد فترة زمنية معينة ؟

ه0هـ الشكـل البـيـانى المقابـل يعبر عن : معــل تحـلـل عنصـر مشـع بمــرود الزمـــنـن احـســب معـــدل التحـلـلـل فــى اليــوم الثـــامــــــــن مقدرًا بوحدة (تحلل/ثانية). |حسب الفترة الزمنية اللازمة لكى يتبقى منه 32 كتلته الته فقط.
(احسـب تاريـخ مــوت أحــد الفراعنـة إذا علمـت أن موميائـه التـى تحتوى علـى نظيـر الكربن 14 المــع سجلت 7.65 تحلل/دقيقة ومعدل انحلال الكربون 14 فى الطبية والكائنات الحية 15.3 تحلل/دقيقة 5700 years وأن عمر النصف له

مسائل =-ابَ كتل المواد المشعة

(ا) عمر النصف للفوسفور المشع.
(r) كلة الفوسفود بعد مرود 28 (28 أخرى.
(6)

100	$\mathbf{7 5}$	$\mathbf{5 0}$	$\mathbf{2 5}$	$\mathbf{0}$	$(\mathrm{~min})$ الزمنة)
0.5	0.75	1	1.5	2	$(\mathrm{~g})$

(ا) ارسم علاقة بيانية تمثل كتة العنصر المشع وزمن الإشعاع.
(ץ) أوجد عمر النصف لهذا العنصر
(Y) ما الكتلة المتقية من هذا العنصر بعد مرود 150 min

ز

[寿/alemte7anbooks

تفاعلات التحول النووى (العنصرى) هى تفاعلات نووية يتم فيها قذف نواة عنصر ما (يُعرف بالهدف) بجسيم ذو طاقذ حركه مناسبة (يُعرف بالقذيفة)، فتتحول إلى نواة عنصر جديد.

تسريع القذيفة بواسطة السيكلوترون الجدول التالى يوضـح بصض الأمثلة على القذائف :

النيوترن	الديوتيرن	البروتون	ألفا	القذيفة
${ }_{0}^{1} \mathrm{n}$	${ }_{1}^{2} \mathrm{H}$	${ }_{1}^{1} \mathrm{H}$	${ }_{2}^{4} \mathrm{He}$	الرمز

وللوصــول بطاقـة حركـة القذيفة إلـى المسـتوى المطلوب، يتـم تسـريـــها بـاسـتخـدام أجـهزة المعجـلات النـويـة، مثل : - جهاز ثان دیى جراف. - جهـاز السيكلـوتِرن.

استذدام جسيم ألفا

ينسب أول تفاعل تحول نوى صناءى للعناصر إلى العالم رذرفودد عام 1919، حيث استخدم :

علامة * الموجودة أعلى يمين رمز العنصر تشير إلى أن نواة هذا العنصر غير مستقرة تتحلل خلال لحظات

* جسيمات ألفا كقذيفة.
* غاز النيتروجین كهدف، كالتالى :
* جسيمات ألفا كقذيفة.
* غاز النيتروجین كهدف،

استذدام الديوتيرون

تناعل قذف نواة الماغنسيوم ${ }^{26}$ بقذيفة ديوتيرفن :

معادلة تحول نظير الماغنسيوم 26 إلى نظير الصوديوم 24

، تفاعل قذف نواة اللييوم 6 بقذيفة نيوترون :
 معادلة تحول نظير الليثيوم 6 إلى نظير الهيدروجين
ويُعتبـر النيوتـرون مـن أفضـل القذائـف، لأنـه لا يحتاج إلى سـرعة عالية لاختـراق النواة، حيث إنه جســيم متعادل الشحنة، لا يلاقى تنافرًا مع الإلكترونات المحيطة بالنواة.

arpgill Mrblallaffoo

يراعى عند موازنة المحادلات النووية تحقيق القانونين الآتيين : - قانن حفظ الشحنة. - قانن حفظ المادة (الكتلة). قانون حفظ الشحنة أن يكن :

مجموع الأعداد الذرية للمتفاعلات = مجموع الأعداد الذرية اللنواتع "الطرف الأيسر من المعادلة النوية" الطرف الأيمن من المعادلة النوية"].

يقتضى قانون حفظ المادة (الكتة) أن يكون : مجموع الأعداد الكثلية للمتفاعلات = مجموع الأعداد الكلية اللنواتع "الطرف الأيسر من المعادلة النووية، "الطرف الأيمن من المعادلة اللنوية"]

Red?

Worked Example

في ضوء معرفتك بتحقيق المعادلة النووية لقانون حفظ الشحنة وقانون حفظ المادة، الستنتج العدد الكتلى 9 العدد الذرى للعنصر الوليد X المجهول فى المعادلتين التاليتين : (1) ${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{62}^{160} \mathrm{Sm}+{ }_{Z}^{A} \mathrm{X}+4{ }_{0}^{1} \mathrm{n}$
(2) ${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{42}^{102} \mathrm{Mo}+{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}+{ }_{0}^{1} \mathrm{n}$

Test Yourself

(1) ${ }_{27}^{59} \mathrm{Co}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{27}^{60} \mathrm{Co}+\mathrm{X}$

استبدل الحرف (X) فى كل معادلة بما يعبر عنه :
(2) ${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{36}^{94} \mathrm{Kr}+{ }_{56}^{139} \mathrm{Ba}+3 \mathrm{X}$
(..................)
(3) ${ }_{8}^{20} \mathrm{O} \longrightarrow{ }_{9}^{20} \mathrm{~F}+\mathrm{X}$
(..................)
(4) ${ }_{27}^{59} \mathrm{Co}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{25}^{56} \mathrm{Mn}+\mathrm{X}$

Se9ill phifinll arilatin
 (अ)ㅏㅏ)

انشطار نووى

الانشطار النووى هو تفاعل نووى يتم فيه قـذف
نواة ثقيلة بقذيفة نووية خفيفة ذات طاقة حركة
منخفضة، فتتشطر إلى نواتين متقاربتــين فى الكتلة، وعدد من النيوترونات وطاقة هائلة.

تفاعل انشطار نواةاليورانيوم235 \qquad
 عند توجيه قذيفة نيوترون بطىء إلى نواة اليورانيوم 235، فإنها تَحول إلى نظير اليودانيوم 236 غِير المستقر والذى لا تزيـد مدة بقــــاءه
 الأنوية الوليدة بالإضافة إلى عدد من النيوترونات، بما يحقق قاننض بقاء الكتلة.

وهنال حوالى 90 نواة وليدة يمكن أن تنتج عن هذا الانشطار النوى،، أشهرها الباريوم Ba و الكريبتن Kr :

إنشطار نواة اليْورانيوم 235 عند قذفها بنيوترون

$$
\begin{aligned}
& { }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{92}^{236} \mathrm{U}^{*} \longrightarrow{ }_{56}^{141} \mathrm{Ba}+{ }_{36}^{92} \mathrm{Kr}+3{ }_{0}^{1} \mathrm{n}
\end{aligned}
$$

تصور لمفهوم التفاعل المتسلسل

،تترم النيوتروناتالناتجة من التفاعلات النوية الانشطارية بلور القزائف لتفاعلات انشــطارية مماثلة، بشكل يضمن استمرارها تلقائيًا بمجرد بدئها ، ولهذا تُوصف مثل هذه التقاعلات النووية بالتفاعلات المتسلسلة.

بيتلد عن التفاعل الانتــطارى المتسلسل لليودانيوم 235 طاتةح رارية ضخمة، والتى تتزايد لاستمرار عملية شطر أنوية
 ;

Worked Example

ما مقدار الطاقة الكلية الناتجة بعد إتمام المرحلة الثانية من التفاعل المتسلسل؟
(b) 800 MeV
(C) 1600 MeV
(d) 3200 MeV فكـرة الحـل :
الطاقة الناتجة بعد الانشطار الأول = 200 MeV لكل نيوترون. : الطاقة الناتجة بعد الانشطار الثانى = 200 MeV = 3×0 لكار الاول 3 نيوترونات. $800 \mathrm{MeV}=600+200=$ = الطاقة الكلية بعد إتمام المرحلتين الأولى والثانية الانية
(b): الحـل : الاختيار الصحيح

< تعتبر المفاعلات النووية الانشطارية من التطبيقات السلمية الهاهة للتفاعلات الانشطارية المتسلسلة، والتفاعل الأساسى فيها هو تفاعل انشطار نواة اليورانيوم 235

 بنفس معدله الابتدائى البطىء لإنتاج طاقة دون حدوث انفجار.

التحكم فى معدل تفاعلات الانشطار النووك عن طريق قضبان الكادميوم
 تفاعلات الانشطـار المتسلسـل فيها عن طريق امـتصاص الـنيوترونـات وذلك بواسطة :
(1) وضـح قضبان الكادميوم بين قضبان الوقود النوىى (اليورانيوم 235) : حيث يؤدى إنــزال قضبان الكادميوم بين قضبان الوقود النـوىى فـــى المفاعل النويى إلى زـــــادة معدل امتصـاص
 أما عند رفع قضبان الكادميوم فتحدث عملية عكسـيـة.

 إلى زيادة معدل اهتصناص النيوترونات، وبالتالتى يقلى معدل تفاءالتت الانتشطار.

الحرس الڭ้انی

الشَ ثنى الفلِان وارستظلال البخار الناتج فى إدارة التوربينات لتوليد الكهرباء.

تستخدم المفاعلات النووية فى إنتاج الطاقة (توليد الكهرباء)
"الإيضاح فَططه

Test Yourself

ببر التفاعل النووى الآتى عما يحدث لقضبان البورن المستخدمة فى بعض المفاعلات النوية :

$$
{ }_{5}^{10} \mathrm{~B}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{3}^{7} \mathrm{Li}+{ }_{2}^{4} \mathrm{He}
$$

ها الاور المحتل الذى تقوم به تضبان البورون فى المفاعل النوهى الانشطارى ؟ (i) إبطاء سرعة النيوترونات بغرض زيادة معدل تفاعلات الانشطار.

ج() خفض طاقة النيوترونات دون امتصاصها .
ج (ـ) زيادة قدرة النيوترونات على إحداث تفاعلات الانشطار.

الحـل : الاختيار الصحيع

'نتسبر القنبلة النووية الانشطارية من التطبيقات اللاسلمية (الحربية) اللتاعالات الانشطارية المتسلسلة. ! بستخدم فى القنبلة الانشطارية كمية من اليودانيوم 235 أكبر بكثير من الحجم الحرج، لضمان استمرار التفاعل الاتشطارى الاتسلسل بمعل سريع وهو ما يؤدى إلى حدوث انفجار.

اندماج نووى

الاندماج النووى هو عملية دمج نواتين خفيفتين،
لتكويـن نــواة عنصـر آخــر أثقــل مـن أى منهمـا وكتلتها أقل من مجموع كتل الأنوية المندمجة.

وتـتبر التـفاعـلات النووية الاندماجية مصدر الطـاتة المدمرة
للقنبلة الهيدروجينية.

اندماج ديوتيرونان لتكوين نواة هيليوم 3

كتلة النواة الناتجة
أقل من مجموع كتل الأنوية المندمجة هعًا

عند اندماج نواتى ديوتيريوم 3.3 MeV لتحول الفرق فى الكتلة إلى طاقة مقدارهـا
${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}+3.3 \mathrm{MeV}$ (ريوتيرن نيون
(نواة ديوتيريوم) (نواة ديوتيريوم)

تحدث تفاملات نووية اندماجية داخل نجم الشمس، بينما يصعب تحقيق ذلك في المختبرات، لأن التفاعلات النووية الاندماجية تَم عند درجة حرارة مرتفعة جدًا
من رتبة 10^{7} درجة كلقينية (مطلقة)، وهو ما لا يتوافر فى المختبرات

Worked Example

$$
\begin{aligned}
& { }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \longrightarrow{ }_{2}^{4} \mathrm{He}+{ }_{6}^{1} \mathrm{n}+\chi \mathrm{MeV} \quad: \quad \text { : } \\
& \text { كا فيمة دقدار الطاقة (x) } \\
& \text { عالمابن : } \\
& 2.014 u={ }_{1}^{2} H \text { Hed } \\
& 4.004 u={ }_{2}^{4} \mathrm{He} \text { كتلة نوان } \text {. }
\end{aligned}
$$

(a) 16.8 MeV
(b) 3.3 MeV
(c) 955.2 MeV
(d) 919.8 MeV

فكـرة الحـلـ
$\because \Delta m=\left[m\left({ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H}\right)-m\left({ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}\right)\right]$

$$
=[(2.014+3.016)-(4.004+1.008)]=0.018 u
$$

$\therefore E(\mathrm{MeV})=\Delta \mathrm{m} \times 931=0.018 \times 931=16.8 \mathrm{MeV}$

> (a) : الصل : الاختـيار الصحيح

Test Yourself

الشكل المقابل : يعبر عن تفاعل نووى اندماجى. اكتب المعادلة النووية المعبرة عن التفاعل الحادث،
(Z) . (Y) , (X) (X) موضّا ما يشير إليه كل من

قارن بين التفاعلات الكيميانية و التفاملات النوية.

النفاعلات النووية

التفاعلات الكيميالية

عن طلريق نيوكلونات (مكونات) النّاك	تتم بين ذرات العناصر المتفاعلة عن طريق إلكترونات مستويات الطاقة الخارجية
توّدى إلى تحول العنصر إلى نظيره أو إلى عنصر أخر	لا تؤدى إلى تحول العنصر إلى عنصر آخر
نظائر العنصر الواحد تعطى نواتع مختفة	نظائر العنصر الواحد تعطى نفس النواتج
تكن مصحوبة بانطلاق كميات هائلة من الطاقة	تكن مصحوبة بانطالاق أو امتصاص قدر محدد من الطاقة

الاستخدام السلمى

\qquad

عملية صب الصُلب المنصر

* إحداثطفراتبالأجنة وانتخابالصالح منها
لإنتاج نباتات أكثِّر إنتاجية ومقاومة لللَّات
الزراعيـه، وذلـك من طريق تعريـض البذور
لجرعات مختلة من أشعة جاما .
* تصقيم ذكو الحشـرات باستخدام أشعة جاما
للحد من انتشار الآفات الزراعية.
* تعقيم (لمنتجات النباتية والحيوانية باستخدام
أثــعة جاما ، لحفظها من التف وإطالة فترة
تخزينها.
* تتبع مسار (دورة) بـض المواد
مشعــة نــى المـواد الأســاسية
التـى يسـتخدمها النبـات، ثـ
تتبـع الإثـــعاعات الصــادرة
منهـا لمعرفة دودتها فى النبات

$$
\text { O } 18 \text { وتتبع أثره. }
$$

$$
\begin{aligned}
& \text { * التحكـم الآلـى فـى بعـض خطـوط الإنتـابع }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مثـل نظير الكوبلت 60، أو نظير السيزيمم } 137
\end{aligned}
$$

$$
\begin{aligned}
& \text { الجانب الآخر كاثف إشعاعى حساس لاشعة جاما، } \\
& \text { وعندمــا تصل كتلة الصُـــلب إلى حد مــين، } \\
& \text { لا يستطيع الكــاشف استقـال أشعـة جاما، } \\
& \text { فتتوقف عملية الصب. }
\end{aligned}
$$

الآثُار الفارة لمالبشعاعات الill

Enfoll

مدى نفاذية الإشعاعات المؤينة فى جسم الإنسان

الإشعاع المؤين يُدمر الكروموسومات

تتسبب الإشعاعات المؤينة فى تكوين الأورام السرطانية

- أشعة بيتا (
- الأثـعة السينية (xay).
- أشعة ألفا (ه) - أشعة جاما (ر)

أضرارها :

* ع عند ســـوط إشـاع مؤين على الخلية الحية، فإنه يؤدى إلى :
- تأين جـزيئات الماء - التى تمثل الجزء الاككبر من تركيبـا الـيا
 الموجودة بداخلها وإحداث بعض التغيرات الحينية بها.
* استمرار التعرض للإشعاعات المؤينة
يؤلدى إلى :
- منع أو تأخر انقسام الخلايا أو زيادة معدل انقسامها،

وهو ما يؤلى إلى تكون الأورام السرطانـية. - حدوث تنيرات مستديمة فى الخلايا، تنتقل وداثيًا إلى الـى الأجيال التالية، وتكون النتيجة ظهود أجيال جديدة، تحمل صفات مخالفة لصفات الأبوين.

- موت الخلايا.

Test Uourself

 (i) أشعة ألفا .

أشعة ليزر

الإشعاعات الصادرة من أبراج تقوية المحمول

 فنى نركبب الأنسجة التى تتعرض لها. :

- أثشعة الراديو (التى تنبعث من الهواتف المدمولةه). - أشعة الميكزوويڤ. - الأشعة تحت الحمراء. - الأشعة فوق البنفسجية. - أشعة الليزر. - الضوء المنئى. / أضرارها :
* الإثـعاعات الصادرة من أبـراج تقوية المحمل قت تسبب تنيرات فسيولوجية فى الجهاز العصبى تظهر على هيئة : - صداع.
- إعياء.
- دوار (دوخة).
وتد يصل الأمر إلى فقدان الذاكرة،

لالن اتـــق العلمـاء على أن المسافة الآمنة بين
6 m المساكن وأبراج التقوية يجب ألا تقل عن

* المجالــين المنناطيسـى والكهربى لاشـععة الراديو الصادرة من الهواتف المحـــولة يؤئرا على خلايا الجسم، بالإضانة إلى أن امتصاص خلايا الجسم لبنه الأشعة يتسبب فى ارتفاع درجة حرارتها. * وتــن أشــارت بض الأبــاث إلى أن وضـع الحاسـبـ الحشول (اللاب توب) على الركبتين يؤتر على الخصـية.

(1) ${ }_{7}^{14} \mathrm{~N}+$
 $+{ }_{1}^{1} \mathrm{H}$
(2) ${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{56}^{141} \mathrm{Ba}+$ \qquad
\qquad
(3) ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H}$ $+3.3 \mathrm{MeV}$

انتر الإجابة المحيحة مما بين الإجابات المعطاة : (1) عند قذف نواة عنصر الهاغنسيوم 12 بديوتيرون يتكون نظير
(a) ${ }_{3}^{6} \mathrm{Li}$
(b) ${ }_{11}^{24} \mathrm{Na}$
(c) ${ }_{14}^{28} \mathrm{Si}$
(d) ${ }_{12}^{24} \mathrm{Mg}$
(٪) أى من أنوية العنامر الآتية عند قذفها بنيوترون يِكن الحصول على جسيم ألفا؟

$$
\begin{aligned}
& \text { (i) النيتروجِين } 14 \text { (i) } \\
& \text { ج } 27 \text { (الألمنيوم } \\
& \text { 26 } 27 \text { ب } \\
& \text { (ـ) الليثيوم } 6
\end{aligned}
$$

[^0](६) أى من النفاعلات الآنية يعتبر مصدر للطاقة المدمرة للقنبلة الهيدروحينية ؟

\[

$$
\begin{aligned}
& \text { (ج) تفاعلات التحول الینصرى. } \\
& \text { ج تفاعلات الانشططار النووى. } \\
& \text { (ـ) تفاعلات الاندماج النووى. }
\end{aligned}
$$
\]

(0) من النظائر المستخدمة فـ مجال الصناعة للتحكم فی خطوط الإنتاج

$$
\begin{aligned}
& \text { (i) الراديوم } 226 \\
& \text { ب) } 60 \text { الكوبلت } \\
& \text { ج } 18 \text { الأكسخیی } \\
& \text { (د) } 235
\end{aligned}
$$

(1) كل مها يأتى إشعاعات مؤينة، عدا
(i) أشعة جاما (i)
(7) الأشعة السينية.
-
(3) الأشعة تحت الحمراء.

四
(ا) يعتبر النيوترون من أفضل القذائف النووية.
(Y) 6 m يجب ألا تقل المسافة بين المساكن وأبراج تقوية المحمول عن الئن (Y)

(1) $\mathrm{X}+{ }_{2}^{4} \mathrm{He} \longrightarrow{ }_{8}^{17} \mathrm{O}+{ }_{1}^{1} \mathrm{H}$
(2) ${ }_{13}^{27} \mathrm{Al}+{ }_{1}^{1} \mathrm{H} \longrightarrow \mathrm{X}+{ }_{2}^{4} \mathrm{He}$

تفاءلات الدحول النووى (المنهرى)

$$
\begin{aligned}
& \text { (1) }{ }_{92}^{238} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{93}^{239} \mathrm{~Np}+{ }_{-1}^{0} \mathrm{e} \\
& \text { (2) }{ }_{20}^{37} \mathrm{Ca} \longrightarrow{ }_{21}^{37} \mathrm{Sc}+{ }_{-1}^{0} \mathrm{e}
\end{aligned}
$$

أى مما يأتى يعبر عن نوع كل منهها ؟

التفاعل (2)	¢ى مها يأتى يعبر عن نوع كل منهها ؟	
انشطار نوى	النفاعل (1)	الاختيارات
تحول طبيعى	اندما	(i)
تحول عنصرى	انشطار نوى	(-)
تحول طنی	انشطار نوى	\bigcirc
تحف طبيعى	تحول عنصرى	(${ }^{\text {(}}$

ع عند قذف نواة أى المعادلات الآتية تعبر عن التفاعل النووى الحادث ؟
(a) ${ }_{5}^{11} \mathrm{~B}+{ }_{1}^{1} \mathrm{H} \longrightarrow{ }_{6}^{11} \mathrm{C}+{ }_{0}^{1} \mathrm{n}$
(b) ${ }_{5}^{11} \mathrm{~B}+{ }_{2}^{2} \mathrm{He} \longrightarrow{ }_{7}^{12} \mathrm{~N}+{ }_{0}^{1} \mathrm{n}$
(c) ${ }_{5}^{11} \mathrm{~B}+{ }_{2}^{4} \mathrm{He} \longrightarrow{ }_{6}^{14} \mathrm{C}+{ }_{1}^{1} \mathrm{n}$
(d) ${ }_{5}^{11} \mathrm{~B}+{ }_{2}^{4} \mathrm{He} \longrightarrow{ }_{7}^{14} \mathrm{~N}+{ }_{0}^{1} \mathrm{n}$

ع
(®) ${ }_{0}^{1}$
(b) ${ }_{1}^{2} \mathrm{H}$
(c) ${ }_{1}^{3} \mathrm{H}$
(d) ${ }_{3}^{7} \mathrm{Li}$

$$
{ }_{13}^{27} \mathrm{~A} 1+\frac{4}{2} \mathrm{He}-{ }_{15}^{30} \mathrm{p}+\mathrm{X}
$$

$\operatorname{sing}(3)$
ing (3)
أى مدا يأت يحقق موازنة المعادله ؟

${ }_{1}^{2} H$ [

$$
{ }_{92}^{238} \mathrm{U}+{ }_{1}^{2} \mathrm{H} \longrightarrow X+2{ }_{0}^{1} \mathrm{n}
$$

بتًًا للمعادلة :
(a) ${ }_{93}^{238} \mathrm{~Np}$
(b) ${ }_{94}^{238} \mathrm{Pu}$
(C) ${ }_{93}^{240} \mathrm{~Np}$
(d) ${ }_{94}^{240} \mathrm{Pu}$

$$
\begin{aligned}
& \text { (0) }
\end{aligned}
$$

ما رمز النظير (X) الناتج ؟

تثاعلات الانشطار النووى
المعادلة النووية الآتية تعبر عن قذف نواة يورانيوم 235 بنيوترون بطىء : ${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{60}^{154} \mathrm{Nd}+{ }_{32}^{80} \mathrm{Ge}+X$

ما الذى يعبر عنه (X) ؟
(i) 1 نيوترون.
(2 إلكترون.
(2 نيوترون. 2 الكترون. 2 (3) 2 بروتنون.
(a) ${ }_{7}^{14} \mathrm{~N}+{ }_{0}^{1 \mathrm{n}} \longrightarrow{ }_{7}^{15} \mathrm{~N}$
(b) ${ }^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{4} \mathrm{He}$
(C) ${ }_{94}^{238} \mathrm{Pu}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{42}^{102} \mathrm{Mo}+{ }_{52}^{135} \mathrm{Te}+2{ }_{0}^{1 \mathrm{n}}$
(1) ${ }_{21}^{46} \mathrm{Sc} \longrightarrow{ }_{21}^{46} \mathrm{Sc}+\gamma$
(a) 92
(b) 52
(C) 21
(d) 11

أى منها يكون مصحوبًا بانبعاث العدد الأكبر من النيوترونات ؟
(a) 1
(b) 2
(c) 3
(d) 4

 أى مما يأتِ يعبر عن (1) ، (2) ؟

(2)	(1)	الاغتيارات
باريوز 140	كريبتون 94	(i)
باريوم 140	كريبتون 92	(7)
باريوم 141	كريبتون 92	\odot
باريوم 141	كريبتن 90	(1)

ه أى من أزواج العناصر الآتية يكن استخدامها كوقود نووى فى مفاعلات الانشطار النووى ؟ (i) الرهصاص والإيريديوم. () اليورانيوم والكادميوم. (3) الكادميوم والبلوتونيوم•
تفاعلات ": ماج النووى
(10) ما النظيران اللذان يِكن الستخدامهما فى تفاعلات الاندماج النووى ؟
(a) ${ }_{92}^{235} \mathrm{U},{ }_{2}^{3} \mathrm{He}$
(b) ${ }_{2}^{3} \mathrm{He},{ }_{1}^{1} \mathrm{H}$
(C) ${ }_{1}^{1} \mathrm{H},{ }_{2}^{4} \mathrm{He}$
(d) ${ }_{2}^{4} \mathrm{He},{ }_{92}^{238} \mathrm{U}$
.
أى مما يأتى يعبر عن نوع التفاعل النووى الحادث والتحول الحادث فيه ؟

التحول الحادث	نوع التفاعل	الاختيارات
الكتة إلى طاقة	انشطارى	(i)
الطاقة إلى كتل	انشطارى	(-)
الطاقة إلى كتل	اندماجى	\bigcirc
الكتّ إلى طاقة	اندماجى	(1)

®0 ما ما التفاعل الذى ينتج عنه القدر الأعظم من الطاقة؟
(a) $2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
(b) ${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{56}^{141} \mathrm{Ba}+{ }_{36}^{92} \mathrm{Kr}+3{ }_{0}^{1} \mathrm{n}$
(C) $\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
(d) ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}$

6. الاسلا	المستخدم منها فى التفاعلات الاندماجية	المستقر منها	الاختيارات
-	${ }^{3} \mathrm{H}$	${ }^{2} \mathrm{H},{ }^{1} \mathrm{H}$	(i)
	${ }^{3} \mathrm{H},{ }^{2} \mathrm{H},{ }^{1} \mathrm{H}$	${ }^{2} \mathrm{H}$ ، ${ }^{1} \mathrm{H}$	(-)
	${ }^{3} \mathrm{H},{ }^{2} \mathrm{H},{ }^{1} \mathrm{H}$	${ }^{3} \mathrm{H}$	\bigcirc
	${ }^{2} \mathrm{H},{ }^{1} \mathrm{H}$	${ }^{3} \mathrm{H}$	($)$

 (i) يصاحبهما انطلاق نيوترونات غالبًا
لا يسبا آثار ضارة.

ج تزداد الكتلة الكلية للنواتج عن المتفاعلات. (() يصـاحبهما ازدياد فى طاقة الترابط النیوى لكل جسيم•.

\qquad

أشعة（r）	أشعة（I）	أشعة（1）	الإختارات
أش⿻丷木冖⿱亠乂冖	أشعة ألفا	أشعة إكس	（i）
أشهة بيتا	أشعة جاما	أشعة ألفا	（－）
نيوترون	أشعة بيتا	أشعة ألفا	\odot
أشعة إكس	أشعة بيتا	أشعة جاما	（3）

الشكل المقابل ：يوضح سقوط حزمة من أشعة ألفا وبيتا وجاما عـلى ذراع شـخص وموضـوع خلــف الــذراع عــداد جيجـر．
\qquad كلاذا تصبح قراءة العداد أكبر بعد استبعاد الذراع ؟ لأن （i）الشظام تمتص أشعة ألفا． ج المضلات تمتص أشعة ألفا． ج （ـ）المضلات تمتص أشعة بيتا．

أنثاء التفاعلات النووية، وضح ：
（1）من أين ينطلق الإلكترون فى كلل حالة ؟
（Y）ما التغير النى يطرأ على كل عنصر فى كلى حالة ؟
لِّ اكتـب الحـدد الذرى والعــد الكتـلى للعنـصر（X）فى كل معادلة مـن المعــادلات النووية الآتيــة المعبرة عن
（1） $\mathrm{X}+{ }_{2}^{4} \mathrm{He} \longrightarrow{ }_{6}^{12} \mathrm{C}+{ }_{0}^{1} \mathrm{n}$
（2） $\mathrm{X}+{ }_{1}^{1} \mathrm{H} \longrightarrow{ }_{14}^{29} \mathrm{Si}+\gamma$
(8) أكمل الطعادلات النووية الآتية بالقذاثف المناسبة :
(1) ${ }_{12}^{26} \mathrm{Mg}+\cdots \cdots \cdots \cdots \cdots{ }_{13}^{26} \mathrm{Al}+{ }_{0}^{1} \mathrm{n}$
(2) ${ }_{90}^{232} \mathrm{Th}+\cdots \cdots \cdots \cdots \cdot{ }_{96}^{240} \mathrm{Cm}+4{ }_{0}^{1} \mathrm{n}$
 اكتب المعادلة النووية المعبرة عن هذا التفاعل.

تنشطر أنوية اليورانيوم 238 عند قذفها بالنيوترونات السريعة مكونة نيوترونات أخرى سرعان ما تفقد طاقتَاه اقترح سببًا لعدم حدوث تفاعل متسلسل لانشطار اليودانيوم 238

: الشكل الققابل يعبر عن أحد أنواع التفاعلات النووية :
(1) ما الوصف الذى يوصف به هذا التفاعل

بصفته المستمرة ؟

> (Y) ما فائدة المكن (X) الذى يوجد فى المفاعل النوقى

ولا يوجد فى القنبلة الانشطارية ؟

(1) اكتب المادلة النووية المجبرة عن الاندماج النويى الحادث.
(Y) احسب متدار الطاتة الفاتجة من هذا الاندماج النوعى مقدرة بوحدتى :
1- مليْنِ إلكَّرْن ثولمت (MeV).
r- بَق (J) (J)

$$
\begin{aligned}
& { }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{56}^{141} \mathrm{Ba}+{ }_{\mathrm{z}}^{92} \mathrm{Kr}+x_{0}^{1} \mathrm{n}+\text { Energy } \quad: \quad \text { فئ التفاعل النووى المقابل } \\
& \text { (1) ما الذى يقتضيه قانون حفظ الشحنة عند موازنة الممادثة النیوية ؟ } \\
& \text { (Y) ما الذى يقتضيه قآنون حفظ المادة عند موازنة الممادلة النووية ؟ } \\
& \text { (r) احسب قيمة كل من (Z) ، (X). }
\end{aligned}
$$

${ }_{6}^{9} \mathrm{C}$	${ }_{6}^{12} \mathrm{C}$	${ }_{6}^{17} \mathrm{C}$

جالرجدو المقابل يوضح ثلاثة نظائر مختلفة لعنصر الكربون : (ا) ما النظير (النظائر) التى ينبعث منها، مـ التفسير : 1- إشُعاعات تؤثر على الأفلام الحساسة.
r- بوزيترون.
r-

(Y)

(Y) كالفراولـة للدلالة على تعرضها لأشـعة جاما، بينها الشـــلـ

يشاهد كملمقي على عبوات حفظ اليورانيوم : (1) لماذا يتم تعريض المنتجات الزراعية الملصق عليها

العلامة (X) لأشدة جاما ؟
(Y) ما الذى يستدل عليه عند رؤية العلامة (Y) على أحد العبوات ؟

() الشكل المقابل يوضح دورة حياة أحد الآفات الزراعية : (ا) كيف يمكن التخلص من الإناث والحوريات بأحد نواتج التفاعلات الكيميائية ؟
(Y) كيف يمكن الحد من انتشار الآفات الزراعية بأحد نواتج التفاعلات النووية ؟

5

 ما مقدار الكتلة التى يمكن أن تتحول إلى
(a) $1.7 \times 10^{-27} \mathrm{~kg}$
(b) $0.5 \times 10^{-26} \mathrm{~kg}$
(c) $2 \times 10^{-26} \mathrm{~kg}$
(d) $3 \times 10^{-27} \mathrm{~kg}$

مها تتكون البروتونات فى نواة عنصر الليثيوم

الاختيارات	الكواركات السفلية	4
8	10	\ddots
11	3	\ddots
6	6	\ddots
3	$\left(\begin{array}{l}\text { العواركات } \\ \hline\end{array}\right.$	

E
(a) $4 u+4 d$
(b) $5 u+5 d$
(c) $4 u+5 d$
(d) $5 u+4 d$
 ما عدد جسيمـات ألفا المهاحبـة لهذا التحول ؟
(a) 1
(b) 2
(c) 3
(d) 4
(a) ${ }_{92}^{268} Z$
(b) ${ }_{93}^{270} \mathrm{x}$
(C) ${ }_{90}^{270} \mathrm{Y}$
(d) ${ }_{93}^{269} \mathrm{x}$

区 10 g
(a) $9.48 \times 10^{-24} \mathrm{MeV}$
(b) $9.48 \times 10^{-27} \mathrm{MeV}$
(c) $4.48 \times 10^{24} \mathrm{MeV}$
(d) $4.49 \times 10^{27} \mathrm{MeV}$

هِ أى من العمليات الآتية تثثل تفاعل انشطار نووى ؟

$$
\begin{aligned}
& { }_{83}^{214} \mathrm{Bi} \text { (i) تفكل نواة البولونيوم (1) } \\
& { }_{0}^{1} \mathrm{n} \text { (}{ }^{\text {ت }} \\
& { }_{0}^{1} \mathrm{n} \text { اتحاد نواة ليثيوم }- \\
& { }_{2}^{3} \mathrm{He} \text { (3) تفاعل نواتى ديوتيرن لتكوين }
\end{aligned}
$$

1) $1^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \longrightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}+$ Energy
2) ${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{55}^{138} \mathrm{Cs}+{ }_{37}^{96} \mathrm{Rb}+{ }_{2}^{1} \mathrm{n}+$ Energy
(i) التفاعل (2) انثطارى والطاقة الناتجة عنه أكبر من الطاقة الناتجة عن التفاعل (1).
(ب) التفاعل (1) انشطارى والطاقة الناتجة عنه أصغر من الطاتة الناته
ج التفاعل (2) أندماجى والطاقة الناتجة عنه أصغر من الطاقة الناتجة عن التفاعل (1) الطن
(1) التفاعل (1) اندماجى والطاقة الناتجة عنه أكبر من الطاقة الناتجة عن التفاعل (2).
(I) ${ }_{96}^{243} \mathrm{Cm} \longrightarrow 2_{2}^{4} \mathrm{He}+\mathrm{X}$
(2) $\mathrm{X}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{37}^{90} \mathrm{Rb}+{ }_{55}^{144} \mathrm{Cs}+2_{0}^{1} \mathrm{n}+$ Energy

ما نوع كل من التفاعلين ؟

 أى مها يأتى يعبر عن التفاعلين (X) ، (X) ؟ (X) لا (X)

${ }^{5} \mathrm{X}$	${ }^{4} \mathrm{X}$	النظيب)
4.088	4.035	الكتلة الذرية النسبية للنظير (10)
\square	88\%	نسبة وجود النظير فه العينة

> . الملوهات الموذحة بالجدول المقابل (X) (X نظهيرى الـنصر احسب الكتلة الذرية لهذا العنصر.

 1.00728 u = . 1.0087 u = ككة النيوتزون
3.02598 u =
5.1205 MeV = علمًا بأن طاتة الترابط النوىى لكل نيوكون فيه (1.00866 u = كتلة البروتون (1.00728 ، كثلة النيوترن
 وكلته الفعلية 13.6 احسب العدد الذرى لهذا العنصر، علمًا بانن : 1.0073 u = كتلة البروتن • 1.0087 u = كلة النيوترون •
${ }_{26}^{56} \mathrm{~A},{ }_{82}^{206} \mathrm{~B},{ }_{94}^{244} \mathrm{C},{ }_{19}^{39} \mathrm{D}$: ها فامك رموز أربعة عناصر مختلفة أَى من هذه العناصر يعتبر مشع ؟ مع ذكر السبب.

 احسب الزمن اللازم لإقام هذا التحلل.

احسب كتلته الأصلية.

(3) H^{+}
(1) $)^{2+}$
© ${ }^{2} \mathrm{H}$
(©) ${ }_{2}$
(2) $)^{2}+{ }_{+}^{3} \mathrm{H} \longrightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{\mathrm{n}}$
(1) ${ }_{1}^{2} \mathrm{H}+{ }_{2}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}$
() ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{4} \mathrm{He}$
(©) ${ }_{7}^{14} \mathrm{~N}+{ }_{0}^{1} \longrightarrow{ }_{6}^{14} \mathrm{C}+{ }_{1}^{1} \mathrm{H}$
من وسائل قتل الخلايا السرطانية، غرس إبر فيها تحتوى على نظير

ج (الكوبلت 60 الذى يشع أشعة جاما.
٪ السيزيوم 137 الذى يشع أشعة جاما . (ـ) السترانشيوم 90 الذى يشع جسيمات بيتا. (1) تعتمد فكرة عمل القنبلة الانشطارية على
(i) استخدام كمية من اليورانيوم 238 أكبر من الحجم الحرج. ج 235 جدوث تفاعل متسلسل بمددل سريع لنظير اليورانيوم ٪ وضبع قضبان من الكادميوم بين قضبان اليورانيوم 235 (1) حدوث تفاعل انشطارى بمعل سريع يؤدى إلى انفجار أنوية اليورانيوم 238
${ }_{20}^{40} \mathrm{Ca}$ يرمز لنواة ذرة الكالسيوم بالرمز
ما النسبة بين أعداد الكواركات
(a) $2: 3$
(b) $3: 2$
(c) $2: 1$
(d) $1: 1$

لموذه امتصان علىالباب

$$
\begin{aligned}
& \text { 8.21275 MeV كـلـ نيوكــلون فـ نــواة السيليكــون } \\
& \text { ما فيمــة الكتــلـة الفعلية لنواة نظير السيليكون } 28 \text { ؟ }
\end{aligned}
$$

(a) 28.22316 u
(b) $27.97616 u$
(C) 229.957 u
(d) 279.7616 u

(1) اكتب المعادلة النووية الموزونة المعبرة عن 'التفاعل الحادث.
\qquad
\qquad
(Y) هل النواة الوليدة مستقرة أم غير مستقرة ؟ مع التفسير.
\qquad
\qquad

$\frac{\ldots \ldots .0}{4 \times 15}$

الكتلة الذرية النسبية	النسبة المنوية للنظير في الطبيعة	النظير
1574 u	25\%	${ }^{157} X$
1554 u	25\%	${ }^{155} \mathrm{X}$
1504 u	50\%	${ }^{150} X$

(18) من الجدول المقابل :

احسب الكتلة الذرية للعنصر (X).

4

، 63 years

$$
{ }_{27}^{60} \mathrm{Co} \longrightarrow{ }_{28}^{60} \mathrm{Ni}+{ }_{-1}^{0} \mathrm{e}
$$

(18) فى التفاعل النووى :

$$
0.003 \mathrm{~g} \text { فی التفاعل النويى : }
$$

(J) احسب كمية الطاقة الناتجة مقدرة بوحدة الچّون
إسب كمية الطاقة الناتجة مقدرة بوحدة الحول (J).

\section*{| \cdots |
| :---: |
| $a, 1,01$ |}

(10) اكتب المعادلة النووية الموزونة المعبرة عن العملِية الموضحة بالشكل البيانى المقابل، علمًا بأن :

- العدد الذرى لنظير Pd بأن 46 - العدد الذرى لنظير Ag يساوى 47 •
\qquad
\qquad
4
(174) (استخدم المعطيات الآتية فى كتابة معادلتِن مختلفتين تعبران تعبيرا صحيحًا عن تفاعلين نوويين، "ـيمكن استخدام بعض العناصر والنظائر أكتر من مرةَه.
\qquad

32 2)
\qquad

1 ybrol gicu open Book pilan,

 ©
 ؟
ج (ـ) درجة الحرارة وكتلة المادة كالاهما لا يتغيران.

[$\mathrm{NaOH}=40 \mathrm{~g} / \mathrm{mol}$]
(a) $-0.443 \mathrm{~kJ} / \mathrm{mol}$
(b) $-4.4308 \mathrm{~kJ} / \mathrm{mol}$
(c) $-44.308 \mathrm{~kJ} / \mathrm{mol}$
(d) $-443 \mathrm{~kJ} / \mathrm{mol}$
$-\mathrm{I}_{\mathbf{2}(\mathrm{s})} \longrightarrow \mathrm{I}_{\mathbf{2 ()}}$

$$
\Delta H=+16 \mathrm{~kJ} / \mathrm{mol}
$$

$-\mathrm{I}_{2(\mathrm{~s})} \longrightarrow \mathrm{I}_{2(\mathrm{v})}$

$$
\Delta H=+62 \mathrm{~kJ} / \mathrm{mol}
$$

(0) من المعادلتين الحراريتين المقابلتين :
ما قيمة التغير فی الإنثالبى المولارى لتبخير اليود تبعًا للمعادلة : I
(a) $-78 \mathrm{~kJ} / \mathrm{mol}$
(b) $-46 \mathrm{~kJ} / \mathrm{mol}$
(c) $+46 \mathrm{~kJ} / \mathrm{mol}$
(d) $+78 \mathrm{~kJ} / \mathrm{mol}$

$$
2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}+112 \mathrm{~kJ} \quad: \text { : }
$$ أى مها يأتى يعبر عن كل من إشارة

ITO الامتحان كيمياء- شرح/اث/ترم ثان (م : 1

$\Delta \mathrm{H}_{\mathrm{r}}^{\circ}$ $(\mathrm{kJ} / \mathrm{mol})$	ةد41
-286	$\mathbf{H}_{\mathbf{2}} \mathrm{O}$
-206	$\mathrm{CuCl}_{\mathbf{2}}$
-808	$\mathbf{C u C l}_{\mathbf{2}} \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O}$

$$
\begin{aligned}
& \mathrm{CuCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \text { : تبعًا للمعادلة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ما قيمة التغير فـ المحتوى الحرارى لهذه العملية ؟ }
\end{aligned}
$$

(a) $-1586 \mathrm{~kJ} / \mathrm{mol}$
(b) $-316 \mathrm{~kJ} / \mathrm{mol}$
(C) $-110 \mathrm{~kJ} / \mathrm{mol}$
(d) $-30 \mathrm{~kJ} / \mathrm{mol}$
(4) (4) أى مما يأت يعبر عن كل من الكتلة النسبية للنيوترون ومسار حزمة منه خلال مجال كهرب ؟

	الكتلة النسبية	الاختبارات
	0	(1)
تنحرف	1	
لا تنحرف	1	(-)
لا تا تحرف	0	\odot
	1	(1)

أى مها يأتى يعبر عن كل من أثقل نواة مستقرة وعدد النيوترونات فيها ؟

عدد النيوترونات	أثقل نواة مستقرة	الاختيارات
6	${ }_{6}^{12} \mathrm{C}$ الكربن	(i)
43	${ }_{92}^{235}$ U اليودانيوم	(-)
126	${ }_{82}^{208} \mathrm{~Pb}$ الرصاص	\bigcirc
208	${ }_{82}^{208} \mathrm{~Pb}$ الرصاصص	(3)

نسبة الوجود فـ الطبيعة	الكتلة الذرية	النظير
7.5\%	6.02 u	${ }^{6} \mathrm{Li}$
92.5\%	7.02 u	${ }^{7}$

الجدول المقابل:يوضح كتل ونسب وجودنظيرى الليثيوم فا الطبيعة. أى مـن الحلاقات الآتية تعـبر عن طريقة حســاب الكتلة الذرية لعنصر الليثيوم ؟
(a) $[(0.075)(6.02 \mathrm{u})+(0.925)(7.02 \mathrm{u})]$.
(b) $[(7.5)(6.02 \mathrm{u})+(92.5)(7.02 \mathrm{u})]$.
(c) $[(0.925)(6.02 \mathrm{u})+(0.075)(7.02 \mathrm{u})]$.
(d) $[(92.5)(6.02 \mathrm{u})+(7.5)(7.02 \mathrm{u})]$.

1) نموذج امتخLان
(a) ${ }_{93}^{238} \mathrm{~Np}$
(b) ${ }_{94}^{238} \mathrm{Pu}$
(C) ${ }_{93}^{240} \mathrm{~Np}$
(d) ${ }_{94}^{240} \mathrm{Pu}$
(a) $2: 3$

(b) $3: 2$
(c) $2: 1$
(d) $1: 1$
$2 \mathrm{CH}_{3} \mathrm{OH}_{(l)}+3 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad: \quad$ للتفاعل Al
20.6 kJ تنطلق كمية من الطاقة الحرارية مقدارها
\qquad
\qquad
\qquad
\qquad
\qquad
($\quad{ }_{84}^{214} \mathrm{Po}$ هاذا لا يتغير عدد النيوكلونات عند انبعاث أشعة جاما من نواة (10) (2and
 أصبحت قراءته 500 تحل//دقيقة ، احسب عمر النصف لهذا العنصر.
\qquad
\qquad anat...

$$
\begin{aligned}
& 62^{\circ} \mathrm{C} \text { ه } 22.8^{\circ \prime} \mathrm{C} \text { إلى }
\end{aligned}
$$

2hly (k)/ mol)	الرإلبط
534	$\begin{gathered} S=0 \\ \left(\mathrm{SO}_{2} \text { فى مرك }\right) \end{gathered}$
498	$0=0$

تختلـف قـيمـة متـوسـط طاقـة الرابطـة (S = (S)

$$
2 \mathrm{O}=\mathrm{S}=\mathrm{O}_{(\mathrm{g})}+\mathrm{O}=\mathrm{O}_{(\mathrm{g})} \longrightarrow 2 \mathrm{O}=\stackrel{\mathrm{O}}{\mathrm{~S}}=\mathrm{O}_{(\mathrm{g})} \quad \Delta \mathrm{H}=-196 \mathrm{~kJ}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

وضح نوع كل من الجسيمين المنبثين (1) ، (2).

2 ythin dich pen Book plary

أى مها يأتى هو الأكثر قدرة على جعل الغازات توصل التيار الكهربى ؟
(I)

ب) جسيمـات بيتا.
ج أشعة جاما.
-(3) النيوترون!
(0) أى مها يأتى يُبكر عن العلاقة بين فترة عمر النصف وزمن تحلل (3) الكمية الأصلية من أنوية عنصر مشع ؟
(a) $t_{\frac{1}{2}}=2 t_{\frac{3}{4}}$
(b) $t_{\frac{3}{4}}=2 t_{\frac{1}{2}}$
(C) $\mathrm{t}_{\frac{1}{2}}=3 \mathrm{t}_{\frac{3}{4}}$
(d) $t_{\frac{3}{4}}=3 t_{\frac{1}{2}}$
() من الشكل المقابل : عند إذابة بوتاسا كاوية فى الماء ترتـفـع قـراءة الـتـرمـومـتر وهـذا يـعـنى أن $\mathrm{H}_{\text {(s) }}$ هذه العملية
(i) ماصة اللحرارة وتيمة C (لها بإشارة موجبة.

ج
ج طاردة للحرارة وتيمة C لها بإشارة سالبة.
(1) طاردة للحرارة وقيمة C لها بإشارة موجبَ.
(8) أى من مخططات الطاقة الآتية يعبر عن تفاعل ماص للحرارة و

عند قذف نواة ذرة البورون 11 بجسيم ألفا تتكون نواة عنصر جديد مع انطلاق نيوترون. أى من المعادلات الآتية تعبر عن التفاعل النووى الحادث ؟
(a) ${ }_{5}^{11} \mathrm{~B}+{ }_{1}^{1} \mathrm{H} \longrightarrow{ }_{6}^{11} \mathrm{C}+{ }_{0}^{1} \mathrm{n}$
(b) ${ }_{5}^{11} \mathrm{~B}+{ }_{2}^{2} \mathrm{He} \longrightarrow{ }_{7}^{12} \mathrm{~N}+{ }_{0}^{1} \mathrm{n}$
(c) ${ }_{5}^{11} \mathrm{~B}+{ }_{2}^{4} \mathrm{He} \longrightarrow{ }_{6}^{14} \mathrm{C}+{ }_{1}^{1} \mathrm{n}$
(d) ${ }_{5}^{11} \mathrm{~B}+{ }_{2}^{4} \mathrm{He} \longrightarrow{ }_{7}^{14} \mathrm{~N}+{ }_{0}^{1} \mathrm{n}$

تجرى في المفاعلات النووية تفاعلات عديدة، منها التفاعل المعبر عنه بالمعادلة التالية :

$$
{ }_{48}^{113} \mathrm{Cd}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{48}^{114} \mathrm{Cd}+\mathrm{X}
$$

ما الذى يعبر عنه الحرف (X) ؟
(a) α
(b) β^{+}
(c) β^{-}
(d) γ

المعادلة الآتية تعبر عن تفاعل إضافة الهيدروحين إلى غاز الإيثيلين ：

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{\mathbf{6}(\mathrm{g})} \\
& \text { (a) }-560 \mathrm{~kJ} / \mathrm{mol} \\
& \text { (لنفاعلا } \Delta \mathrm{H} \text { ما } \mathrm{C} \text { (b) }-124 \mathrm{~kJ} / \mathrm{mol} \\
& \text { (c) }+486 \mathrm{~kJ} / \mathrm{mol} \\
& \text { (d) }+5496 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

：ينحل مركب ثانى أكسيد النيتروجين تبعًا للمعادلة الحرارية التالية ：（4）

$$
\begin{aligned}
& 2 \mathrm{NO}_{2(\mathrm{~g})} \longrightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=-66 \mathrm{~kJ} \\
& \stackrel{1}{2} \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{NO}_{2(\mathrm{~g})} \text { : ما قيمة التغير ف، ‘لإنثالبى للمعادلة }
\end{aligned}
$$

（a）$-66 \mathrm{~kJ} / \mathrm{mol}$
（b）$-33 \mathrm{~kJ} / \mathrm{mol}^{3}$
（C）$+33 \mathrm{~kJ} / \mathrm{mol}$
（d）$+66 \mathrm{~kJ} / \mathrm{mol}$
（a）${ }_{234}^{90} \mathrm{Th}$
（a تحتوى نواة ذرة أحد نظائر الثوريوم على 90 بروتون ．فما الرمز الكحتمل لها ؟
（C）${ }_{144}^{90} \mathrm{Th}$
（b）${ }_{234}^{144} \mathrm{Th}$
（d）${ }_{90}^{234} \mathrm{Th}$
（10）يعتبر الغلاف الجوى للكرة الأرضية

ب نظام مفتوح．
（〕）نظام متزن．
（i）نظام مغلق．
٪ نظام معزول．
${ }_{2}^{1} \mathrm{H}+{ }_{2}^{1}{ }_{0} \mathrm{n} \longrightarrow{ }_{2}^{4} \mathrm{He}$ ：احسب كمية الطاقة المنطلقة من التفاعل النووى المقابل（0） $1.00866 \mathrm{u}={ }_{0}^{1} \mathrm{n}$ علمًا بأن ：ه كتلة $4.0039 \mathrm{u}={ }_{2}^{4} \mathrm{He}$ 析。
\qquad
\qquad

$\frac{1+. .}{4001}$

(13 يتم قتل الخلايا السرطانية عن طريق توجيه أشعة جاما المنبعثة من نظلير الكويلت 60 إلى مركز اللذم
 كاذا يستخدم نظير الكوبلت 60 خارج الجسم، بينها يستخدم نظير الراديوم 226 داخل الجسم فـ علاج الورم؟
\qquad
\qquad
\qquad
 بمصدر حرارى واحد :

 أيثها ترتفع درجة حرارتها بِقدار أكبر ؟ وماذا ؟

$\frac{x}{x \rightarrow 0,1}$

:
$\mathrm{H}_{2} \mathrm{O}_{(l)}=-285.5 \mathrm{~kJ} / \mathrm{mol}, \mathrm{CO}_{2(\mathrm{~g})}=-393.51 \mathrm{~kJ} / \mathrm{mol}^{2}, \mathrm{CH}_{3} \mathrm{OH}_{(i)}=-238 \mathrm{~kJ} / \mathrm{mol}$

2 U نصّ

0

> (1) ما اسم المقلية التى يعبر عنها الشكل ؟
(ץ) هاذا تؤدى هذه العملية إلى حدوث تفاعل متسلسل ؟

 للجلوكوز تساوى 2816 kJ/mol- احسب كتلة الهاء المستخدم.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad | $\cdots \cdots \cdot$. |
| :--- |
| $4+155$ |

التفاعل الآتل يتضمن كسر وتكوين روابط ：

ما مقدار التغير في املحتوى الحرارى للتفاعل السابق ؟
（a）$-39 \mathrm{~kJ} / \mathrm{mol}$
（b）$-1255 \mathrm{~kJ} / \mathrm{mol}$
（C）$+1255 \mathrm{~kJ} / \mathrm{mol}$
（d）$+39 \mathrm{~kJ} / \mathrm{mol}$

أى مما يلى يوضح كل من شحنة و موقع النيوكلونات التى تتأثر بالمجال الكهربى فى الذرة ؟

يقع داخل النواة	شحنة النيوكلون	الاختيارات
V	سالبة	（i）
نع	سالبة	（－）
V	موجبة	\bigcirc
نع	موجبة	（ ）

من المعادلات الحرارية التالية ：
（1） $\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}$
（2） $2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}$
（3） $\mathrm{C}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})}$
$\Delta H=-393.5 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}=-571.6 \mathrm{~kJ}$
$\Delta \mathbf{H}=$ ？
ما مقدار التغير فى الإنثالبى للتفاعل（3）؟
（a）-965.1 kJ
（b）-107.7 kJ
（C）+178.1 kJ
（d）+679.3 kJ

3 ULiolatao

(a)

(b)

 فزنو غر الج بحل مرور هها في مجال كهربى. أى Aهـا يـات يمـــل مـواضــع استـقـبـال النشعة على اللوح ?

(c)

(d)
 تنخفض قراءة الترمومتر ويستنتج من ذلل أن الحرارة المفقودة بواسطة المُسعر تساوى (1) الحرارة المفقودة بواسطة الماء. ج〇 \bigcirc مجموع الطاقة المفقودة بواسطة الماء والطاقة المكتسبة بواسطة الثلج. (() الفرق بين الطاقة المكتسبة بواسطة الثلج والطاقة المققودة بواسطة الماء.

أى مها يأت يعبر عن التحول الطبيعى الحادث ؟
8 days (i) يتوقف انبعاث دقائق بيتا بعد مرود 8 days 131 بح 131 إلى النصف بعد مرد

16 days 131 بعد مرود 131 تتحلل كل أنوية اليود 16 days (لـتقلص عدد أنوية اليود 131 إلى الريع بعد مرود 131

(0) من مخطط الطاقة الموضح بالشكل المقابل : أى مها يأتى يعتبر صحيحًا ؟ (A) (i) (C) (C) (C) (3) (B) \bigodot

مدد متـاوى مـن الكــواركات العلوية والكواركات الســفـية.
(151) (111) ادرس الشكل الآتى. ثم أجب من السؤالين .

$$
\mid \Delta H_{Z}
$$

$$
؟\left(\Delta \mathrm{H}_{Y}+\Delta \mathrm{H}_{x}\right)>\Delta \mathrm{H}_{\mathrm{z}}: \text { jo lodis an }
$$

\qquad
\qquad anc...
 ${ }_{7}^{14} N$ النبعـاث دقيقة ${ }^{-}$من نواة ذرة العنصر (X) يحولها إلى نواة ذرة (X) بالنسبة لحزام الاستقرار ؟ (X) موضع العنصر (X)
\qquad
\qquad
\qquad \square

 الشكل (Y) يشاهد كملصق على عبوات حفظ اليورانيوم : (1) لاذا يتم تعريض بعض المنتجات الزراعية اللمقق عليها العلامة (X) لأثبة جاما ؟
(Y) ما الذى يستدل عليه عند رؤية العلامة (Y) على أهد العبوات ؟

Bo...

: تندمج نواة ديوتيريوم مع نواة تريتيوم تتكوين نواة ذرة هيليوم (iV) (1) اكتب المعادلة النووية المعبرة عن الاندماع النوى الحادث.

> (r) احسب مقدار الطاقة الناتجة من الاندماج النووى الحادث بوحدت : ا- مليون إلكترون ڤولت (MeV).
> عَا حِّا بَّن مجمل (J).
> 5.011 u علمًا بأن مجموع كتل الأنوية المندمجة 5.031 و كتلة النواتج
\qquad
\qquad

(a) 0.02 cal
(b) 0.2 cal
(C) 2 cal
(d) $2 \times 10^{3} \mathrm{cal}$
(1) (i) (i) تكهن بين بروتون وإلكترن أ ج

() (1) تا تعتمد على شـينة النيوكلونات.
(0) تستغل الخلايا النباتية الطاقة الضوئيـة فـ القيام بعملية البناء الضونى. أى مها يأتى يعـبر عن عمليـة البناء الضونى تعبيرًا صحيحًا ؟ الما (i) عملية ماصة للطاقة / لأن الطاقة المنطلقة عند تكوين الروابط فـى جزئى الـئات النواتج أقل من الطاقة لللازمة لكسر الروابط فى جزيئات المتفاعلات.
 اللازمة لكسر الروابط نى جزيئات المتفاعلات.
 لكسر الروابط فى جزيئات المتفاعلات.

اللازمة لكسر الروابط فى جزيئات المتفاعلات.
(a) ${ }_{19}^{35} \mathrm{~K}$
(b) ${ }_{19}^{39} \mathrm{~K}$
(C) ${ }_{20}^{40} \mathrm{Ca}$
(d) ${ }_{19}^{40} \mathrm{~K}$

ΔH_{f}° $(k J / m o l)$	ةداكا
-283	$\mathbf{C O}_{(\mathrm{g})}$
-726	$\mathbf{C H}_{3} \mathbf{O H}_{(l)}$
-874.1	$\mathbf{C H}_{3} \mathbf{C O O H}_{(l)}$

(0) (0 يتفاعل غاز أول أكسيد الكربون مع الميـــانـول لتكـويـن

حمض الأسيتيـك CH3

الموضحة بالجدول المقابل :
ما قيمة ΔH° للتفاعـل الالسابق ؟
(a) $-1883.1 \mathrm{~kJ} / \mathrm{mol}$
(b) $-134.9 \mathrm{~kJ} / \mathrm{mol}$
(c) $+134.9 \mathrm{~kJ} / \mathrm{mol}$
(d) $+1883.1 \mathrm{~kJ} / \mathrm{mol}$
(7) الحديد عدده الذرى 26 ويتواجد فى صورة أربعة نظائر هى : الحديد 54 ، الحديد 56 ، الحديد 57 ، 58 ، الحديد 58 ، فتكون لهذه النظائر نفس الخواص الكيميائية بسبب تساوى كل منها فـ

عدد النيوكلونات فی نظير السيزيوم 144
(a) 199
(b) 144
(c) 89
(d) 55

يُعبر عن تفاعل احتزاق الهكسان C6H 14 بالعادلة الحرارية التالية :

$\mathrm{C}_{6} \mathrm{H}_{14(\mathrm{~g})}+\frac{19}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 6 \mathrm{CO}_{2(\mathrm{~g})}+7 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta \mathrm{H}=-4158 \mathrm{~kJ} / \mathrm{mol}$
 ما قيمة $12 \mathrm{CO}_{2(\mathrm{~g})}+14 \mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow 2 \mathrm{C}_{6} \mathrm{H}_{14(\mathrm{~g})}+19 \mathrm{O}_{2(\mathrm{~g})}$: للتفاعل المفترض المقابل
 (2) +8316 kJ
 (b) +4158 kJ
 (c) -2079 kJ
 (d) -3568 kJ

(3)

الكوب الممتلئ باهاء يمثل
(i) نظام مغلق
-
©
(3) نظام متزّن.
(M0) استنتج رهز نـُّيٌ التنصر Y الناتج من النشاط الإشعاعى للعنصر X تبعًا للمعادلة التالية :

$$
{ }_{2}^{A} X \longrightarrow \ldots . . . Y+{ }_{2}^{4} \mathrm{He}
$$

$\frac{+\cdots}{x+1}$
(0) ما التفسير العلمى لكون قيمة $\Delta \mathbf{H}^{\circ}$

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\ell)} \quad \Delta \mathrm{H}^{\circ}=+6.03 \mathrm{~kJ} / \mathrm{mol}
$$

\qquad
\qquad
\qquad

J/kg. ${ }^{\circ} \mathrm{C}$ (10) احسب قيمة الحرارة النوعية للماء بوحدة
\qquad
\qquad
\qquad
\qquad

الامتحان كيمطاء-شرح/ اث/ترم ثان (م :
 استنتج الرمز الكيميانى لذرة هذا العنصر متضمنًا العدد الذرى والعدد الكتالى.
\qquad
\qquad
\qquad
\qquad
\qquad

an....

$0^{\circ} \mathrm{C}$ احسـب كميـة الحـرارة - بالكيلو

$$
\begin{align*}
& 100^{\circ} \mathrm{C} \text { إلى بخار ماء درجة حرارت } \\
& \text { علمًا بأن : } \\
& 79.9 \mathrm{cal} / \mathrm{g} \text { = حرارة انصهار الثلج • } \\
& 540 \mathrm{cal} / \mathrm{g}=\text { = حرارة تبخر الماء • }
\end{align*}
$$

$1 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}=$

4 نموذج امتحان

$$
\begin{aligned}
& \text { : } \\
& { }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{36}^{92} \mathrm{Kr}+{ }_{56}^{141} \mathrm{Ba}+3{ }_{0}^{1} \mathrm{n} \\
& \text { |حسب كمية الطاقة المنطلقة بمعلومية الكتل التالية : } \\
& \text { - }{ }_{36}^{92} \mathrm{Kr}=91.9064 \mathrm{u} \\
& \text { - }{ }_{0}^{1} n=1.0087 u
\end{aligned}
$$

- ${ }_{92}^{235} \mathrm{U}=234.9933 \mathrm{u}$
- ${ }_{56}^{141} \mathrm{Ba}=140.8836 \mathrm{u}$
\qquad
\qquad
\qquad
\qquad

مجاب ale

(5) Jthiol aigos open Book glahit

 (1) تعتبر البيضة مثالاً للنظام ب(المفتوح
(د) الملق أو المفتوح.
ج
كاذا يستخدم الهاء كمادة مبردة هحركات السيارات ؟ بسبب
ب ارتفاع حرارته النوعية.
(د) سهولة تطايره.

$$
\begin{aligned}
& \text { (i) انخفاض كثافته. } \\
& \text { ٪ رخص ثمنه. }
\end{aligned}
$$

أى من هذه الأزواج من ذرات العناصر تحتوى أنويتها على نفس العدد من النيوترونات ؟
(a) ${ }_{6}^{12} \mathrm{C},{ }_{5}^{12} \mathrm{~B}$
(b) ${ }_{1}^{2} \mathrm{H},{ }_{1}^{1} \mathrm{H}$
(c) ${ }_{7}^{13} \mathrm{~N},{ }_{6}^{12} \mathrm{C}$
(d) ${ }_{7}^{14} \mathrm{~N},{ }_{6}^{14} \mathrm{C}$

أى مها يأتى يمثل عدد الكواركات فى نواة نظير الديوتيريوم ؟

أى مما يأتى يكون عدد النيوكلونات فيه 4 ؟

$$
\begin{aligned}
& \text { ب دقيقة بيتا. } \\
& \text { • }
\end{aligned}
$$

(i) دقيقة ألفا

- أشـة جاما .

(1) $\mathrm{S}_{(\mathrm{s})}+1 \frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{SO}_{3(\mathrm{~g})}$
$\Delta H^{\circ}=-395 \mathrm{~kJ} / \mathrm{mol}$: التفاعلات المقابلة in
(2) $\mathrm{SO}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{SO}_{3(\mathrm{~g})}$
$\Delta H^{\circ}=-98 \mathrm{~kJ} / \mathrm{mol}$
(3) $\mathrm{S}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{SO}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}^{\circ}=$?
(a) $-297 \mathrm{~kJ} / \mathrm{mol}$
(b) $+297 \mathrm{~kJ} / \mathrm{mol}$
(C) $-493 \mathrm{~kJ} / \mathrm{mol}$
(d) $+493 \mathrm{~kJ} / \mathrm{mol}$
(N) ، (M) ، (L) (L)

ما النظائر من بين هذه الذرات ؟ . فقط M L L (i) . فق N ، L \because . N , M \bigodot N, M , L(1)

متوسط طاقة الرابطة	الرابطة
$330 \mathrm{~kJ} / \mathrm{mol}$	$\mathbf{P}-\mathrm{Cl}$
$240 \mathrm{~kJ} / \mathrm{mol}$	$\mathbf{C l}-\mathrm{Cl}$

(0) ينحل غاز خامس كلوريد الفوسفـور بالحـرارة إلى غاز ثالسث كلوريـــد الفوسفـــور وغــاز الكـلـور. ما مقدار التغير فى المحتوى الحرارى لهذا التفاعل ؟
(a) $-90 \mathrm{~kJ} / \mathrm{mol}$
(b) $+90 \mathrm{~kJ} / \mathrm{mol}$
(C) $-420 \mathrm{~kJ} / \mathrm{mol}$
(d) $+420 \mathrm{~kJ} / \mathrm{mol}$
(10) يتفاعل غاز النيتروحين مع غاز الأكسحين، تبعًا المعادلة الحرارية التالية :
$\mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=+66 \mathrm{~kJ}$
ما مقدار التغير فی الإنثالبى عند خلط 2 mol من النيترو جين مع 2 mol 2 من الأكسجين ؟
(a) +16.5 kJ
(b) +33 kJ
(c) +66 kJ
(d) +132 kJ

Ru نواة نظير التكتيوم (111) ${ }^{99}$ يصدر عنها دقيقة بيتا و نيوترون متحولة إلى نواة نظير الروتنيون عبَّ عن التحول الطبيعى الحادث بِعادلة نووية موزونة.

Bent

ادرس الشكل التالى الذى يعبر عن تفسير حرارة ذوبان ملح نترات الأمونيوم فى مذيب سائل، ثم أجب عها يليه :

(C)
(1) ما الذى يعبر عنه الحرفِين (B) ، (B) ؟

$$
\text { (ץ) أيهما أكبر قيمة } \Delta H_{3}^{\text {أم قيمة }\left(\Delta H_{1}+\Delta H_{2}\right) ~ ؟ ~ م ع ~ ا ل ت ف س ي ر . ~}
$$

4

نظير العنصر فترة عمر النصف	نتر 7.6 years
4000 years	(B)
6000 years	(C)
3.2×10^{5} years	(D)

الجــول المقابـل : يوضـــح فترات عمـر النصف لأربعة نظائر لعناصر مختلفة. ودد أى هن نظائر الدناهير يكون أكثر الستقرارًا.

\qquad

\qquad

5 ULziol assoo
هركبات الألومنيوم الآتية لصاهديَّا، تسب درجة ثباتها الحرارى :

$\frac{10.6}{4015}$

 $1.675 \times 10^{-27} \mathrm{~kg}$ ، $1.673 \times 10^{-27} \mathrm{~kg}$
(r) ماذا يحدث لعدد النيوترونات عند رفع قضبان التحكم لأعلى ؟
 لمارة الوقود النووي : ${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }^{90} \mathrm{Sr}+{ }_{54}^{\ldots \ldots} \mathrm{Xe}+\cdots \ldots \ldots .$. ...

Sy

Tixisity

inis Whas

(6) Jibial abgai open Book pllă!

- (10) : (1) ن التغير في المحتوى الحرارى بِكن قياسه باستخدام

$$
\begin{aligned}
& \text { قانون هس فقط. } \\
& \text { ب المُسعر الحرارى فقط. } \\
& \text { - قانون هس أو المُسعر الحرلارى. } \\
& \text { • }
\end{aligned}
$$

(1) أى مما يأتى يعبر عن النظام الموضح بالشكل المقابل ؟

(Z)	(Y)	(X)	نوع النظام	الاختيارات
سطح أسود	سائل ساخن	نحاس	مغلق	(i)
سطح أبيض	سـائل بارد	فراغ	معزول	(-)
سطح ملنט	سائل ساخن	بلاستيك	مفتوح	\bigcirc
سط	سائل بارد أو ساخن	فراغ	مغلق	(1)

تختلف نواة النظير 226 Ra عن نواة النظير 228 ${ }^{226}$ فى

$$
\begin{aligned}
& \text { العدد الذرى. } \\
& \text { ب) عدد البروتونات. } \\
& \text { ج } \\
& \text { (3) عدد الإلكترونات. }
\end{aligned}
$$

يتعرض الشخص الذى يتناول طعام ملوث بالإشعاع إلى تلف خلايا جسمه نتيجة تأين الهاء الموجود بها.
أى الأشعة الآتية أكثر قدرة على إتلاف خلايا الجسم؟ ؟

$$
\begin{aligned}
& \text { ج } \\
& \text { ج أشعة الليزر. } \\
& \text { (د) أشـة ألفا. }
\end{aligned}
$$

$\cdot 2 \mathrm{CH}_{3} \mathrm{OH}_{(0)}+3 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(0)} \quad \Delta \mathrm{H}=-1450 \mathrm{k} . \mathrm{J}$

$$
\cdot 2 \mathrm{C}_{8} \mathrm{H}_{18(l)}+25 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 16 \mathrm{CO}_{2(\mathrm{~g})}+18 \mathrm{H}_{2} \mathrm{O}_{(l)} \quad \Delta \mathrm{H}=-10900 \mathrm{k} . \mathrm{J}
$$

$114 \mathrm{~g} / \mathrm{mol}$ المان
 96 kJ (i) بنتي عن احتراق 1 و 1 من الأوكتان كمية من الحرارة مقدار 22.66 kJ
片 1 من الميثانول.
(1) كهية الحر ارة الناتجة عن احتراق الميثانول لا تتأثر بكمية الالكسجين المتاحة.

$$
2 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \longrightarrow 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

$$
\Delta H=+571.8 \mathrm{~kJ}
$$

ومنها يتضح أن عملية تكوين الماء من عناصره الأولية وهى فـ حالتها القياسية عملية
 285.9 kJ/mol
(a) ${ }_{6}^{12} \mathrm{C},{ }_{6}^{14} \mathrm{C}$
(0) أى من أزواج أنوية الذرات الآتية يحتوى على نفس العدد من النيوترونات ؟
(b) ${ }_{11}^{23} \mathrm{Na},{ }_{12}^{24} \mathrm{Mg}$
(c) ${ }_{7}^{16} \mathrm{~N},{ }_{8}^{16} \mathrm{O}$
(d) ${ }_{14}^{32} \mathrm{Si},{ }_{15}^{32} \mathrm{P}$
(0 © ندما تفقد نواة 238 دقيقة ألفا تتحول إلى نواة ذرة ثوريوم والتى بدورها تتحول إلي نواة ذرة بروتكتنيوم،
(a) ${ }_{90}^{230} \mathrm{~Pa}$
(b) ${ }_{89}^{234} \mathrm{~Pa}$
(C) ${ }_{90}^{234} \mathrm{~Pa}$
(d) ${ }_{91}^{234} \mathrm{~Pa}$

(3)

Θ

(-)

(i)

$$
\begin{equation*}
\mathrm{CH}_{4(\mathrm{~g})} \longrightarrow \mathrm{C}_{(\mathrm{s})}+4 \mathrm{H}_{(\mathrm{g})} \tag{10}
\end{equation*}
$$

$\Delta \mathrm{H}=+1648 \mathrm{~kJ} / \mathrm{mol}$
من المعادلة الحرارية
ما متوسط طاقة الرابطة C - H
(a) $+329.6 \mathrm{~kJ} / \mathrm{mol}$
(b) $+412 \mathrm{~kJ} / \mathrm{mol}$
(C) $+1648 \mathrm{~kJ} / \mathrm{mol}$
(d) $+6592 \mathrm{~kJ} / \mathrm{mol}$

احسب كمية الحرارة اللازمة لرفع درجة حرارة 1500 من الزيت - قبل استخدامه فى قلى البطاطس - المس $1970 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$ من $180^{\circ} \mathrm{C}$ علمًا بأن الحرارة النوعية للزيت المستخا $20^{\circ} \mathrm{C}$ إلى
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{array}{r}
\text { + } 13 \text { kJ/mol حرارة الذوبان المولارية ليوديد البوتاسيوم تستنبطه من العبارة السابقة؟ }
\end{array}
$$

\qquad
\qquad
\qquad
\qquad

3وج Lachat!	男	الحظر
A	191 u	${ }^{191} \mathrm{X}$
B	193 u	${ }^{193} \mathrm{X}$

B , A A فی الجدول، ¢ 192.2 u اللزبة لهئا المنیر تساوى

$\frac{-}{4 x 1}$

ـ،

500 g g (
 زيت الزيـتـنى، مستعينًا بالجدول التالى :

$21^{\circ} \mathrm{C}$	درجة حرارة اهاء الابتدائية
$-41 \mathrm{~kJ} / \mathrm{g}$	
28 kJ	كمية الحرارة المفقودة

احسب درجة الحرارة النهائية للماء بعد الاحتراق التام
2.97 g لكية من زيت الزيتون مقدارها
\qquad
\qquad
\qquad
\qquad
\qquad

(1) من عناصره الأولية

$$
4 \mathrm{C}_{(\mathrm{s})}+5 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{10(\mathrm{~g})}
$$

الحسـب قيمـة ΔH° القياسية ΔH_{c}° للمواد الموضحة بالجدول المقابل.

$$
2 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{AlCl}_{3(\mathrm{~s})} \quad: \quad \text { :للتفاعل المقابل } \Delta \mathrm{H}
$$

(1) $\mathrm{HCl}_{(\mathrm{g})} \longrightarrow \mathrm{HCl}_{(\mathrm{aq})}$
(2) $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{HCl}_{(\mathrm{g})}$
(3) $\mathrm{AlCl}_{3(\mathrm{aq})} \longrightarrow \mathrm{AlCl}_{3(\mathrm{~s})}$
(4) $2 \mathrm{Al}_{(\mathrm{s})}+6 \mathrm{HCl}_{(\mathrm{aq})} \longrightarrow 2 \mathrm{AlCl}_{3(\mathrm{aq})}+3 \mathrm{H}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}_{4}=-1049 \mathrm{~kJ}$
$\Delta \mathrm{H}_{1}=-74.8 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{2}=-185 \mathrm{~kJ}$
$\Delta \mathrm{H}_{3}=+323 \mathrm{~kJ} / \mathrm{mol}$

بكِلومية التفاعلات الموضحة بالمعادلات الحرارية الآتية :
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

,
(a) 3.125%
(b) 96.875%
(c) 31%
(d) 0.3%

(i) دخطط الطاتة المقَابل يعبر عن التفاعل : $X+Y \longrightarrow Z$

ثا قيمة اللغِِر فى المحتـوى الحـرارى لهـذا التفاعـل ؟
(a) $+100 \mathrm{~kJ} / \mathrm{mol}$
(b) $+175 \mathrm{~kJ} / \mathrm{mol}$
(C) $-100 \mathrm{~kJ} / \mathrm{mol}$
(d) $-125 \mathrm{~kJ} / \mathrm{mol}$
.
\qquad فيكون رمز نواة ذرة العنصر الناتجة
(a) ${ }_{Z-2}^{A+4} \mathrm{Y}$
(b) $\mathrm{Z}_{+4}^{\mathrm{A}-4} \mathrm{Y}$
(c) ${ }_{Z-4}^{A-2} Y$
(d) ${ }_{Z+2}^{A-4} Y$
(se 321
(3) 423 kJ
(b) -23 kJ
(c) -12 kJ
(d) +12 kJ

من المعادلة :
ما مقدار التغير فـ المحتوى الحرارى لاحتراق و 0.972 هن اللكِيثّ ؟
 أى من الأحرف الموضحة على الشكل المقابل يعبــر عـن العنصــر Y ؟
(a) A
(b) B
(c) C
(d) D

29 J عند إمداد قطعة من الرصاص كتلتها 15 وكمية من الحرارة مقدارها 15 وارصا

(a) $7.8 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(b) $1.92 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(c) $29 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(d) $0.129 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$

تستخدم الإشعاعات الناتجة من النظائر فمشعة فى كل مما يأتى، عدا

$$
\begin{aligned}
& \text { (i) قتل الخلايا السرطانية. } \\
& \text { ٪ إخصاب إناث الحشرات. } \\
& \text { ؟ } \xlongequal{\text { إحداث طفرات بالأجنة. }} \\
& \text { () حفظ الفراولة من التلف. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) } \mathrm{Ni}_{\text {(s) }} \\
& \text { (b) } \mathrm{CO}_{(\mathrm{g})} \\
& \text { (c) } \mathrm{PF}_{3(\mathrm{~g})} \\
& \text { (d) } \mathrm{Ni}_{(\mathrm{s})} \cdot \mathrm{CO}_{(\mathrm{g})}
\end{aligned}
$$

متوسط طاتد الرابطة ($\mathrm{J} \mathrm{J} / \mathrm{mol}$)	الرابطة
240	Cl- Cl
432	$\mathbf{H}-\mathrm{H}$
430	$\mathrm{H}-\mathrm{Cl}$

$\begin{aligned} &: ~ \\ & 2(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}_{(\mathrm{g})}\end{aligned}$ نستنج أن .
+1442 kJ (i)

-94 kJ/mol الطاقة الناتجة عن تكوين 1 mol 1 من النواتج تساوى
@(1 الطاقة الناتجة عن تكوين 1 (1 من النواتج تساوى kJ/mol
: (0) رتب المركات الآتية تصاعديًا حسب درجة ثباتها الحرارى :

$\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{4 (g)}}$	$\mathbf{N}_{\mathbf{2}} \mathbf{O}_{(\mathrm{g})}$	$\mathbf{N O}_{\mathbf{2}(\mathrm{g})}$	$\mathbf{N O}_{(\mathrm{g})}$	
+9.66	+81.56	+33.85	+90.4	$\Delta \mathbf{H}_{\mathbf{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol})$

~......

(1) ${ }_{28}^{60} \mathrm{Ni}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{27}^{60} \mathrm{Co}+\mathrm{X}$
(2) ${ }_{12}^{24} \mathrm{Mg}+{ }_{2}^{4} \mathrm{He} \longrightarrow{ }_{14}^{27} \mathrm{Si}+\mathrm{X}$
(3) ${ }_{82}^{212} \mathrm{~Pb} \longrightarrow{ }_{83}^{212} \mathrm{Bi}+\mathrm{X}$
(4) ${ }_{83}^{212} \mathrm{Bi} \longrightarrow{ }_{81}^{208} \mathrm{Tl}+\mathrm{X}$
(X) (X) في كل معادلة بـا يعبر عنه فعليًا : (......................)
(.....................)
(…...................)
\square
${ }_{53}^{127} \mathrm{I}$ (772) احسب طاقة التزابط النووى لكل نيوكلون فى نواة نظير اليون
1.00866 u علمًا بأن كتلتها الفعلية 126.9004 وكتلة البروتون 1.00728 و كتلة النيوترون
\qquad
\qquad
\qquad
\qquad
\qquad

$$
2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})} \quad \Delta \mathrm{H}=-198.2 \mathrm{~kJ} \quad \text { تبعًا للمعادلة الحرارية }
$$

\qquad
\qquad
\qquad

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(0)}+3 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta \mathrm{H}=-1.37 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}
$$

أى هطا يانت يعبر تعبيرًا صحيحًا عن التفاعل السارية $\mathrm{H}_{2} \mathrm{O}_{(v)}$ (i) التفاعل طارد للحرارة وقيمة C (i)
© ج

(a) 315 kJ

؟ $79.8^{\circ} \mathrm{C}$ C 1 25 $5^{\circ} \mathrm{C}$ ن
(b) 2.54 J
(c) 141.8 kJ
(d) 141.8 J

(a) $+34.2 \mathrm{~kJ} / \mathrm{mol}$
(b) $-34.2 \mathrm{~kJ} / \mathrm{mol}$
(C) $-29.3 \mathrm{~kJ} / \mathrm{mol}$
(d) $+29.3 \mathrm{~kJ} / \mathrm{mol}$
(1) $2 \mathrm{~A} \longrightarrow \frac{1}{2} \mathrm{~B}+\mathrm{C}$
(2) $\frac{3}{2} B+4 C \longrightarrow 2 A+C+3 D$

$$
\begin{aligned}
\Delta \mathrm{H}_{1} & =+5 \mathrm{~kJ} \\
\Delta \mathrm{H}_{2} & =-15 \mathrm{~kJ} \\
\Delta \mathrm{H}_{3} & =+10 \mathrm{~kJ} \\
\Delta \mathrm{H}_{4} & =?
\end{aligned}
$$

(a) +10 kJ

ما تيمة ΔH للتفاعل (4) ؟
(b) -10 kJ
(C) -20 kJ
(d) +20 kJ
(a) $\mathrm{F}_{2(\mathrm{~g})}$
(b) $\mathrm{Al}_{(\mathrm{s})}$
(c) $\mathrm{Hg}_{(0)}$
(d) $\mathrm{CO}_{2(\mathrm{~g})}$

$$
\begin{equation*}
{ }_{92}^{238} \mathrm{U} \longrightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{X} \tag{7}
\end{equation*}
$$

(a) ${ }_{94}^{242} \mathrm{Pu}$
(b) ${ }_{90}^{234} \mathrm{Th}$
(c) ${ }_{90}^{242} \mathrm{Th}$
(d) ${ }_{92}^{234} \mathrm{U}$
(a) $1: 10^{-5}$
(b) $1: 10^{5}$
(c) $1: 10^{2}$
(d) $1: 10^{15}$

ما الانبعاث المتوقع صدوره عن نظير الحديد 59 الذى يقع على يسار حزام الاستقرار ؟

$$
\begin{aligned}
& \text { (i) جسيم بيتا. } \\
& \text { ج دقيقة بوزيترون. } \\
& \text { - } \rightleftharpoons \\
& \text { (3) أشعة جابا. } \\
& \text { (i) }
\end{aligned}
$$

ما الذى يِثله (X) ؟
فـ المعادلة المقابلة :
\qquad

ما الزمن اللازم لتحلل 53.125\% من أنوية عنصر مشع، فترة عمر النصف له 32 min ؟

(a) 21 min
(b) 30 min
(c) 34 min
(d) 42 min
(1)
(a) ${ }_{48}^{112 \mathrm{Cd}}$
(b) ${ }_{48}^{109} \mathrm{Cd}$
(c) ${ }_{47}^{108} \mathrm{Ag}$
(d) ${ }_{47}^{109} \mathrm{Ag}$
(if)

4×01

(1) يلزم لإعداد أربـة أكواب من الشــاى تســخين كمية من الماءمن $35^{\circ} \mathrm{C}$ إلى $100^{\circ} \mathrm{C}$ وذلل بإمدادها بكمية من الحرارة مقدارها 218400 احسب كمية اهاء الطستخدمة بوحدة الجرام (g).
\qquad
\qquad
\qquad
\qquad

$$
1.7 \times 10^{-10} \mathrm{~kg} \text { احسب كتلة نواة } 10232{ }^{235} \text { إذا علمت أن متوسط كتلة النيوكلون (0) }
$$

$+\cdots+1$

(10) المالان المغناطيســى والكهربى للأشــعة الصــادرة عن اللاب توب عنـ تشــنيله يسبيا ارتفاع درجة حرارة خلايا الجسم الملاصقة له، ما اسسـم هذه الأثــعة ؟ وما أثرهــا الضار الهحتمل عند انــــــخدام الالب توب بالوضـعية الموضحة بالشكل المقابل ؟
\qquad
\qquad

${ }^{153} \mathrm{En}$	${ }^{151} \mathrm{Eu}$	Nail
153 u	151 u	الحكلة الذرية النسبية
52.23\%	47.77\%	نسبة الوجود في الطهبة

 يوضصدهما الجدول المقابل : (1) ما رجه التشابه و وجه الاختا(ف بين

\qquad
\qquad

(179) يتفاعل الألومنيوم بعنف مع أكسـيد الحديد (III) مكونا أكسيد الألومنيوم والحديــد مـع انطـلاق قــر كـبـــــر مـنـن الطـاقـة الحـراريـة :
(1) اكتب المعادلة الرمزية الموزونة المعبرة عن التفاعل الحادث. (وتوضيح التغير فى الإنثالبى.

: يحترق الإيثانول تبعًا للمعادلة التالية (IIV)
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{l})}+3 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta \mathrm{H}_{\mathrm{c}}^{\circ}=$?
احسب التغير فی إنثالبى الاحتراق القياسى للإيثانول مستعينًا بالجدول التالى :

التغير	عدد ذرات الكربون فى الكحول	الكحول
-2678 kJ/mol	4	$\begin{aligned} & \text {-1 بيوتان } \\ & \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} \end{aligned}$
. $-3331 \mathrm{~kJ} / \mathrm{mol}$	5	$\begin{array}{r} \text { C1 بنتانول }-1 \\ \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH} \end{array}$

\qquad
\qquad
..........
(i) نظام مغلق

־ \bigodot نظام منتوح
©
(لـنظام مغلق أو مفتوح.
 (Z) ، (Y) ، (X) كلى ثلاثة أنواع من الإشعاعات أى مها يأت يُعبر عن كل من هذه الإشعاعات ؟

0 الكيمياية التى يستخخدم فيها إنزيم كعامـل حفاز. أى مها يأتّ يعبر تعبيرًا صحيحًا عن هذا التفاعل ؟ التغير في المحتـوى الحــرارى مـن
(إلى N(1) M M إلى P M طارد للحرارة و من N إلى P م مأص للحرد
 M إلى N(3)
(8) أى من المعادلات الآتية تعبر عن تفاعل محتمل حدونه فـ مهاعل نووى انشطارى ؟
(a) ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}$
(b) ${ }_{7}^{14} \mathrm{~N}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{7}^{15} \mathrm{~N}$
(c) ${ }_{21}^{46} \mathrm{Sc} \longrightarrow{ }_{21}^{46} \mathrm{Sc}+\gamma$
(d) ${ }_{92}^{238} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{38}^{95} \mathrm{Sr}+{ }_{54}^{141} \mathrm{Xe}+3{ }_{0}^{1} \mathrm{n}$

(kJ/mol)	
436	$\mathbf{H}-\mathbf{H}$
499	$\mathbf{O}=\mathbf{O}$
464	$\mathbf{H}-\mathbf{O}$

© (التفاعـلـ الآت يعبر عن تفاعل اتحـاد غاز الهيدروهين
مع غاز الأكسحين لتكوين الماء :

$$
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})}
$$

ما قيمة ΔH للتفاعل السابق ؟
(a) +464 kJ
(b) -485 kJ
(c) +485 kJ
(d) -464 kJ

(a) α, β^{-}
(b) α, γ
(c) $2 \beta^{-}$
(d) β^{-}, γ

$$
\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{v})} \quad \Delta \mathrm{H}=-91 \mathrm{~kJ} \text { : فـ التفاعل المقابل }
$$

$$
\text { إذا تكوّن } \mathrm{CH}_{3} \mathrm{OH}_{(v)} \text { فكم تصبح قيمة } \mathrm{CH}_{3} \mathrm{OH}_{\text {ملا }}^{\text {تلتفاعل ؟ }}
$$ "علًا بأن قيمة CH 3 OH لتبخير CH (

(a) -128 kJ
(b) -54 kJ
(C) +128 kJ
(d) +54 kJ

2000 nuclei 10 min 10 لحتوى في هله اللحظة عله

(a) 250 nuclei.
(b) 4000 nuclei.
(C) 6000 nuclei.
(d) 16000 nuclei.
(0) عند ذوبان الأملاح فی الماء تنفصل جزيئات كل من المذيب عن بعضها والمذاب عن بعضها، ثم يحدث الارتباط (التجاذب) بين أيونات المذاب وجزينئات الهياء الهاء
ما الشكل البيانى الذى يعبر عن التغير الحادث في درجة الحرارة عند ذوبان ملح نترات الأمونيوم فى الماء ؟

(د)

\odot

(ب)

(i)

للفضـة 47 وكتلته الذرية 108
فأى مما يأتى يعبر تعبيرًا صحيحًا عن نظائر الفضة ؟
(1) الكتلة الذرية لكل ذرات الفضة 108
${ }^{109} \mathrm{Ag}$ ج نسبة تواجد النظير ٪ كُلا من ذرات C ك (1) كلأ من ذرات

\qquad
\qquad
\qquad

64.9278 amu كتلة نواة نظير النحاس 65 مقدرة بوحدة kg ع علمّا بنت الكثة الذرية له تساوى

$\mathrm{CH}_{3} \mathrm{OH}$ المعادلة الآتية توضح التفاعل الكلى لتحول الميثان ${ }^{\text {إلى ميثانول }}$

$$
\begin{equation*}
\mathrm{CH}_{4(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}_{(l)} \tag{13}
\end{equation*}
$$

احسب قيمة ΔH للتفاعل، علمًا بأن حرارة التكوين القياسية لكل من الميثان و الميثانل
\qquad
\qquad
\qquad
 هل هذا المركب شنيح الذينى الذيان فى الماء أم شره الذوبان فيه ؟ مع التعليل.

$$
4{ }_{1}^{1} \mathrm{H} \longrightarrow{ }_{2}^{4} \mathrm{He}+2{ }_{+1}^{0} \mathrm{e} \quad: \text { يحدث التفاعل النونى الاندماجى الآتى فى الشمس (100) }
$$

احسب الططاقة الـاتجة عن الاندماج النووى بوحدتى (JeV) ، (J)

\qquad
\qquad
\qquad
\qquad
\qquad

9 نِّهوذ

\qquad
\qquad

$\frac{\cdots \cdots}{4 x, 1}$

العملية الحادثة		$\underset{(\mathrm{kJ} / \mathrm{mol})}{\Delta \mathrm{H}}$
(1)	$\mathrm{Na}_{(\mathrm{s})} \longrightarrow \mathrm{Na}_{(\mathrm{g})}$	+ 109
(2)	$\mathrm{Na}_{(\mathrm{g})} \longrightarrow \mathrm{Na}_{(\mathrm{g})}^{+}+\mathrm{e}^{-}$	+ 494
(3)	$\mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{Cl}_{(\mathrm{g})}$	+ 242
(4)	$\mathrm{Cl}_{(\mathrm{g})}+\mathrm{e}^{-} \longrightarrow \mathrm{Cl}_{(\mathrm{g})}^{-}$	-364
(5)	$\mathrm{Na}_{(\mathrm{s})}+\frac{1}{2} \mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow \mathrm{NaCl}_{(\mathrm{s})}$	-411

(1) إنتالبى تفكن اليــبكة البللوريـة 1 mol متلدار التفير الحرارى المصاحب لتحول من الشبكة البـلنورية لمركب أيونى إلى أيونات،
 لحسـاب إن + . . تفكك الشـبكة البللورية لكلوريد الهـه
\qquad
قطعتين من فلزين مختلفين لهها نفس الكتلة ونفس درجة الحرارة الابتدائية يتم إمدادهما

الفلز الذى حرارته النوعية أكبر.
(a) ${ }_{-1} \mathrm{e}$ لوصول نواة النظير 12 ${ }_{7}$ غير مستقرة إلى حالة الاستقرار ينبعث منها
(b) α
(c) γ
(d) ${ }_{+1}^{0} \mathrm{e}$

أى من الأشكال الآتية يُعبر عن تفاعل طارد للحرارة له أقل قيمة هH ؟

10 نموذج امتحان

ن ن المعالتلتين الحراريتين التاليتين :
(1) $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})}$
$\Delta H=-900 \mathrm{~kJ} / \mathrm{mol}$
(2) $\mathrm{H}_{2} \mathrm{O}_{(0)} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})}$

$$
\Delta H=+44 \mathrm{~kJ} / \mathrm{mol}
$$

ما أفصى كتلة من أماء 18 g/mol ؟ 1 mol
(a) 20.5 g
(b) 61.8 g
(c) 184 g
(d) 368.2 g
(i) أى من الأشكال الآتية يعبر عن مسار شعاعين من دقائق ألفا عند اقترابهما من نواة كبيرة الحجم ؟

(1)

(ب)

(i)
(A) أى من العمليات الآتية تكون قيمة $\mathbf{~ (~} \mathrm{A}$ لها بإشارة معاكسة لباقى العمليات ؟
(a) $\mathrm{I}_{2(\mathrm{~s})} \longrightarrow \mathrm{I}_{2(\mathrm{v})}$
(b) $\mathrm{Na}_{(\mathrm{g})}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Na}{ }_{(\mathrm{g})}$
(c) $\mathrm{CO}_{2(\mathrm{~g})} \longrightarrow \mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}$
(d) $2 \mathrm{NaCl}_{(\mathrm{l})} \longrightarrow 2 \mathrm{Na}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})}$
63.5 u u 4 ما النسبة بين تواجد النظران ان
(a) $63: 65$
(b) $3: 1$
(c) $1: 3$
(d) $1: 1$

(a) $8.89 \times 10^{2} \mathrm{~kJ}$

علمُا بأن حرارة احتراق الميثان (
(b) $7.17 \times 10^{3} \mathrm{~kJ}$
(c) $4.34 \times 10^{4} \mathrm{~kJ}$
(d) $5.56 \times 10^{4} \mathrm{~kJ}$

$$
\begin{equation*}
\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CH}_{4(\mathrm{~g})} \longrightarrow 3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{HCN}_{(\mathrm{g})} \quad \text { احسب } \Delta \mathrm{H} \text { :لتفاعل } \tag{III}
\end{equation*}
$$

بكعلومية المعادلات الحرارية التالية :

$$
\begin{array}{ll}
\text { (1) } \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})} & \Delta \mathrm{H}_{1}=-91.8 \mathrm{~kJ} \\
\text { (2) } \mathrm{C}_{(\mathrm{s})}+2 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{CH}_{4(\mathrm{~g})} & \Delta \mathrm{H}_{2}=-74.9 \mathrm{~kJ} \\
\text { (3) } \mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{C}_{(\mathrm{s})}+\mathrm{N}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{HCN}_{(\mathrm{g})} \cdot & \Delta \mathrm{H}_{3}=+270.3 \mathrm{~kJ}
\end{array}
$$

\qquad
\qquad
\qquad 4
, إلطاقة بوحدة الحول (J) الناتجة عن تحول 0.5 من مادة ما.
(10)
\qquad
\qquad
\qquad

$$
{ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}+{ }_{40}^{97} \mathrm{Zr}+2{ }_{0}^{1} \mathrm{n}
$$

\qquad
\qquad
\qquad
\qquad

\square

 وأن كل قطعة ثلج تحتوى على مول من الماء [20] g/mol
\qquad
\qquad
\qquad
\qquad

متوسط طافة الرابطة ($\mathrm{kJ} / \mathrm{mol}$)	الرابطة
413	$\mathrm{C}-\mathrm{H}$
347	C-C
612	$\mathrm{C}=\mathrm{C}$
346	$\mathrm{C}-\mathrm{Cl}$
432	$\mathrm{H}-\mathrm{Cl}$

احسب التغير فف المـتوى الحرارى للتفاعل التالى :

بمعلومية متوسط طاقة الروابط الموضحة بالجدول المقابل.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad nans
(IIV) عنصر الأنتيمون له 29 نظير، اثنان منها فقط مستقران، وهها 123Sb ، ${ }^{2}$ و الباقى غير مستقر : (1) كيف يكنك حسابيًا إثبات أن النظير
\qquad
\qquad
\qquad
(r) ينبعث جسيم بيتا من نواة ذرة الأنتيمون المعادلة النووية المعبرة عن النشاط الإشعاعى الحونًا نواة ذرة التيلويوم Te،

$$
[\mathrm{H}=1, \mathrm{O}=16]
$$

 الطاقــة لكــلـل منهمـا كمـا فـ الجـدول المقابـل : فإن التغير في طاقة الوسط المحيط تكون
$+20 \mathrm{~kJ} \odot$
$-20 \mathrm{~kJ} \bigodot$
$-100 \mathrm{~kJ} \bigodot$
$+100 \mathrm{~kJ}($

الحرارة النوعية لبعض العناصر كها في الجدول التالى :

Al	$\mathbf{C u}$	Fe	\mathbf{C}
0.9	0.38	0.44	0.71

عند تعرض كتل متساوية من جميع هذه العناصر لنفس كمية الحرارة فيكون العنصر الذى ترتفع درجة حرارته أسرع هو
(كتلتها 5 وأذيبت فـ ماء كتلته g (A) نظام يحتوى على مادة 30 وف لهاية التجربة انخفضت درجة الحرارة بمقدار 3 وكانت كتله المحلول g 35 ، فإن النظام (i) يتنير فيه كل من الكتلة والطاقة. ج بك يكن مغلق. ج (1) لا يتنير فيه كل من الكتلة والطاةة. ارتفعت درجة حرارة g 34 من البلاتين بمقدار 5 5 5 فإذا علمت أن الحرارة النوعية للبلاتين
......... 0.133 J/g. ${ }^{\circ} \mathrm{C}$
22.6 J (i)
11.3 J (-)
$27.5 \mathrm{~J} \Theta$
19.8 J (3)
(4) أى الأشكال التالية يعبر عن العلاقة البيانية الصحيحة بين متوسط سرعة الجزيئات ودرجة الحرارة ؟

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{HCl}_{(\mathrm{g})}+185 \mathrm{~kJ}
$$

فيكون مخطط الطاقة المُعر عن هذا التفاعل هو

(a) إى من التفاعلات التالية يعبر عنه مخطط الطاقة المقابل ؟
(a) $\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+50 \mathrm{~kJ}$
(b) $\mathrm{A}+\mathrm{B}+50 \mathrm{~kJ} \longrightarrow \mathrm{C}$
(C) $\mathrm{A}+\mathrm{B}-50 \mathrm{~kJ} \longrightarrow \mathrm{C}$
(d) $\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C} \quad, \quad \Delta \mathrm{H}=-50 \mathrm{~kJ}$

$$
\begin{aligned}
& \frac{1}{2} \mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{I}_{2(\mathrm{~g})}+26 \mathrm{~kJ} \longrightarrow \mathrm{HI}_{(\mathrm{g})} \\
& \text { فإن قيمة } \\
& -52 \mathrm{~kJ} \text { (i) } \\
& +52 \mathrm{~kJ} \odot \\
& -26 \mathrm{~kJ} \rightleftharpoons \\
& +26 \mathrm{~kJ}(2)
\end{aligned}
$$

(kJ/mol)	الرسط طابطة (kJ
436	$\mathbf{H}-\mathbf{H}$
190	$\mathbf{B r}-\mathbf{B r}$
362	$\mathbf{H}-\mathbf{B r}$

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{HBr}_{(\mathrm{g})}
$$

فإذا كانت طاقة الروابط كما بالجدول المقابل،
فـإن التغـير فى المحـــوى الحـرارى للتـفـاعــل

$$
\begin{array}{r}
. ~ ي ك و ن ~ \\
+198 \mathrm{~kJ} \fallingdotseq \\
-198 \mathrm{~kJ} \bigodot \\
+98 \mathrm{~kJ} \fallingdotseq \\
-98 \mathrm{~kJ} \bigodot
\end{array}
$$

> تصريح وزارة التزبية والتعليم رقم ع-1 - r - 1-1 -

?

- ادخـل كـودك الشــخـص الموجود على ظهر الغلاف - لمــــزيد مـنا المعــــــومات

0_{0}^{2}
معـاك Ma3akApp

الآنبجـميع المكـتبات سلسلةكتب

غـرافيا \qquad - الج

Quo-
oliecdy

osfecedy

culdisentrul anoleag.oo o

00

(4) Adsevtirabl o el ujajo

जisullin Eo tilan vinh
ulu aluual
الحـ

卉GPS

Gugatc rimill Eatull criger)

WW blemejontorakroom Emarlmiocalcme/ribook cscom
 5 1alemic7 anoork

[^0]: (؟) للتحكم فی معدل التفاعل الانشطارى المتسلسل فى المفاعل النووى تستخدم قضبان من
 الراديوم.
 ب الثقديوم.
 ج \rightleftharpoons
 (ـ) البريليوم.

